Chapter 6

A Case Study: The Eight
Queens Puzzle

This chapter presents the first of several case studies (or paradigms, in the orig-
inal sense of the word) of programs written in an object-oriented style. The
programs in this Chapter will be rather small so that we can present versions
in several different langauges. Later case studies will be presented in only one
language.

After first describing the problem, we will discuss how an object-oriented
solution would differ from another type of solution. The chapter then concludes
with a solution written in each language.

6.1 The Eight-Queens Puzzle

In the game of chess, the queen can attack any piece that lies on the same row,
on the same column, or along a diagonal. The eight-queens is a classic logic
puzzle. The task is to place eight queens on a chessboard in such a fashion that
no queen can attack any other queen. A solution is shown in Figure 6.1, but
this solution is not unique. The eight-queens puzzle is often used to illustrate
problem-solving or backtracking techniques.

How would an object-oriented solution to the eight-queens puzzle differ from
a solution written in a conventional imperative programming language? In a
conventional solution, some sort of data structure would be used to maintain the
positions of the pieces. A program would then solve the puzzle by systematically
manipulating the values in these data structures, testing each new position to
see whether it satisfied the property that no queen can attack any other.

We can provide an amusing but nevertheless illustrative metaphor for the dif-
ference between a conventional and an object-oriented solution. A conventional
program is like a human being sitting above the board, and moving the chess
pieces, which have no animate life of their own. In an object-oriented solution,

125

126 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

Figure 6.1: — One solution to the eight-queens puzzle.

on the other hand, we will empower the pieces to solve the problem themselves.
That is, instead of a single monolithic entity controlling the outcome, we will
distribute responsibility for finding the solution among many interacting agents.
It is as if the chess pieces themselves are animate beings who interact with each
other and take charge of finding their own solution.

Thus, the essence of our object-oriented solution will be to create objects
that represent each of the queens, and to provide them with the abilities to
discover the solution. With the computing-as-simulation view of Chapter 1, we
are creating a model universe, defining behavior for the objects in this universe,
then setting the universe in motion. When the activity of the universe stabilizes,
the solution has been found.

6.1.1 Creating Objects That Find Their Own Solution

How might we define the behavior of a queen object so that a group of queens
working together can find a solution on their own? The first observation is that,
in any solution, no two queens can occupy the same column, and consequently no
column can be empty. At the start we can therefore assign a specific column to
each queen and reduce the problem to the simpler task of finding an appropriate
row.

To find a solution it is clear that the queens will need to communicate with
each other. Realizing this, we can make a second important observation that
will greatly simplify our programming task—namely, each queen needs to know
only about the queens to her immediate left. Thus, the data values maintained
for each queen will consist of three values: a column value, which is immutable;
a row value, which is altered in pursuit of a solution; and the neighboring queen
to the immediate left.

Let us define an acceptable solution for column n to be a configuration of

6.2. USING GENERATORS 127

columns 1 through 7 in which no queen can attack any other queen in those
columns. Each queen will be charged with finding acceptable solutions between
herself and her neighbors on her left. We will find a solution to the entire puzzle
by asking the right most queen to find an acceptable solution. A CRC-card
description of the class Queen, including the data managed by each instance
(recall that this information is described on the back side of the card), is shown
in Figure 6.2.

6.2 Using Generators

As with many similar problems, the solution to the eight-queens puzzle involves
two interacting steps: generating possible partial solutions and filtering out so-
lutions that fail to satisfy some later goal. This style of problem solving is
sometimes known as the generate and test paradigm.

Let us consider the filter step first, as it is easier. For the system to test a
potential solution it is sufficient for a queen to take a coordinate (row-column)
pair and produce a Boolean value that indicates whether that queen, or any
queen to her left, can attack the given location. A pseudo code algorithm that
checks to see whether a queen can attack a specific position is given below. The
procedure canAttack uses the fact that, for a diagonal motion, the differences in
rows must be equal to the differences in columns.

function queen.canAttack(testRow , testColumn) -> boolean
/% test for same row x/
if row = testRow then
return true

/% test diagonals x/
columnDifference := testColumn - column
if (row + columnDifference = testRow) or
(row - columnDifference = testRow)
then return true

/*x we can’t attack, see if neighbor can x/
return neighbor.canAttack(testRow, testColumn)
end

6.2.1 Initialization

We will divide the task of finding a solution into parts. The method initialize
establishes the initial conditions necessary for a queen object, which in this case
simply means setting the data values. This is usually followed immediately by a
call on findSolution to discover a solution for the given column. Because such a

128 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

Queen
initialize — 1initialize row, then find
first acceptable solution for self and
neighbor

advance — advance row and find next
acceptable solution

canAttack — see whether a position can
be attacked by self or neighbors

Queen — data values

row — current row number (changes)
column — column number (fixed)
neighbor — neighbor to left (fixed)

Figure 6.2: — Front and back sides of the Queen CRC card.

6.2. USING GENERATORS 129

solution will often not be satisfactory to subsequent queens, the message advance
is used to advance to the next solution.

A queen in column 7 is initialized by being given a column number, and the
neighboring queen (the queen in column n — 1). At this level of analysis, we
will leave unspecified the actions of the leftmost queen, who has no neighbor.
We will explore various alternative actions in the example problems we subse-
quently present. We will assume the neighbor queens (if any) have already been
initialized, which includes their having found a mutually satisfactory solution.
The queen in the current column simply places herself in row 1. A pseudo-code
description of the algorithm is shown below.

function queen.initialize(col, neigh) -> boolean

/* initialize our column and neighbor values */
column := col
neighbor := neigh

/* start in row 1 %/
row := 1
return findSolution;
end

6.2.2 Finding a Solution

To find a solution, a queen simply asks its neighbors if they can attack. If so,
then the queen advances herself, if possible (returning failure if she cannot).
When the neighbors indicate they cannot attack, a solution has been found.

function queen.findSolution -> boolean

/* test positions */
while neighbor.canAttack (row, column) do
if not self.advance then
return false

/x found a solution x/
return true
end

As we noted in Chapter 5, the pseudo-variable self denotes the receiver for
the current message. In this case we want the queen who is being asked to find
a solution to pass the message advance to herself.

130 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

6.2.3 Advancing to the Next Position

The procedure advance divides into two cases. If we are not at the end, the
queen simply advances the row value by 1. Otherwise, she has tried all positions
and not found a solution, so nothing remains but to ask her neighbor for a new
solution and start again from row 1.

function queen.advance -> boolean

/% try next row x/
if row < 8 then begin

row := row + 1

return self.findSolution
end

/% cannot go further x/

/* move neighbor to next solution */
if not neighbor.advance then

return false

/% start again in row 1 x/
row := 1
return self.findSolution
end

The one remaining task is to print out the solution. This is most easily
accomplished by a simple method, print that is rippled down the neighbors.

procedure print
neighbor.print
write row, column
end

6.3 The Eight-Queens Puzzle in Several Languages

In this section we present solutions to the eight-queens puzzle in several of the
programming languages we are considering. Examine each variation, and com-
pare how the basic features provided by the language make subtle changes to
the final solution. In particular, examine the solutions written in Smalltalk and
Objective-C, which use a special class for a sentinel value, and contrast this
with the solutions given in Object Pascal, C++, or Java, all of which use a null
pointer for the leftmost queen and thus must constantly test the value of pointer
variables.

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 131

6.3.1 The Eight-Queens Puzzle in Object Pascal

The class definition for the eight-queens puzzle in Apple Object Pascal is shown
below. A subtle but important point is that this definition is recursive; objects
of type Queen maintain a data field that is itself of type Queen. This is sufficient
to indicate that declaration and storage allocation are not necessarily linked; if
they were, an infinite amount of storage would be required to hold any Queen
value. We will contrast this with the situation in C++ when we discuss that
language.

type
Queen = object

(% data fields x)

row : integer;
column : integer;
neighbor : Queen;

(x initialization x)
procedure initialize (col : integer; ngh : Queen);

(x operations *)

function canAttack
(testRow, testColumn : integer) : boolean;
function findSolution : boolean;
function advance : boolean;
procedure print;

end;

The class definition for the Delphi language differs only slightly, as shown
below. The Borland language allows the class declaration to be broken into
public and private sections, and it includes a constructor function, which we will
use in place of the initialize routine.

TQueen = class (TObject)
public
constructor Create (initialColumn : integer; nbr : TQueen);
function findSolution : boolean;
function advance : boolean;
procedure print;

private
function canAttack (testRow, testColumn : integer) : boolean;
row : integer;
column : integer;
neighbor : TQueen;

132 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

end;

The pseudo-code presented in the earlier sections is reasonably close to the
Pascal solution, with two major differences. The first is the lack of a return state-
ment in Pascal, and the second is the necessity to first test whether a queen has
a neighbor before passing a message to that neighbor. The functions findSolution
and advance, shown below, illustrate these differences. (Note that Delphi Pascal
differs from standard Pascal in permitting short-circuit interpretation of the and
and or directives, in the fashion of C++. Thus, the code for the Delphi language
could in a single expression combine the test for neighbor being non-null and the
passing of a message to the neighbor).

function Queen.findSolution : boolean;
var

done : boolean;
begin

done := false;

findsolution := true;

(x test positions)
if neighbor <> nil then
while not done and neighbor.canAttack(row, column) do
if not self.advance then begin
findSolution := false;
done := true;
end;
end;

function Queen.advance : boolean;
begin
advance := false;
(x try next row x)
if row < 8 then begin
row := row + 1;
advance := self.findSolution;
end
else begin
(* cannot go further x)
(+x move neighbor to next solution)
if neighbor <> nil then
if not neighbor.advance then
advance := false
else begin
row := 1;
advance := self.findSolution;

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 133

end;
end;
end;

The main program allocates space for each of the eight queens and initializes
the queens with their column number and neighbor value. Since during initial-
ization the first solution will be discovered, it is only necessary for the queens
to print their solution. The code to do this in Apple Object Pascal is shown
below. Here, neighbor and i are temporary variables used during initialization
and lastQueen is the most recently created queen.

begin
neighbor := nil;
for i := 1 to 8 do begin
(x create and initialize new queen x)
new (lastQueen);
lastQueen.initial (i, neighbor);
if not lastQueen.findSolution then
writeln('no solution');
(x newest queen is next queen neighbor x)
neighbor := lastQueen;
end;

(% print the solution x)
lastQueen.print;

end;
end.

By providing explicit constructors that combine new object creation and
initialization, the Delphi language allows us to eliminate one of the temporary
variables. The main program for the Delphi language is as follows:

begin
lastQueen := nil;
for i := 1 to 8 do begin
// create and initialize new queen

lastQueen := Queen.create(i, lastQueen);
lastQueen.findSolution;
end;

// print the solution
lastQueen.print;
end;

134 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

6.3.2 The Eight-Queens Puzzle in C++

The most important difference between the pseudo-code description of the al-
gorithm presented earlier and the eight-queens puzzle as actually coded in C++
is the explicit use of pointer values. The class description for the class Queen
is shown below. Each instance maintains, as part of its data area, a pointer to
another queen value. Note that, unlike the Object Pascal solution, in C++ this
value must be declared explicitly as a pointer rather than an object value.

class Queen {
public:
// constructor
Queen (int, Queen x*);

// find and print solutions
bool findSolution();
bool advance();
void print();

private:
// data fields
int row;
const int column;
const (Queen * neighbor;

// internal method
bool canAttack (int, int);

+s

As in the Delphi Pascal solution, we have subsumed the behavior of the
method initialize in the constructor. We will describe this shortly.

There are three data fields. The integer data field column has been marked
as const. This identifies the field as an immutable value, which cannot change
during execution. The third data field is a pointer value, which either contains
a null value (that is, points at nothing) or points to another queen.

Since initialization is performed by the constructor, the main program can
simply create the eight queen objects, and then print their solution. The variable
lastQueen will point to the most recent queen created. This value is initially a
null pointer—it points to nothing. A loop then creates the eight values, initial-
izing each with a column value and the previous queen value. When the loop
completes, the leftmost queen holds a null value for its neighbor field while ev-
ery other queen points to its neighbor, and the value lastQueen points to the
rightmost queen.

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 135

void main() {
Queen * lastQueen = 0;

for (int i = 1; i <= 8; i++) {
lastQueen = new Queen(i, lastQueen);
if (! lastQueen->findSolution())
cout << '"no solution\n";
}

lastQueen->print();

We will describe only those methods that illustrate important points. The
complete solution can be examined in Appendix A.

The constructor method must use the initialization clauses on the heading to
initialize the constant value column, as it is not permitted to use an assignment
operator to initialize instance fields that have been declared const. An initial-
ization clause is also used to assign the value neighbor, although we have not
declared this field as constant.

Queen: :Queen(int col, Queen * ngh) : column(col), neighbor (ngh)

{
}

Because the value of the neighbor variable can be either a queen or a null value,
a test must be performed before any messages are sent to the neighbor. This is
illustrated in the method findSolution. The use of short-circuit evaluation in the
logical connectives and the ability to return from within a procedure simplify the
code in comparison to the Object Pascal version, which is otherwise very similar.

row = 1;

bool Queen::findSolution()
{
while (neighbor && neighbor->canAttack(row, column))
if (! advance())
return false;
return true;

The advance method must similarly test to make certain there is a neighbor
before trying to advance the neighbor to a new solution. When passing a message
to oneself, as in the recursive message findSolution, it is not necessary to specify
a receiver.

bool Queen::advance()

136 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

if (row < 8) {
row++;
return findSolution();

}

if (neighbor && ! neighbor->advance())
return false;

row = 1;
return findSolution();

6.3.3 The Eight-Queens Puzzle in Java

The solution in Java is in many respects similar to the C++ solution. However,
in Java the bodies of the methods are written directly in place, and public or
private designations are placed on the class definitions themselves. The following
is the class description for the class Queen, with some of the methods omitted.

class Queen {

// data fields
private int row;
private int column;
private Queen neighbor;

// constructor
Queen (int c, Queen n) {
// initialize data fields
row = 1

column
neighbor

}

public boolean findSolution() {
while (neighbor != null &%
neighbor.canAttack(row, column))
if (! advance())
return false;

Cs
= n;

return true;

}

public boolean advance() { ... }

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 137

private boolean canAttack(int testRow, int testColumn) { ... }

public void paint (Graphics g) { ... }

Unlike in C++, in Java the link to the next queen is simply declared as an
object of type Queen and not as a pointer to a queen. Before a message is sent
to the neighbor instance variable, an explicit test is performed to see if the value
is null.

Since Java provides a rich set of graphics primitives, this solution will differ
from the others in actually drawing the final solution as a board. The method
paint will draw an image of the queen, then print the neighbor images.

class Queen {

public void paint (Graphics g) {
// x, y is upper left corner
// 10 and 40 give slight margins to sides
int x = (row - 1) * 50 + 10;
int y = (column - 1) % 50 + 40;
.drawLine (x+5, y+45, x+45, y+45);
.drawLine(x+5, y+45, x+5, y+5);
.drawLine (x+45, y+45, x+45, y+5);
.drawLine (x+5, y+35, x+45, y+35);
.drawLine(x+5, y+5, x+15, y+20);
.drawLine (x+15, y+20, x+25, y+5);
.drawLine (x+25, y+5, x+35, y+20);
.drawLine (x+35, y+20, x+45, y+5);
.drawQOval (x+20, y+20, 10, 10);
// then draw neighbor
if (neighbor != null)

03 09 09 0” 0”9 0B 09 O” OR

neighbor.paint(g) ;

}

The graphics routines draw a small crown, which looks like this:

Vo

138 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

Java does not have global variables nor functions that are not member func-
tions. As we will describe in more detail in Chapter 22, a program is created by
the defining of a subclass of the system class JFrame, and then the overriding
of certain methods. Notably, the constructor is used to provide initialization for
the application, while the method paint is used to redraw the screen. Mouse
events and window events are handled by creating listener objects that will ex-
ecute when their associated event occurs. We will describe listeners in much
greater detail in later sections. We name the application class QueenSolver and
define it as follows:

public class QueenSolver extends JFrame {

public static void main(String [] args) {
QueenSolver world = new QueenSolver();
world.show();

}

private Queen lastQueen = null;

public QueenSolver() {

setTitle("8 queens");

setSize (600, 500);

for (int i = 1; i <= 8; i++) {
lastQueen = new Queen(i, lastQueen);
lastQueen.findSolution();
}

addMouseListener (new MouseKeeper());

addWindowListener (new CloseQuit());

}

public void paint(Graphics g) {

super.paint(g);
// draw board

for (int i = 0; i <= 8; i++) {
g.drawLine(50 * i + 10, 40, 50%i + 10, 440);
g.drawLine (10, 50 % i + 40, 410, 50%i + 40);

}

g.drawString("Click Mouse for Next Solution", 20, 470);
// draw queens

lastQueen.paint(g) ;

}

private class CloseQuit extends WindowAdapter {
public void windowClosing (WindowEvent e) {
System.exit (0);

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 139

}

private class MouseKeeper extends MouseAdapter {
public void mousePressed (MouseEvent e) {
lastQueen.advance();
repaint () ;

Note that the application class must be declared as public, because it must
be accessible to the main program.

6.3.4 The Eight-Queens Puzzle in Objective-C

The interface description for our class Queen is as follows:

@interface Queen : Object
{ /* data fields =/

int row;

int column;

id neighbor;

/* methods %/
- (void) initialize: (int) c neighbor: ngh;
- (int) advance;
- (void) print;
- (int) canAttack: (int) testRow column: (int) testColumn;
- (int) findSolution;

Q@end

Each queen will maintain three data fields: a row value, a column, and the
neighbor queen. The last is declared with the data type id. This declaration
indicates that the value being held by the variable is an object type, although
not necessarily a queen.

In fact, we can use this typeless nature of variables in Objective-C to our
advantage. We will employ a technique that is not possible, or at least not as
easy, in a more strongly typed language such as C++ or Object Pascal. Recall
that the leftmost queen does not have any neighbor. In the C++ solution, this
was indicated by the null, or empty value, in the neighbor pointer variable in
the leftmost queen. In the current solution, we will instead create a new type

140 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

of class, a sentinel value. The leftmost queen will point to this sentinel value,
thereby ensuring that every queen has a valid neighbor.

Sentinel values are frequently used as endmarkers and are found in algorithms
that manipulate linked lists, such as our linked list of queen values. The difference
between an object-oriented sentinel and a more conventional value is that an
object-oriented sentinel value can be active—it can have behavior—which means it
can respond to requests.

What behaviors should our sentinel value exhibit? Recall that the neighbor
links in our algorithm were used for two purposes. The first was to ensure that
a given position could not be attacked; our sentinel value should always respond
negatively to such requests, since it cannot attack any position. The second use
of the neighbor links was in a recursive call to print the solution. In this case
our sentinel value should simply return, since it does not have any information
concerning the solution.

Putting these together yields the following implementation for our sentinel
queen.

@implementation SentinelQueen : Object
- (int) advance

{
/% do nothing x/

return 0;

}

- (int) findSolution

{
/* do nothing x/

return 1;

}

- (void) print

{
}

/* do nothing x/

- (int) canAttack: (int) testRow column: (int) testColumn;
{

/* cannot attack */

return 0;

}

Q@end

In the full solution there is an implementation section for SentinelQueen, but
no interface section. This omission is legal, although the compiler will provide a
warning since it is somewhat unusual.

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 141

The use of the sentinel allows the methods in class Queen to simply pass
messages to their neighbor without first determining whether or not she is the
leftmost queen. The method for canAttack, for example, illustrates this use:

- (int) canAttack: (int) testRow column: (int) testColumn
{ int columnDifference;

/% can attack same row x/
if (row == testRow)

return 1;

columnDifference = testColumn - column;

if ((row + columnDifference == testRow) ||
(row - columnDifference == testRow))
return 1;

return [neighbor canAttack:testRow column: testColumn];

Within a method, a message sent to the receiver is denoted by a message sent
to the pseudo-variable self.

- (void) initialize: (int) c neighbor: ngh
{

/% set the constant fields %/

column = c;

neighbor = ngh;

row = 1;

}

- (int) findSolution
{
/% loop until we find a solution */
while ([neighbor canAttack: row and: column])
if (! [self advance])
return 0; /% return false x/
return 1; /x return true %/

Other methods are similar, and are not described here.

6.3.5 The Eight-Queens Puzzle in Smalltalk

The solution to the eight-queens puzzle in Smalltalk is in most respects very
similar to the solution given in Objective-C. Like Objective-C, Smalltalk handles

142 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

the fact that the leftmost queen does not have a neighbor by defining a special
sentinel class. The sole purpose of this class is to provide a target for the messages
sent by the leftmost queen.

The sentinel value is the sole instance of the class SentinelQueen, a subclass
of class Object, which implements the following three methods:

advance

" gsentinels do not attack "
1 false

canAttack: row column: column
" sentinels cannot attack "
1 false

result
" return empty list as result "
1 List new

One difference between the Objective-C and Smalltalk versions is that the
Smalltalk code returns the result as a list of values rather than printing it on the
output. The techniques for printing output are rather tricky in Smalltalk and
vary from implementation to implementation. By returning a list we can isolate
these differences in the calling method.

The class Queen is a subclass of class Object. Instances of class Queen main-
tain three instance variables: a row value, a column value, and a neighbor. Ini-
tialization is performed by the method setColumn:neighbor:

setColumn: aNumber neighbor: aQueen
" initialize the data fields "

column := aNumber.
neighbor := aQueen.
row := 1.

The canAttack method differs from the Objective-C counterpart only in syn-
tax:

canAttack: testRow column: testColumn | columnDifference |
columnDifference := testColumn - column.
(((row = testRow) or:
[row + columnDifference = testRow]) or:
[row - columnDifference = testRow])
ifTrue: [1 true].
1 neighbor canAttack: testRow column: testColumn

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 143

Rather than testing for the negation of a condition, Smalltalk provides an
explicit ifFalse statement, which is used in the method advance:

advance
" first try next row "
(row < 8)
ifTrue: [row := row + 1. 1 self findSolution].

" cannot go further, move neighbor "
(neighbor advance) ifFalse: [1 false].
" begin again in row 1 "
row := 1.
1 self findSolution

The while loop in Smalltalk must use a block as the condition test, as in the
following:

findSolution
[neighbor canAttack: row column: column]
whileTrue: [self advance ifFalse: [1 false] 1.
1 true

A recursive method is used to obtain the list of answer positions. Recall that
an empty list is created by the sentinel value in response to the message result.

result
1 neighbor result; addLast: row

A solution can be found by invocation of the following method, which is not
part of class Queen but is instead attached to some other class, such as Object.

solvePuzzle | lastQueen

lastQueen := SentinelQueen new.

1 to: 8 do: [:i | lastQueen := (Queen new)
setColumn: i neighbor: lastQueen.
lastQueen findSolution].

1 lastQueen result

6.3.6 The Eight-Queens Puzzle in Ruby

Ruby is a recent scripting language, similar in spirit to Python or Perl. There
are only functions in Ruby, every method returns a value, which is simply the
value of the last statement in the body of the method. A feel for the syntax for

144 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

Ruby can be found by the definition of the sentinel queen, which can be written
as follows:

class NullQueen

def canAttack(row, column)
false
end

def first?
true
end

def next?
false
end

def getState
Array.new
end

end

The class Queen handles all but the last case. In Ruby instance variables
must begin with an at-sign. Thus the initialization method is written as follows:

class Queen

def initialColumn(column, neighbour)
Q@column = column
@neighbour = neighbour
nil

end

end

Conditional statements are written in a curious form where the expression
is given first, followed by the if keyword. This is illustrated by the method

canAttack:

def canAttack(row, column)
return true if row == Qrow

cd = (column - @column).abs

6.3. THE EIGHT-QUEENS PUZZLE IN SEVERAL LANGUAGES 145

rd = (row - @row).abs
return true if cd == rd

@neighbour.canAttack(row, column)
end

The remainder of the Ruby solution can be found in the appendix.

Chapter Summary

In this first case study we have examined a classic puzzle, how to place eight
queens on a chessboard in such a way that no queen can attack any of the others.
While the problem is moderately intriguing, our interest is not so much in the
problem itself, but in the way the solution to the problem has been structured.
We have addressed the problem by making the queens into independent agents,
who then work among themselves to discover a solution.

Further Reading

A solution to the eight-queens puzzle constructed without the use of a sentinel
value was described in my earlier book on Smalltalk [Budd 1987].

The eight queens puzzle is found in many computing texts. See [Griswold 1983,
Budd 1987, Berztiss 1990], for some representative examples.

For further information on the general technique termed generate and test,
see [Hanson 1981], or [Berztiss 1990].

The solution in Ruby was written by Mike Stok. Further information on
Ruby can be found in [Thomas 2001].

Self Study Questions
1. What is the eight queens puzzle?

2. In what way is the object-oriented solution presented here different from a
conventional solution?

3. What is the generate and test approach to finding a solution in a space of
various alternative possibilities?

4. What is a sentinel? (The term is introduced in the solution presented in
Objective-C).

146 CHAPTER 6. A CASE STUDY: THE EIGHT QUEENS PUZZLE

Exercises

1. Modify any one of the programs to produce all possible solutions rather
than just one. How many possible solutions are there for the eight-queens
puzzle? How many of these are rotations of other solutions? How might
you filter out rotations?

2. Can you explain why the sentinel class in the Objective-C and Smalltalk
versions of the eight-queens puzzle do not need to provide an implemen-
tation for the method findSolution, despite the fact that this message is
passed to the neighbor value in the method advance?

3. Suppose we generalize the eight-queens problem to the N-queens problem,
where the task is to place N queens on an N by N chessboard. How must
the programs be changed?

It is clear that there are values for N for which no solution exists (consider
N=2 or N=3, for example). What happens when your program is executed
for these values? How might you produce more meaningful output?

4. Using whatever graphics facilities your system has, alter one of the pro-
grams to display dynamically on a chessboard the positions of each queen
as the program advances. What portions of the program need to know
about the display?

