
Context-Aware Computing Support for the Educationally Disadvantaged

Timothy Y. Sohn
University of California, Berkeley

tsohn@cs.berkeley.edu

Abstract

The educationally disadvantaged people in context-
aware computing are those without any programming
experience, and are unable to build context-aware
applications with the current level of available
prototyping support. iCAP is a system that assists this
group of non-programmers in visually designing context-
aware applications without writing any code. Individuals
are then able to rapidly prototype their application in a
simulated or real context-aware environment. Through
iCAP, programming context-aware computing is made
intuitive and viable for the educationally disadvantaged.

1. Introduction

Environments contain context information that can be
sensed and used in programming applications. This
information is typically described in the categories of
location, identity, activity, and time. Context-aware
computing involves the sensing of available resources to
provide appropriate information and services depending
on the state of each element in an application’s context. In
recent years, futuristic computing environments that
utilize contextual information have sparked interest
within the general public to experience these new spaces.
Recent movies such as Minority Report, demonstrate the
novelty of ubiquitous computing, and leave the audience
in amazement, yet curious about how they could ever
program off-the-desktop applications. Over the past
several years, there has been an increased effort and
interest in building and deploying context-aware
applications, hoping to bring the movie-like environments
to our present reality. However, although some of these
applications have been developed, there is still a lack of
programming support to rapidly develop them. Currently,
to develop a context-aware application, developers and
end users alike are required to either build the application
from scratch involving direct interaction with hardware
sensors and devices, or to use an enabling toolkit [1].
Even with low-level toolkit support for acquiring context,
individuals are still required to write large amounts of
code to develop simple sensor-rich applications. This
obviously leaves the general public, without any
programming experience, at a disadvantage to prototype

context-aware applications. In addition, because of the
novelty of context-aware computing, the hardware to
sense environmental information is not easily accessible.
Thus, many individuals who are without programming
experience, and may come from minority and rural areas
that are economically challenged are never exposed to
this new era of ubiquitous computing.

The educationally disadvantaged people in context-
aware computing are those who do not have any
programming experience, particularly in the domain of
context-aware computing. Since the only programming
support available to prototype context-aware applications
are low-level toolkits, the amount of code an individual
without any programming experience would need to write
is absolutely daunting and infeasible. Therefore, in order
to provide power and control over context-aware
environment to these individuals, it is imperative to
bridge the gap between the user and low-level toolkits.

The interactive Context-aware Application Prototyper
(iCAP) is a system aimed at lowering barriers for non-
programmers to build context-aware applications without
requiring them to write any code. iCAP is a visual
environment that acts as the intermediate layer between
low-level toolkits and users, allowing users to prototype
and deploy their application to a real context-aware
environment, or to simulate the application within the
iCAP system. The simulation feature is important for
people in minority and rural areas who are unable to
easily obtain the hardware to instrument a ubiquitous
computing environment. By building an application with
iCAP and simulating it, users are able to gain confidence
in their programming abilities, and can easily transition to
deploying their application when a real context-aware
environment becomes available.

2. The iCAP Interface

iCAP provides an intuitive visual environment that
takes advantage of human spatial reasoning skills [2],
making it simple for those without any programming
experience to prototype context-aware applications. The
system uses a lightweight, informal visual interface that
gives users the familiar feel of sketching and rapid
prototyping as if designing on paper. This is especially
useful for non-programmers who may be intimidated by

technology and find themselves insecure in using a fancy
formal interface.

The iCAP interface has one window with two main
areas (Figure 1). On the left is a tabbed window that is the
repository for the user-defined inputs, outputs, and rules.
All of these components, except rules, are associated with
graphical icons that can be dragged into the center area,
and then used to construct a conditional rule statement.

The center area contains two sections, one for the
situations (IF) and the other for actions (THEN). The
center area uses the Pane and Myers’ matching scheme to
support users in visually specifying the Boolean logic of
each rule [3]. The matching scheme was originally tested
and validated with both children and adult non-
programmers. To implement the matching scheme, our
system uses two important metaphors, “sheets” and
“slots”. All components on a single sheet are related to
each other by a conjunction. However, each sheet is
constrained by only allowing one location object. We
allow for sheets to be split into multiple slots, allowing
each slot to have its own location object, and having all
slots on a single sheet related to each other by a
conjunction. In essence, this allows for expressions such
as [(location1 AND b) AND (location2 AND d AND e)
]. Users can also add multiple sheets, which are related to
each other by a disjunction. Disjunction on the action side
is rare, thus we allow for multiple action slots, but only a
single sheet.

3. Interaction

Interaction with the iCAP visual interface consists of

three simple steps. First, the user sketches numerous
inputs and outputs. This includes defining different
locations and people in the context-aware world. Then
these elements are dragged and dropped into the center
area to construct rule-based conditions. Finally the entire
set of rules is prototyped and simulated (or deployed to a

context infrastructure) using the prototyping mode in the
iCAP system.

Slots

Repository Situation Sheets

Action

Slots

Repository Situation Sheets

Action

Repository Situation Sheets

Action

Figure 1 The iCAP user interface with a rule that
has two situation sheets, where one is split into two
slots.

An example application that can be easily built using
iCAP is shown in Figure 1. The rule being prototyped is
“if the lights are on in the kitchen past 10pm, or someone
is in the bedroom with the lights on and the lights are also
on in the kitchen, then turn off the lights in the kitchen.”
The necessary components to build this application are a
bedroom location, kitchen location, and a light bulb. The
user can define each of these components through the
repository of user-defined elements. The appropriate
components are then dragged into the center area, and
arranged appropriately on the sheets. The user then
identifies the desired trigger value for each input (i.e. set
the time to be 10pm), and the desired action for each
output (i.e. set the light bulb to turn off). The rule is then
setup to turn off the lights, when the lights are on in the
kitchen past 10pm, or someone has the lights on in the
bedroom.

4. Conclusions

iCAP provides support for non-programmers to
explore the domain of context-aware computing through
an intuitive visual interface. Without having to write any
code, individuals are able to program their environments
and experience the richness of ubiquitous computing.
iCAP is equipped with features for advanced applications
that take advantage of relationship-based and
personalization-based features. As the novice programmer
becomes comfortable with simple context-aware
applications, he can continue to use iCAP and easily
create more advanced applications while building
experience and confidence in dealing with technology.
The next steps with iCAP include further validation of the
tool through formal user testing, and improving the
expressiveness of the tool with respect to the variety of
applications that can be built with it.

5. References

[1] A.K. Dey, D. Salber, and G.D. Abowd. “A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications.” Human-Computer Interaction
Journal, 16(2-4), pp. 97-166. 2001.

[2] S.K. Chang. Principles on Visual Programming Systems,
Prentice Hall, New Jersey, 1990.

[3] J.F. Pane and B.A. Myers, “Tabular and Textual Methods for
Selecting Objects from a Group.” In Proceedings of
International Symposium on Visual Languages, pp. 157-164.
2000.

