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Abstract—This work approximates the selective harmonic 
elimination problem using Artificial Neural Networks (ANN) to 
generate the switching angles in an 11-level full bridge cascade 
inverter powered by five varying DC input sources. Five 195 W 
solar panels were used as the DC source for each full bridge.  
The angles were chosen such that the fundamental was kept 
constant and the low order harmonics were minimized or 
eliminated. A non-deterministic method is used to solve the 
system for the angles and to obtain the data set for the ANN 
training.  The method also provides a set of acceptable solutions 
in the space where solutions do not exist by analytical methods. 
The trained ANN shows to be a suitable tool that brings a small 
generalization effect on the angles' precision. 

I. INTRODUCTION 
A number of technical papers using Selective Harmonic 

Elimination (SHE) or minimization have been reported for 
fundamental frequency operation using the most common 
multilevel (ML) inverter topologies [1-3]. The cascade 
multilevel configuration has independent DC sources that 
may have different voltage levels. Those DC sources might 
be capacitors, fuel cells or solar panels and will consequently 
bring a voltage unbalance depending on the system dynamics. 
Numerous papers have been reported using selective 
harmonic elimination or minimization of cascaded multilevel 
inverters.  

In [4], genetic algorithms have been used to determine 
the optimal switching angles for DC sources of equal values. 
Analytical solutions for this problem using the theory of 
symmetric polynomials were also reported for unipolar and 
bipolar schemes [5-6]. All of these papers assumed that the 
DC sources are equal and do not vary with time. In [7] and 
[8], analytical solutions for the case of unequal DC sources 
have been derived and in [9-10] algorithms to solve for the 
angles have been proposed. Also, in [11-12] a more general 
approach is formulated for the m-level n-harmonic case. All 
of these papers use computationally intensive time consuming 
equations to solve for the angles; therefore, the switching 
angles are calculated off-line.  

The authors of [13-14] have developed methods to 
calculate the switching angles in real-time; however, their 
approach was not extended for unequal DC sources. An 
alternate approach to determining the optimum switching 

angles in real-time for varying DC sources is to calculate the 
switching angle solutions off-line and store the solutions in a 
look-up table. For accurate representation of every solution 
for every different DC source case, a huge look-up table 
would be required. Even then, for some operating points, the 
solutions might be missing and some type of interpolation 
would be required.  

In this paper, the look up table is replaced by an 
Artificial Neural Network (ANN), which if well trained, has 
the inherent capability of generalizing solutions. What this 
means is that, if the correct range of data are used for training 
and if the ANN is not over-trained, the network will fill in the 
solution gaps properly. Since ANN runs fast, it is possible to 
quickly determine the switching angles to establish real-time 
control. 

II. APPROACH TO THE PROBLEM AND METHODOLOGY 
A system’s overview of the 11-level cascade inverter and 

control is presented in Fig. 1. It has a five full bridge series 
connected configuration with five solar panels as its isolated 
input DC supply that may have different voltage levels and/or 
dynamics if the photovoltaic modules connected to each H-
bridge have different characteristics.  

A. Selective Harmonic Elimination and Unequal DC 
Sources 
Equation (1) shows the contents of the output voltage at 

infinite frequencies. The module voltages Vpv1 to Vpv5 are 
associated to their respective switching angles θ1 to θ5. This 
equation includes only odd, non-triplen harmonics. The reason 
for that lies on the assumptions of wave symmetry that cancels 
out the even components and also in a three phase application 
the multiples of the third harmonic vectors will add up to zero 
in the line voltage of a three phase balanced system. Equation 
(1) is the core equation and also starting point for SHE, 
because the decision for the target harmonics will define the 
set of transcendental equations to be solved. It is desired to 
solve (1) so that under variations in the DC input sources the 
fundamental output voltage is maintained and the lowest non-
triplen harmonics, in this case the 5th, 7th, 11th and 13th are 
canceled. In applications for a three phase machine drive, 
there is no need to cancel the harmonics that are a multiple of 
three because these are cancelled in the line voltage. 
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Many DC sources such as solar panels and fuel cells 
have varying output voltages depending on varying sunlight 
intensity, load, or other factors. For grid connection, either a 
DC-DC converter is used to regulate this DC voltage, or the 
modulation index of the grid-interface inverter is varied 
depending on the DC voltage level. For example, during a 
day of operation, the solar panel output voltage may vary 
according to the amount of energy available, and the grid 
interface system should be able to respond to this variation in 
the switching angles to keep the fundamental regulated at its 
reference value and the low order harmonics minimized.  

The approach in this work is to maintain the fundamental 
at the desired level by means of choosing the low frequency 
switching angles in (1) as shown in Fig. 1. Instead of using an 
analytic method to determine the angles off-line, this paper 
uses a non-deterministic approach to solve for the angles as it 
can give some insight about the convergence of the solution 
in the space where no solution can be found by the analytical 
approach. In this manner, a Genetic Algorithm (GA) was 
implemented to find the switching angles (off-line) for a set 
of pre-determined input voltages of an 11-level cascade 
inverter. An important feature of the GA for this approach is 
that for the range space where there is no analytical solution, 
the GA will find the nearest solution providing a smooth data 
set that is needed for the ANN training. Then, with the 
previous data set, the ANN was trained to output the set of 
angles for each input voltage situation. 

 

B. Solar Cell Modeling 
A suitable model was derived to simulate the PV module 

behavior that reflects the experimental curves of the solar 
panel with relative accuracy. The single diode model was 
adopted as shown in Fig. 2 to simulate the PV module under 
different irradiance and temperature levels. A number of 
approaches and models can be found in the literature to 
analyze the behavior of PVs that can grow in complexity if 
even better accuracy is needed [15-17]. The suitable model 
becomes then application dependent.  

 The PV cell model used in this work is a more intuitive 
model based on the single diode cell (Fig. 2) and derived in 

Fig. 1.  Multilevel cascade inverter topology and ANN-based angle control.  
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Fig. 2.  Single diode model representation of a photovoltaic module.  
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[18] where the inputs used are those obtained directly from the 
PV module datasheet parameters which are readily available 
from a panel’s manufacturer. This model greatly simplified 
the modeling task once the iterations and non linear equations 
were solved. Equation (2) is the basic equation and the Solar 
Panel’s datasheet provides the equation values to solve for the 
unknowns. 
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where, 

Ipv: photovoltaic current 

I0:  saturation current 

Vt:  thermal voltage 

Rs:  equivalent series resistance 

Rp: equivalent parallel resistance 

a:   diode ideality constant 

The solar panel to be connected to the H-bridge inverter is 
a Sanyo HIT 195W and its specifications and simulated 
parameters for use with (2) are shown in Table 1 and 2, 
respectively. 

TABLE I. SIMULATED PARAMETERS FOR EQUATION 2 

Parameter Value 

Ipv 3.794 A 

I0 9.68x10-10 A 

Vt 2.466 V 

a 1.25 

Rs 1.0973 Ω 

Rp 1060.0 Ω 

TABLE II. SANYO HIT PV MODULE ELECTRICAL SPECIFICATIONS 

Model HIP-195BA19 

Rated Power (Pmax) 195W 

Max. Power Voltage (Vpm) 55.3V 

Max. Power Current (Ipm) 3.53A 

Open Circuit Voltage (Voc) 68.1V 

Short Circuit Current (Isc) 3.79A 

Temperature Coefficient (Voc) -0.17 V/ºC 

Temperature Coefficient (Isc)  0.87 mA/ºC 

 
Fig. 3 compares the model obtained from the PV datasheet 

with the manufacturer’s experimental curve to show the 
performance of the model. The power versus voltage curve 
also matches the manufacturer’s experimental data at the same 
level of accuracy as shown in Fig. 3. 

C. Artificial Neural Networks 
Artificial neural networks have found a number of 

applications in engineering such as pattern recognition, control 
and classification, among others [18-21]. One of the main 
factors for choosing this technique is its generalization ability 
in nonlinear problems that are in nature complex and/or 
requires time consuming calculations.  

The number of possible combination that generates the 
data set for ANN training is exponentially increased by the 
number of H bridges in the topology. For a two full bridge 
case (5 levels) considering a dataset of four voltage levels for 
training, for example, [45 V, 50 V, 55 V, 60 V] would 
generate a table of 42 rows. In a five H-bridge converter with 
10 points equally spaced between 50 V and 60 V it would 
generate 105 different combinations.  In an effort to reduce the 
size of the dataset, the problem is faced as a permutation 
problem instead of a combination. In this way, the data set can 
be greatly reduced by considering, for example, the voltage 
vector v1 = (45, 45, 50, 55, 50) as being the same input as  
v2 = (45, 50, 45, 50, 55).  

(a)                                                                                                        (b) 

Fig. 3.  (a) Simulated and (b) experimental I-V curves for Sanyo HIT 195 photovoltaic module.  
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The ANN implemented and shown in detail in Fig. 1 is a 
feedforward multilayer perceptron with two hidden layers of 
20 and 10 neurons that are interconnected through weighting 
functions. This configuration was chosen over diverse designs 
due to better performance in terms of training time, 
memorization, and learning ability.    

III. EXPERIMENTAL RESULTS 
The implemented system is pictured in Fig. 4. Each full 

bridge in the cascade topology has a 1mF capacitor and four 
200V/40A MOSFETs. The OPAL-RT Lab is a hardware-in-
the-loop (HIL) system that allows real time control in a 
network of computers. The topology used in this experiment 
uses two computers; one is the main station where Simulink® 
is installed and the control is implemented (master station); the 
second computer has the analog and digital I/Os to control the 
inverter and acquire signals (slave station). Compared to 
DSPs, this system has a shorter implementation and 
debugging time as a result of a user-friendly interface; 

however, this comes at the cost of a sample time that can 
range from 50 us to 150 us. This can reflect in up to one 
degree divergence from the software-calculated ANN angles 
in some cases. 

Fig. 5 illustrates a 100 ms window of the 11-level 
cascade inverter running with solar panels as its input source. 
During this time period, a load step was applied to the 
inverter output causing the panels’ voltage to drop. This 
voltage drop can be observed in channel 3 (purple) that is an 
indoor solar panel. This figure illustrates a resistive step 
change applied at the output that causes a slow voltage drop 
also helped by the energy stored in the capacitance. In the 
second channel (cyan), which is sensing an outdoor solar 
panel, the effect of the load step was not heavy enough to 
cause significant voltage drop mainly because those panels, at 
the time of the experiment, were subjected to a larger level of 
irradiance as a consequence of its orientation and time of the 
day. 

In the same figure in the third channel (purple) a voltage 
drop can be seen as a result of the load change. From an initial 
value of 43.3 Vdc the solar panel output voltage drops 
smoothly, also helped by the 1000 uF electrolytic capacitor, to 
a value of around 36.2 Vdc at the end of the acquired 100 ms 

Fig. 4.  Experimental multilevel setup and photovoltaic panels 
installation.  

Fig. 6.  Frequency spectrum content for windows A and B, respectively, as a percentage of the fundamental value.  

Fig. 5.  Real time change in angle generation (blue) by the ANN after 
voltage variation (purple) over a 100ms window.  
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window. As the voltage level decreases, a new set of 
switching angles are calculated by the ANN to be updated at 
the next fundamental cycle (50 Hz or 60 Hz). The two 
windows shown in this figure (A and B) were used to do a 
frequency spectrum analysis of the waveform. The change in 
the angles can be noticed when the two windows are 
compared (A and B). 

The spectrum content of both windows (A and B) is shown 
in Fig. 6. The presence of DC and even harmonic components 
happen as a result of the varying voltage. It is considered in 
this work that such large voltage variation rate is not likely to 
happen, and if it occurs, it is a transitory state where the angles 
are updated at the cost of even and/or DC transient 
components. The Total Harmonic Distortion (THD) is greater 
than the expected range of 7%-14% as a consequence of those 
components added up by the voltage transient. The target 
harmonics were kept at around 1% of the fundamental as it 
can be seen in both windows. A zoomed window is shown in 
the upper right corner with the 5th, 7th, 11th and 13th 
components (cyan). The expected target harmonic levels 
obtained by the experiment are higher due to a considerably 
high hardware sample time during execution. The second 
highest component in the plots is the third harmonic, that is 
not considered a harmful component for three phase 
applications. 

IV. CONCLUSIONS 
The analytic calculation of the angles in real time for 

harmonic elimination is still being studied and approached by 
researchers through different paths. This work investigated 
ANNs as a tool to provide the angles in-cycle (50Hz or 60Hz) 
that also can have DSP implementation but at the cost of 
minimization of harmonics instead of elimination. The ANN 
was trained with a mixed data set that has eliminated 
harmonics and, for those points where a solution does not 
exist, minimized harmonics. The real time performance over 
a 100 ms window was shown to validate the proposed 
approach. 

The output angles returned by the ANN may not provide 
a satisfactory result, or harmonic elimination, at some points 
as it generalizes; however, a fast result can be obtained and 
more angles can be easily added to provide a better output 
waveform. Parallel networks can be used to accomplish better 
performance also. 

Future works point in the direction of implementation and 
performance evaluation on a DSP platform as well as system 
performance over a greater number of angles with more than 
one ANN. 
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