June 12, 2007
Craig Furtado, Valentina Grigoreanu, Scott King
Dr. Margaret Burnett
CS 569 / CS 589

TERM CASE STUDY PROJECT
 Table of Contents

Executive Summary…………………………………………………………….3

Introduction……………………………………………………………………...4

Design

Overview………………………………………………………………………………………..6

Field Procedures……………………………………………………………………………….6

Case Study Questions…………………………………………………………………………7

Guide for the Report…………………………………………………………………………..8

Database Structure……………………………………………………………………………9
Pilot Study……………………………………………………………………….10
Coding…………………………………………………………………………..11
Results……………………………………………………………………………13
Validity and Concerns………………………………………………………..22
Conclusion……………………………………………………………………...24
References……………………………………………………………………...25
Database

Executive Summary

	Research Question
	How are the information needs (and their resolutions) of student software developers working on open source projects different from those within commercial software environments?

	Propositions
	Which of the seven types of needs are most common for OSS student developers?
Which searches for information will be most often deferred by OSS student developers?

	Type of Case Study
	This will be an exploratory study.

	Unit of Analysis
	90-minute development session with a student.

	Data Collected
	Our data will come from:
- Surveys to get background information on the participants and the projects that they are working on;
- Observational notes from the 90-minute sessions about the information needs that they run into during open source development;
- Semi-Structured Interviews to triangulate with our observations

	Study Design Type
	We expect this study to be single-case holistic. We expect the participants to be representative of student open-source software developers and we expect them to have similar needs. We only have one unit of analysis (a 90-minute session with a student developer). Since there are no embedded units, it is a holistic study.

Introduction

While all that is theoretically needed to produce software is a computer with a compiler, this is often not the case in practice. Developers also need information, such as user requirements and programming language references to name but a couple of examples. In projects involving software development teams, developers are especially dependent on information from fellow developers to complete their tasks. In their paper “Information Needs in Collocated Software Development Teams”, DeLine, Ko, and Venolia describe a case study they conducted [2]. They observed commercial software developers at Microsoft to learn what types of information needs they had while working on projects, as well as how these needs were satisfied (or not satisfied.) The investigators discovered that the most common information needs concerned design knowledge (such as the purpose of a section of code and why code was implemented a certain way), maintaining awareness (such as keeping up to date with what work fellow team members have been doing and how it affects them), and understanding code behavior (such as determining what code causes a certain behavior and what is related to that code). They also found that information searches about design and behavior were deferred the most due to the only people with the information not being available.

The rise of open source software (OSS) prompts the question of how its development is different from commercial software development. Are the information needs that open source software developers run into similar to those of commercial software developers? Do these needs get solved in similar ways? Thus, we aim to explore how the information needs and corresponding resolutions of student software developers working on open source projects differ from those within commercial software environments. Of particular interest are the following questions:
· Which of the seven types of needs are most common for OSS student developers?

· Which searches for information will be most often deferred by OSS student developers?

Information about the information needs of OSS student developers should provide insight into the nature of open source development, especially the common obstacles they encounter. This information could be used as a starting point to craft better tools and strategies for OSS developers. Students will make good subjects for observation because they are readily accessible at Oregon State University’s Open Source Lab, and they are representative of OSS developers. According to a survey by the Stanford Institute for Economic Policy Research, almost 30% of OSS developers became involved with it between the ages of 16 and 20, and almost 35% became involved between the ages of 21 and 25 – typical college age groups [3].
Design
Describe the “case” – what situations exactly did you study? In what organization? Etc.
Our case is a session with an open-source student programmer at the Oregon State University Open Source Lab. Each session will last about 90 minutes, though some are going to be a bit shorter or longer, depending on when a good stopping point comes up. We are not expecting too much variation between the different participants; each unit should be fairly representative. Two things that we will look out for will be differences in information needs resulting from either gender differences or differences resulting from how long the developers have worked on the project for (how familiar they are with that particular code). However, from our initial investigations, it sounds like most of the developers that we will be observing joined their projects a few months ago; meaning that they would all have a similar amount of experience with the code. Also, there is at least one female in the group that we will be observing, but we do not expect her to be a separate case at this point.
Include the other design information from the table, say why you chose them, any other substantiation you think you need here to convince me your answers are correct. If there were any “natural controls” involved, this is the place to point them out.
This is an exploratory case study. Ko et al researched the information needs of collocated developers of commercial software systems and the inhibiting factors that they encounter in its acquisition. We expect open source development to be quite different, since it is a voluntary and often more individual activity. We will employ the seven categories of information needs given by Ko et al and supplement it with a new category specific only to open-source development. This is the part that makes our study exploratory: we do not know what to expect in terms of how similar or different the two situations will be. We aim to compare and contrast these information needs with those for distributed open source projects. Since not much research has been conducted about open source software development, not much is known in this area, prompting our choice of making our study exploratory.
The seven types of information needs relate to writing code, submitting change requests, prioritizing bugs, reproducing failures, understanding behavior, understanding design and maintaining awareness. Some of these may apply differently to open source developers [OSDs]. For example, Ko et al state that commercial software developers [CSDs] are swamped with bug reports. How CSDs respond to such reports in terms of information needs can differ from OSDs due to inherent limitations such as company policies and available time.
We will try to replicate Ko et al’s study design as closely as possible. Our unit of analysis, like theirs, will therefore be a 90 minute development session. The data collected include information about the background of the participant and the project that they are working on. We will take observation notes about the physical attributes of the environment, proximity of the developers, communication, time spent on tasks, etc. Through semi-structured interviews, we can learn more about the developer’s thought process when faced with information challenges. Although this might differ across developers, we try to summarize the most representative choices developers make when faced with information needs.
Although case studies are, by definition, some natural controls arise in the context of software development in a laboratory. During the 90-minute development session, we observed students in the Open Source Lab, where the student's movements, discussion and productivity over time may be influenced by the presence of the investigator(s), fellow developers, visitors and supervisors. More than one investigator will be interacting with each subject. Since we will be switching off between members of the research team, things like the gender of the investigator will be naturally controlled for. Furthermore, the people present in the lab moved in and out and differed between sessions, which was a natural control for people that might be distracting our participant. If different software developers were in the “bullpen” during different sessions, then we had a natural control for developers’ familiarity and level of comfort with their coworkers as a factor in their choice for an information source. Another natural control was the project that the developer is contributing to. Since they were not all be working on the same project, this reduces the risk that our findings are characteristic only to a particular project.
Include your case study protocol, i.e., the procedures you followed. (See Yin for examples of these.)
The set of procedures for this case study is contained within the case study protocol. It is included as a means to determine the reliability of this study, and to provide insights to later investigators in this or related areas.
Overview of the case study project:
This case study aims to determine the information needs of open source software developers. We carry out this project under the auspices of the Open Source Lab at Oregon State University. We build on previous theory from commercial software system development to conduct our study. The information needs for commercial software developers are stated in the paper, "Information Needs in Collocated Software Development Teams", by Ko, et al, which provides a basis for comparison as well as a starting point for our investigation.
Field procedures:
The site to be visited is the Open Source Lab (OSL) at Oregon State University. Our main contact with the lab is North Krimsly, the development manager at the OSL. He was very helpful in alerting the developers about our study and introducing us to the team members, who acquainted us with the different projects that they are working on. We plan to collect the data mainly through observations during 90 minute development sessions, but also through surveys and interviews with the developers in their real-world environment in the OSL. We have a time frame of about three weeks for data collection. Our preliminary visit to the OSL was helpful in the design of this document and in befriending the participants. We were able to address their concerns and a couple of them expressed excitement about participating in our study. They were all very nice in offering to answer any questions that we might have before we start conducting the study.
We will conduct a pilot study to make sure that there is not too much investigator bias. Hopefully, all three of the investigators will come up with data that is complementary, not contradictory. In addition to this, the pilot study will help us determine whether there are any design decisions that we overlooked, that are incorrect, that lead to awkward situations, etc. It is important to get any such kinks out of the experiment design before starting to observe our actual participants. By all three of us observing the same person, we will be able to reach investigator triangulation: the investigator is not a confound.
We use the paper above to determine the types of information we need to collect, how we will be coding and analyzing them, and the general direction of the surveys, and interviews. For example, we will categorize information needs into the same seven categories (plus a wildcard specific to open-source development). We will also note the causes for task switching like Ko et al. do, as interruption by face-to-face dialogue, phone calls, IM, email-alerts, task-avoidance, meetings, blockages and completion. We will follow their other design decisions as closely as possible, so that our studies can be as comparable as possible.
Following their steps gives us both increased construct and internal validity, since their measures and the way in which they analyzed their data gave them the type of results that we are also looking for. Also in terms of construct validity, we will use multiple sources of evidence to triangulate the data. For example, the interviews after each session will be used to verify against our observations. In terms of external validity, we know that a majority of open source developers get acquainted to it while in school (high school and college). Many findings do not exist about where participants program from, what kind of environment they are in, how many friends they have also working on the same project, etc. One possible factor that might not generalize is that most open source developers might not be working in tightly-knit environments like our OSU “bullpen” developers. When thinking of the “typical” open-source developer, we often imagine a man alone in his room. Since this has not been measured, this perception might not be correct. If it is, then our findings might not generalize to the open source software development process in general, but might only be characteristic of more open source software development labs.
In terms of reliability, we included a database with all of our collected data. The protocol also helps other researchers recreate our steps if they want to replicate our study’s results. Furthermore, we will try to come up with as many rival explanations as possible and try to shoot down some until we come up with the most likely explanation.

Case study questions:
We have several more specific questions that we will be trying to answer which fall under our umbrella research question: What are the information resources that open source developers have access to? Which are the preferred ones? Which are the most commonly used ones? Do the developers use the same sequence of sources when faced with a question? Or will it differ on a case-by-case basis? Is the choice of information source related to the experience level of the individual developer? Can we categorize the deferred searches into the same categories as those for commercial software development projects (listed above)? Or will new categories emerge as a result of the differing paradigm?
To assist us, we can tabulate certain data such as the position of the individual project with time as a reference frame. This might provide insights into the information needs as they relate to the stages of the project (nascent, advanced or nearing completion). We can also list the deferred searches by category.
Guide for the case study report:
We present a sample outline for the case study report, which will be a part of the database – complemented by the actual tables of data.
We begin with an abstract and a brief introduction to the topic and the motivation behind the study. We then list the related work like that of Ko, et al that provides the direction for this study. Then, we state the assumptions and specific research questions of interest. We state the method by which we carry out the investigation, including a listing of data sources, types of data to be collected, data-collection procedures and a summary. We explain the relevance of a pilot study and any design changes as a result of what we learned from the pilot study. We go on to analyze the data and make the propositions. We comment on the validity and reliability of our study. Lastly, we state the conclusions we have reached. References are also listed.
The data will be presented in tabular and graphical format wherever possible. The data collection sheets and observation notes may be referenced and stored in the case study database, as evidence for future investigation and as a measure of transparency and reliability of this project. Other documentation we can consider is search-engine usage statistics e.g.: Google. Search engines are ubiquitous, and play a major role in information-gathering in development.
The database structure: Explain what you collected and what is in your database. A table showing its fields and structure might be useful. (Include the actual database in the appendix.)
We will be collecting several types of data:
Pre-session surveys to get background information on the participants and the projects that they are working on:

· Data collected: gender, age, location, ethnicity, language, level of education, major, personality traits, employment status and information, programming experience, open source development tools used, information about the projects themselves, obstacles in joining them, how many people they work with, number of collocated people working with them, etc.

Observational notes will include information about when information needs came up, what type of information needs they were, when and how they got resolved, using what tools, etc. These observational notes will be marked up (coded) in a very similar way to how Ko et al. did it in their study. Semi-structured interviews will be conducted at the end of each session to verify that our observational notes on their behavior also match their thought process and mental models. We will ask them about the type of problems that they ran into, the questions that they had, what their preferred method of answering questions are, if their questions change as the project progresses, how collaboration fits into their development process, etc.

Our database structure*:

	Pre-session questionnaire for participant A

…

Pre-session questionnaire for participant D

	Pre-observation Interview questions and answers for A1

Observational notes for A1

Post-observation Interview questions and answers for A1

…

Pre-observation Interview questions and answers for D1

Observational notes for D1

Post-observation Interview questions and answers for D1

* Note: As it turns out, we ended up observing 4 participants over 6 sessions total. Participants are referred to as A, B, C, and D, with sessions referred to as A1, A2 (A’s sessions), B1, B2 (B’s sessions), C1, and D1.

Pilot Study

In order to gain experience to improve our procedures, we conducted a pilot study. This study consisted of an observation session with a system administrator in the Open Source Lab, complete with surveys and interviews. All three investigators attended, and we decided to make many changes to our protocol from the experience gained.

The biggest change coming out of the pilot was to have only one investigator observe a subject at a time, instead of two. It was quickly discovered that the more people there were observing, the greater the temptation for the subject (and sometimes the investigators) to socialize instead of focus on the task at hand. More people meant more opportunity for distraction and less for the developer’s actual work. Furthermore, the bullpen’s small size was not very accommodating for multiple people to be observing over a developer’s shoulder without getting in the way.

The other major change was the decision to record the interviews. While we had planned on jotting down notes at first, we learned a developer could talk quite quickly. Keeping the interview (and hence the subject’s ideas) flowing naturally while taking thorough notes would be next to impossible. Therefore, we decided it would be necessary to use a recording device and transcribe the interviews later.

Other changes made based on experience from the pilot were more minor. These were the addition of some interview questions and the decision to print the surveys out on paper, instead of having subjects fill them out on a computer.

Coding

While no research has been done on the information needs of open-source developers, this research has been conducted in commercial software systems. Our initial selective coding used the codes from [2]. These codes are in black in the table below. Some of the information needs did not fall under any of the codes; we therefore added our own codes for them (in green in the table). Our core category is “information needs.” The final selective codes were:
	Code
	Description

	[c1]
	Writing code: What data structures/function can be used?

	[c2]
	Writing code: How do I use it?

	[c3]
	Writing code: How do I coordinate this with another data structure/function?

	[s1]
	Submitting a change: Did I make any mistakes in my new code?

	[s2]
	Submitting a change: Did I follow my team’s conventions?

	[s3]
	Submitting a change: Which changes are parts of this submission?

	[b1]
	Triaging bugs: Is this a legitimate problem?

	[b2]
	Triaging bugs: How difficult will this problem be to fix?

	[b3]
	Triaging bugs: Is it worth fixing?

	[r1]
	Reproducing the failure: What does the failure look like?

	[r2]
	Reproducing the failure: In what situations does this failure occur?

	[u1]
	Understanding behavior: What code should have caused this behavior?

	[u2]
	Understanding behavior: What is statistically related to this code?

	[u3]
	Understanding behavior: What code caused this program state?

	[u4]
	Understanding behavior: What does this error message mean?

	[d1]
	Reasoning about design: What is the purpose of this code?

	[d2]
	Reasoning about design: What is the program supposed to do?

	[d3]
	Reasoning about design: Why was the code implemented this way?

	[d4]
	Reasoning about design: What are the implications of this change?

	[a1]
	Maintaining awareness: How have resources I depend on changed?

	[a2]
	Maintaining awareness: What have my coworkers been doing?

	[a3]
	Maintaining awareness: What information was relevant to my task?

	[acquired]
	Developers acquired information.

	[deferred]
	Deferring a search with the intent of resuming it.

	[resumed]
	Resumed the search.

	[gave up]
	Gave up on a search with no intent of resuming it.

	[done]
	Done with the task that they were working on.

	[blocked]
	The search was blocked by information that was unavailable.

	[interrupted]
	The subject is interrupted by something unrelated to the search.

Table 1: Codes from Ko et al. [2] Italicized rows were added for this study and crossed out rows were codes that did not come up in this study.

Our complete coded observations can be found in the database (**FileA1). After having our final set of codes, we each coded one of the participants individually and scored the overlap in our codes, using the formula given in [1]: for each stanza, we took the intersection of our codes over the union of our codes, and then averaged the scores for all stanzas together. We checked the overlap between each two of the coders and our lowest was an 85%. 80% or higher represents a robust coding scheme. This is promising in terms of our internal validity in coding the other participants.
Results

Hypothesis: Information needs are different in the open-source software environment than in collocated software environment.

The codes for OSS development were slightly different than those for collocated software: three codes were never encountered (s2, b1, and d4) and one code was added to the set (u4) (see Table 3).

Code u4 was for the information need of not understanding the output or error messages resulting from the participant running their own code. Questions such as, “What does this error message mean?” would fall under this category. We feel that the reason why this code did not show up in Ko et al. was not because of a difference between collocated and open-source software development environments, but maybe because they considered this need to fall under one of the other categories. We, however, thought that this was important and different enough to warrant its own code.

Code b1 was about triaging bugs and deciding whether a goal was even a legitimate one to follow. We might not have encountered this because open-source developers are free to work on whatever parts of the code interests them the most and just choose whatever task seems most interesting, rather than worrying about whether a task is even legitimate. More interestingly, there were several codes that did not show up in our data at all. This does not necessarily mean that these information needs did not occur in the open-source environment. First for s2 and d4, which are both very collaborative type of codes, we had three rival explanations for why these codes were missing:

1. It could be an internal validity issue: the investigators screwed up and never coded this event when it occurred.

2. Since the codes are highly collaborative and this is an open-source environment, maybe they just do not care about how understandable their code is by other developers or how their code affects other people’s code.

3. Their development methods make it such that these needs are not a factor (or a very small factor).

This is unlikely to be a validity issue since all three coders had good coding overlap and no one observed any instance of these codes. In terms of open-source developers not caring about other people understanding their code, we figured that they are also at the other end of the stick and would do unto others as they want others to do unto them. The third explanation seemed to fit, however. Our observational notes showed that developers were often working highly modularized code, which reduced the need of finding out how their code affected other code. Also, they often coded by example, using sample bits of earlier code from the project to build their own code off, using that same style. These are ways in which open-source development methodology facilitates collaborative work through the methodology itself.

This result was confirmed by one of the open-source participants. We asked him what his thoughts were on our explanation for the missing codes. He said, “For the s2, I believe that you are right in your assumption. If you remember, I was copying and pasting quite a bit from an older piece of code that I wrote, that was already conforming to the standards. Also, I have my text editor (VIM) setup to follow the coding standards for Drupal (tab length, etc). As for the d4s, in Drupal, everything I have done are modules.”

Table 2: Information needs found by Ko, et al (17 sessions).
	Code
	Information type
	Acquired
	Deferred
	Gave up
	Beyond observation
	Total

	S1
	Did I make any mistakes in my new code?
	46
	0
	0
	0
	46

	A2
	What have my co-workers been doing?
	37
	6
	0
	0
	43

	U3
	What code caused this program state?
	11
	18
	1
	1
	31

	R2
	In what situations does this failure occur?
	15
	10
	1
	1
	27

	D2
	What is this program supposed to do?
	23
	4
	0
	0
	27

	A1
	How have resources I depend on changed?
	19
	5
	1
	0
	25

	U1
	What code could have caused this behavior?
	13
	6
	2
	1
	22

	C2
	How do I use this data structure or function?
	19
	1
	1
	0
	21

	D3
	Why was this code implemented this way?
	5
	7
	1
	5
	18

	B3
	Is this problem worth fixing?
	15
	1
	0
	0
	16

	D4
	What are the implications of this change?
	14
	0
	0
	0
	14

	D1
	What is the purpose of this code?
	9
	1
	2
	0
	12

	U2
	What’s statically related to this code?
	10
	1
	0
	0
	11

	B1
	Is this a legitimate problem?
	6
	0
	0
	1
	7

	S2
	Did I follow my team’s conventions?
	2
	3
	0
	0
	5

	R1
	What does the failure look like?
	5
	0
	0
	0
	5

	S3
	Which changes are parts of this submission?
	3
	1
	0
	0
	4

	C3
	How can I co-ordinate this with other code?
	2
	0
	1
	1
	4

	B2
	How difficult will this problem be to fix?
	3
	0
	0
	0
	3

	C1
	What can be used to implement this behavior?
	2
	0
	0
	0
	2

	A3
	What information was relevant to my task?
	2
	0
	0
	0
	2

Table 3: Information needs for open Source student developers in our study (6 sessions).
	Code
	Information type
	Acquired
	DeferredBlocked
	Gave up
	Beyond observation
	Total

	S1
	Did I make any mistakes in my new code?
	20
	7
	0
	0
	27

	A2
	What have my co-workers been doing?
	3
	1
	0
	0
	4

	U3
	What code caused this program state?
	1
	0
	0
	0
	1

	R2
	In what situations does this failure occur?
	1
	0
	0
	0
	1

	D2
	What is this program supposed to do?
	4
	0
	0
	0
	4

	A1
	How have resources I depend on changed?
	1
	0
	0
	0
	1

	U1
	What code could have caused this behavior?
	5
	5
	0
	0
	10

	C2
	How do I use this data structure or function?
	11
	4
	0
	0
	15

	D3
	Why was this code implemented this way?
	2
	1
	0
	0
	3

	B3
	Is this problem worth fixing?
	1
	1
	0
	0
	2

	D4
	What are the implications of this change?
	0
	0
	0
	0
	0

	D1
	What is the purpose of this code?
	3
	1
	0
	0
	4

	U2
	Whats statically related to this code?
	2
	2
	0
	0
	4

	B1
	Is this a legitimate problem?
	0
	0
	0
	0
	0

	S2
	Did I follow my team’s conventions?
	0
	0
	0
	0
	0

	R1
	What does the failure look like?
	1
	0
	0
	0
	1

	S3
	Which changes are parts of this submission?
	3
	0
	0
	0
	3

	C3
	How can I co-ordinate this with other code?
	2
	1
	0
	0
	3

	B2
	How difficult will this problem be to fix?
	1
	0
	0
	0
	1

	C1
	What can be used to implement this behavior?
	9
	2
	0
	0
	11

	A3
	What information was relevant to my task?
	1
	0
	0
	0
	1

	U4
	What does this error message mean?
	1
	0
	0
	0
	1

 Graphical summary of the results in terms of counts of each type of code:

[image: image1.emf]0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Codes

Acquired Gave up Total

Outcomes

Ko's Results

A3 What information was relevant to

my task?

C1 What can be used to implement

this behavior?

B2 How difficult will this problem be

to fix?

C3 How can I co-ordinate this with

other code?

S3 Which changes are parts of this

submission?

R1 What does the failure look like?

S2 Did I follow my team’s

conventions?

B1 Is this a legitimate problem?

U2 What’s statically related to this

code?

D1 What is the purpose of this

code?

D4 What are the implications of this

change?B3 Is this problem worth fixing?

[image: image2.emf]0%

20%

40%

60%

80%

100%

Codes

Acquired Gave up Total

Outcomes

Our Study Results

U4

A3

C1

B2

C3

S3

R1

S2

B1

U2

D1

D4

B3

D3

C2

We noticed a different set of Information needs in the study we did.
In our study, the most frequent codes we encountered were related to
1. Checking for mistakes in new code(s1)
2. Writing code(c1, c2)
3. Understanding behavior(u1)

These codes were observed far more frequently than any others. The other information needs were low in frequency and had an uneven distribution as in the figure. For the study done by Ko, et al. Checking for mistakes in new code (s1), remained the top priority for the study subjects. But on looking at the charts, we observe a gradually decreasing curve in order of Maintaining Awareness(a2), Understanding Code(u3), Reproducing failures(r2), and so on, with those four being the most frequent.

We can explain some anomalies as follows:
1. We analyzed a few subjects whose main task was writing code, while Ko analyzed a large number of subjects who also dealt with the other aspects of the software development life-cycle, like design awareness, bug testing, failure reproduction etc.
2. The purpose and paradigm of open source development is different from that of commercial software development.

In terms of the number of interruptions, we noticed that one session led to particularly many of these. We have competing hypotheses for why this is:

1. There were many people in the lab. Lots of people means that there are more reasons to interrupt.

2. It was Friday afternoon and people felt like socializing.

3. It’s really a combination of those two factors, neither one alone.

We have yet to explore which of these rival theories is the reason for it.
What resources do open source developers have access to? Which are the most commonly used?
Developers had many resources available: webpages, mailing lists, real-time chat, email, source code, utilities (like phpMyAdmin or console search commands), project and program documentation, and in most cases, other developers in the room. Source code was a major source of information for developers. Not surprisingly, all participants ended up looking at it, and they used it for the wealth of information available, such as from code comments to deciphering on their own what the program was doing. Participant A noted that it’s important to first check the API, since it’s the authoritative source. He went to the API quite a few times. Sometimes, the API helped, other times it did not. The times that it was useful, the participant knew exactly what function he was looking for and he just wanted to know more about what it was and how to use it. On the other hand, when his question was less well defined, the API was not helpful. For example, he wanted to know how to grab a module and he found some functions in the API that seemed like they would be helpful, however they were not. He ended up fixing that need by digging through code that he had written earlier. He mentioned that he didn’t even know what to look for on the API. Thus, the API had big plusses and big minuses, depending on the question trying to be answered. This finding triangulates with an answer that he gave later on in a post-session interview. “The API, I don't really like at all actually, but it's the authoritative source of information, so… If someone on the IRC can't answer, the API should have the answer. Most of the time, the people on the IRC will say ‘Check the API.’”

The most commonly used non-code resources for acquiring information were real-time chat programs, such as instant messager and IRC, and websites (especially found through Google). Every single observation session recorded instances of real-time chat use. Largely this was for getting help with how code works (sessions A1, A2, C1) but sometimes this was for maintaining awareness of coworkers’ activities (sessions B2, D1). IRC was also used for helping fill other developers’ information needs (sessions B1, B2). Official project websites were used for their documentation (sessions A1, A2, B2, D1) and to determine project progress/status (sessions B2, D1). “I probably spend about half my time on the internet looking how to do things,” said participant D. Firefox was the browser of choice, with all participants using it. It should be noted, also, that all lab computers ran Ubuntu Linux.
Other people physically present during the sessions were often utilized as resources by some participants. C and D asked questions of others in the lab when they were stuck. On the other hand, participants A and B did not use other labmates as resources. While participant B did not have any labmates most of the time in session B2, giving him a good reason not to use labmates, participant A noted that he was the only one in the group working on his project, making other people less useful. Participant A also liked to work by himself sometimes, away from the rest of the group to avoid distractions. Interestingly, according to the surveys, participant A had the most experience programming (11-15 years), had contributed to the greatest number of open source projects (6), and spent the most time developing open source each week (60+ hours). This suggests that perhaps those with more experience will have less desire to work in an in-person group due to the increased distraction to information ratio. Participant A likely has less to gain from asking questions of labmates due to his experience than, for example, participant D who has the least experience. This is supported by interviews. When interviewed about asking other people questions, D said “Yes, all the time, and just things like earlier today with grep. Is this the right syntax, or how would I do this, or you know, what am I doing wrong here…. I’m kind of the baby around here. Most of them I’d venture saying know a great deal more than I do.” In contrast, when it came to asking questions of labmates, participant A said, “when I need help, probably not - I try to stick to myself. But when I need help making a decision about something, we bounce ideas off of each other.” While A and D both benefit from the sharing of ideas, D has far more to gain from others’ programming help. B, with a medium amount of experience, echoes this point. He emphasizes the usefulness of labmates for design advice and less for syntactic questions: “If I'm developing an application, I might want to take someone else's view on it. I might think that my solution is the best, but how would you solve it?” Another possible explanation for more experienced developers using labmates less is that they believe it should not happen unless all of the other normal possibilities have been exhausted. This attitude seemed ingrained in Participant A: “If I get an error, I can't turn around immediately and say "Has anybody seen this error before?". I'll go through my normal progression of figuring out what the error was.” Participant B explains this attitude of helping yourself first in the open source community: “People don’t like to be bothered with a question that’s been asked 38 times. They’d much rather you do your own research, and if you have questions about the answers given before, then you have a legitimate thing to go with.” Perhaps more time in the open source community leads one to conform to this view and ask in-person questions as more of a last resort. It would be interesting to follow up on the less-experienced participants to see how their attitudes and use of labmates evolves over time.
Validity and Concerns
Construct validity: Our primary goal was to determine information needs of the developers during their open source work. We believe our methods were effective for this. The backbone of the data collection was the observation sessions. We instructed the participants to keep us informed of what they were doing, especially with respect to information they were trying to acquire. When they did not talk for a while, when they appeared to switch tasks, or when we were confused as to what they were doing, we prompted them for information. The participants were clear in articulating what they were trying to accomplish, and they most likely had no reason to mislead us. Therefore, we believe the observations informed us of what the participants’ information needs were. The post-observation interviews asked questions about how non-lab sessions were different from lab sessions, and what resources they used most in general. This helped to guard against the possibility of information needs and resolutions during the sessions being very different from the developers’ typical needs and resolutions without our catching it. Combining the observations and interviews across multiple sessions, we achieved good data triangulation, making it even more likely that our findings reflect the developers’ information needs.

There is a construct validity concern here, which is the possibility that our requirement that the participants keep us informed of what they were trying to accomplish somehow affected their work or methods. We tried to minimize this by prompting for information as little as possible while still staying informed of their information needs. Furthermore, the study conducted by Ko et. al followed the same requirement, meaning that effects from this possible phenomenon are controlled for between the two studies, and the validity of comparisons between their results should be maintained.
Internal validity: It is important to us that our study was conducted properly and our conclusions are well-supported. We adhered to a protocol and used multiple investigators to collect and interpret the evidence. This reduced possible investigator bias. One example of this is our coding. To make sure we were interpreting our observations consistently, we independently coded one of the subjects’ activities and compared our results. After a few rounds of independent coding and discussion, we were able to achieve 80% overlap, getting us coordinated on the coding for the rest of the subjects. As for interpreting other evidence, we have addressed rival explanations where appropriate (as seen earlier) to improve the soundness of our conclusions. Our natural control situation, where we had the same subject in two different environments (within the OSL and within the Penguins Nest), helped us factor in the effect of location on our results. This is an example of data collection that helped us address rival explanations.

Despite our best efforts and preparations to carry out the study properly, following protocol, we made a notable error. Namely, one of the investigators forgot to interview one of the participants during an observation session. Unfortunately, this was toward the end of the time allotted for the study, and it was not practical for this investigator to do another observation. The good news is that the participant whose session this was had been interviewed by a different investigator in a different session. Therefore, some interview information was collected from the participant which should not have changed between sessions, such as the participant’s thoughts on useful resources.
External Validity: Though our observations were of student developers in a university open source lab, we believe our findings have relevance to open source developers in general. As mentioned in the introduction, almost 65 percent of open source developers became involved between the ages of 16 to 25 [3]. Our study’s participants, fall well into this range, making them an age group representative of many open source developers.

There is a question of how other demographics of the developers compare to demographics of open source developers in general. Would those have any effects on the results? Also, would an academic setting encourage certain types of behavior that would not be seen from open source developers outside of such a setting? These questions are intriguing and affect the extent to which this study can be generalized. Unfortunately, the answers to these questions are unknown. One of the investigators is working on a study that should shed light on these issues, though, so more information about the generalizability of these results to bigger populations will be available in the future.

Reliability: To increase our reliability and ensure that our study could be repeated, we provide a case study database and protocol, which contain our observations and describe our approach, rationale and conclusions from this study. Also increasing reliability is the paper from Ko et. al on which this study was based. Methods from that study were followed as closely as possible, providing another resource for information on methodology.

Conclusion

These exploratory findings suggest that open source developers are indeed more individualistic, even when working in a lab environment. Established open-source development methods also seem to reduce the information needs related to collaboration and maintaining awareness. While there is a lot of supporting evidence for these findings, they are nevertheless hypotheses and need to be followed up on in future studies.

Our exploratory study has found that, while the codes from commercial software systems applied directly to open source development, they do not happen in the same frequency. For example, three codes that were observed in Ko et al.’s study were never observed in our codes. From our observations and interviews with the participants, we saw that those were collaborative information needs that were worked around through open-source development methods. In terms of the software applications that they used, we found that open-source developers most commonly used tools were source code, real-time chat programs, and web pages. Few relied on face-to-face communication, though they mentioned it as being very useful in certain situations. In terms of comparing the code frequencies between Ko et al.’s results and ours, the distributions of information needs were quite different. Most notably, while testing information needs were by far the highest for both open source and commercial software developers, open source developers’ next most common information needs were about writing code, whereas those of commercial system developers were about maintaining awareness.

References

[1] Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan, N., Beckwith, L., Yang, S. and Rosson, M. B. Supporting end-user debugging: What do users want to know? In Proc. of Advanced Visual Interfaces. ACM Press, 2006, 135-142.
[2] Ko, A. J. DeLine, R., Venolia, G. (2007). Information Needs in Collocated Software Development Teams. International Conference on Software Engineering (ICSE), May 20-26.

[3] Stanford Institute for Economic Policy Research (2003) The Free/Libre/Open Source Software Survey for 2003 – Tabulations. Retrieved May 7, 2007 from http://www.stanford.edu/group/floss-us/stats/q1.html.
Appendices

PAGE
13

