
 
Abstract—We aim to systematically quantify photovoltaic (PV) 

variability contained within different frequency bands, primarily 
for applications in PV maximum power point tracking (MPPT) 
design. We first discuss the usefulness in quantifying energy 
capture for various maximum power point (MPP) update rates 
from nearly 500 days of 5 kHz photovoltaic recordings. Next, we 
justify the methods used to convert MPP sweep data to 
single-point, usable, current, voltage, and power values. We 
discuss fitting methods that yield the MPP under calm irradiance 
dynamics and explore the approach used during periods of more 
stochastic changes. This is followed by analysis of raw, 
high-frequency content and a proposed method to calculate 
associated energy capture reduction. The conclusion finds an 
absolute upper bound on solar data variability for a given MPP 
update rate in terms of energy capture. Finally, we use the 
previous results and demonstrate an economic analysis that can 
aid in designing future MPP tracker specifications.  

 
Index Terms—Photovoltaic (PV), solar variability, maximum 

power point tracking (MPPT), high frequency solar data, 
frequency domain analysis, energy loss calculation, economic 
analysis, stochastic energy 

 

I. INTRODUCTION 

apturing the maximum power produced from a 
photovoltaic (PV) panel has long been a research focus, 
and many maximum power point tracking (MPPT) 

algorithms have been designed to fulfill this goal [1-3]. 
However, in order to maintain maximum power capture, an 
MPPT device needs to update its measurement of the maximum 
power point (MPP). This is typically done at a constant rate. As 
of now, a “necessary” update rate is not clearly defined despite 
being a fundamental parameter of PV energy capture. 
Likewise, long-term solar analysis has varying definitions for 
“high-frequency” update rates ranging from 1 minute [4], to 20 
s [5-6], to the higher rates, seemingly topping out around 1 s 
[7-8]. Since little or no work has gone into quantifying the 
cost-benefit curve of update rates, some have tried to cater their 
update rate to the dynamics of the tracking device rather than 
the solar resource. One approach for a perturb and observe 
(P&O) MPP tracker balances losses between steady state 
oscillation (characteristic of P&O) and energy capture 
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reduction due to poor tracking of rapid transients [9]. While this 
may have short-term merits, we can change future device 
dynamics or even the MPPT algorithm; in contrast, we cannot 
meaningfully change the dynamics of the sun, clouds, or birds. 

 Designers of future MPPT devices may ask themselves, “Is 
there such a thing as updating the MPP too often, and if so, how 
fast is ‘fast enough’ when it comes to update rates?” 
Determining quantitative answers to these questions has 
implications primarily for MPPTs, but secondarily for grid 
stability and dynamic load control as discussed in [10]. In an 
ideal world, there would be no limit. Knowing the MPP at all 
times with ultra-fast updates means no source energy would be 
wasted. In reality, however, more rapid updates necessitate 
compromises. Higher update rates require faster sampling and 
more data processing, which may lead to higher overhead 
energy consumption and higher cost. If the additional energy 
capture does not compensate for these disadvantages, then it 
would not make sense to implement an increased update rate. 
Where is the tipping point between reduced energy capture and 
the cost of increased update rates? The purpose of this paper is 
to present a quantitative tool which will answer part of that 
question. The results of our paper compare update rates to 
energy capture reduction using long-term, high-frequency solar 
data collected from atop Everitt Laboratory at the University of 
Illinois at Urbana-Champaign. The paper steps through the 
process of data analysis so that similar studies may be 
performed for other sites.  

In this paper, we briefly discuss how the raw 5 kHz solar data 
were captured. We follow this with broad descriptions of the 
data processing that transformed the raw sweep data set into 
single, calculated values. We then discuss the frequency 
content observed in the data and its implications. Next, we 
describe our MPPT model that calculates missed energy 
capture for a given update rate. The calculated value for each 
MPPT update rate represents a ceiling for the amount of energy 
capture that is potentially sacrificed by an otherwise ideal 
MPPT device. Finally, we use the missed energy result as the 
foundation for an economic analysis that can be used when 
designing MPPT systems.  

II. SOLAR DATA COLLECTION AND PROCESSING 

Photovoltaic data collection for this experiment was 
performed by fellow researchers at the University of Illinois at 
Urbana-Champaign and spans from July 2012 to January 2014 
[11]. During data collection, two, identical, rooftop-mounted, 
20 W, PV panels, connected to two different meters, were 
placed side by side to eliminate spatial variation as much as 

Quantifying Photovoltaic Fluctuation with 5 kHz Data: Implications 
for Energy Loss via Maximum Power Point Trackers 

John A. Magerko III, Yue Cao, Student Member, IEEE,  
Philip T. Krein1, Fellow, IEEE 

C 

978-1-5090-0261-0/16/$31.00 ©2016 IEEE



possible. One meter was a Keithley 2420 that performed a 
sweep across the current-voltage (I-V) curve every 2.5-3.9 
seconds, and the other was an Agilent 34410A that recorded 
short-circuit current at 5 kHz.  

The data acquisition mechanism is depicted in Fig. 1. The 
sweeps from the Keithley (“slow”) meter enable us to calculate 
open-circuit voltage (VOC), short-circuit current, and MPP 
voltage, current, and power (VMPP, IMPP, PMPP). The Agilent 
(“fast”) data provides high-frequency short-circuit current 
readings (ISC) that, as will be shown, can be used to calculate 
high-frequency changes in the available power. To clarify, both 
the Agilent and Keithley meters measured short-circuit current, 
but in this paper ISC will always refer to the Agilent data. 
Keithley short-circuit current data was used for verification of 
measurement accuracy against the Agilent meter and as a check 
of instrument synchronization.  

 
Fig. 1. Solar data acquisition hardware setup [11]. 

Sampling at 5 kHz seems excessive, but the objective is to 
capture every possible transient. Common sources of rapid 
transient creation might be the occurrence of fast clouds, birds, 
or even airplanes casting flickering shadows on time scales 
much less than 1 second (faster than 1 Hz). Sampling at 5 kHz 
means that even in extreme cases we can reconstruct the change 
in irradiance with multiple samples for each event. 

 For the analysis performed in this paper, ten different, 
non-overlapping, 10-day samples (100 total days) were taken at 
random from the data set such that none contained windows of 
missing data. The 5 kHz data comes in an immediately usable 
form, but the slow I-V curve data requires processing to obtain 
values for short-circuit current, open-circuit voltage, and the 
various MPP values. Slow short-circuit current data consists of 
three data points near zero volts, the square symbols in Fig. 2. 
Open-circuit voltages (VOC) were obtained from the sweeps that 
crossed the voltage axis, the triangle symbols in Fig. 2.  

MPP voltage, current, and power took the most processing. 
In Fig. 2 the MPP region contains 100 points on the “knee” of 
the I-V curve. As can be seen in Fig. 3, the measurements 
contain a combination of high-frequency fluctuations and 
measurement noise. Simply picking the point with the peak 
value can lead to misleading and inaccurate MPP values. To 

alleviate this, a 4th-order polynomial least-squares fit was 
applied to the data to capture the overall nature of the sweep.  

 

Fig. 2. Slow, current-voltage (I-V), full-range sweep containing data points 
near the short-circuit, open-circuit, and maximum power point region. 

 
Fig. 3. Slow I-V sweep in MPP region and max power curve with polynomial 

least squares fits. 

Implementing a 4th-order fit instead of the 2nd-order 
polynomial used in [11] increased the regression coefficient 
from  R2 = 0.95 to R2 = 0.995 for a typical MPP sweep. 
Higher-order polynomials or other functions may be used 
instead, but the 4th-order polynomial captures the expected 
shape of the power curve reasonably well. Rather than solving 
for the peak algebraically, it was computationally more 
efficient to evaluate the polynomial function at 500 
equally-spaced points over the same range of voltages as the 
original MPP region and then select the maximum value from 
this finely-discretized set.  

For instances where a peak value was not found, the 
polynomial kept increasing or decreasing monotonically 
because the slow meter missed the MPP. In this case, the 
maximum interpolated value (an endpoint) was chosen as the 
MPP. An example is provided in Fig. 4 in which three 



consecutive MPP sweeps are shown with the middle (orange) 
sweep failing to span the peak power value. This failure is 
likely due to a sudden drop in irradiance despite a previously 
increasing trend. Following the procedure mentioned above, 
the MPP power would be that associated with the power at the 
left end of the middle curve, or 16.00 V in this specific instance. 
Sometimes the fluctuations were so fast that within a single 
sweep, the polynomial approximation generated two peaks (or 
potentially more if a higher-order polynomial were to be used). 
Fig. 5 exemplifies such a scenario, where the polynomial was a 
poor approximation of the raw data.  In cases like this, the 
maximum value of the raw sweep data was chosen instead of 
the polynomial peak. More generally, polynomial 
approximations with R2 < 0.99 were deemed invalid and the 
raw data peak used instead. We assert that using the polynomial 
fit is only beneficial if it closely represents the original data. 
Thus, the instance of two peaks in Fig. 5 would be ruled out due 
to a poor polynomial fit. After computing values from the slow 
meter data, the results were synchronized with the fast meter 
measurements using time stamps recorded in both data sets. 

 
Fig. 4. Three consecutive MPP power curve sweeps with the middle sweep 

missing the MPP. 

 
Fig. 5. Rapid transient during MPP sweep and associated poor fit polynomial 

approximation. 

III. FREQUENCY DOMAIN ANALYSIS 

Short-circuit current, for which we have high-speed data, is 
valuable when analyzing the frequency content of solar power; 
however, the issue is how much variation exists in the power 
coming out of the panel, i.e., we seek the frequency content of 
IMPP and VMPP. It is known that the ratio of IMPP to ISC is nearly 
constant, especially over short periods where temperature 
changes are not significant [12-14]. Fig. 6 provides additional 
support for interchanging the two metrics through an 
appropriate scaling factor, by showing the strong correlation 
between IMPP and ISC. We further demonstrate in Fig. 6 that any 
deviation from this strictly linear relationship arose from the 
slow meter sampling rate during periods of rapid insolation 
change.  

 
Fig. 6. Linear correlation between slow meter MPP current and fast meter 

short-circuit current separated into periods of slow and rapid changes. 

We must also justify that the MPP voltage does not introduce 
high-frequency content independent of the current. In [15], the 
authors step through a mathematical derivation of the MPP 
voltage (VMPP) and use output characteristics of a solar panel as 
the following: Voltage at MPP under non-standard conditions 
is called V’m, and is a function of two external variables: 
temperature and irradiance (T and S). There are also parameters 
for intrinsic properties of the panel (b, c, and e). The results in 
[15] show that VMPP is predominantly a function of temperature, 
as in 

 !"# = !" ⋅ 1 − ()* ⋅ ln - + /)0  (1) 

We assume in our study that the temperature component of 
VMPP does not contribute to dynamics faster than the slow meter 
update rate of 2.5-3.9 s and is thus captured by our metering. 
Note that only the log term of the irradiance, S, contributes to 
VMPP, and since irradiance is the primary factor in short-circuit 
current output, we already have measured irradiance changes 
from the fast ISC data. To illustrate, Fig. 7 shows that we can 
bound the variation in VMPP as a function of ISC using two 
different kinds of days as examples. One day is a smooth day in 
January, and the other is a noisy day in June. We can bound 
worst cases from both of these days within approximately 15% 



of the ISC regression, and within approximately 20% for all days 
investigated. This is pessimistic, as the majority of scattered 
points are much closer to the best fit function. The variance will 
lead to some uncertainty in the final result for update rates 
faster than one slow meter sweep.  

Since the majority of photovoltaic dynamics should be 
contained in the fast short-circuit data, then a Fast Fourier 
Transform (FFT) of ISC provides preliminary information about 
frequency content in the solar power. We are especially 
interested in the higher frequencies to see at which point we 
should expect saturation in energy capture. For instance, an 
FFT of a 20-minute data sample is plotted in Fig. 8. It indicates 
that frequency content above about 100 Hz constitutes the noise 
floor in the measurements, excepting narrow spikes associated 
with harmonics of the 60 Hz grid frequency. This would 
indicate that a more rapid update rate in an MPP tracker would 
not provide increased energy capture beyond 100 Hz. Extended 
analysis in Section IV will provide a more rigorous argument 
concerning energy content variability for the whole data set. 

 
Fig. 7. Correlation between VMPP and ISC for one smooth day (top) and one noisy 

day (bottom), each with nonlinear regression, bounds of variation about that 
regression, and inset plot of ISC for day. 

 
Fig. 8. FFT of ~20 minutes’ worth of short-circuit data at ~5 kHz, with labeled 

peaks at the grid frequency and first two harmonics. 

 

IV. MPPT OPERATING MODEL AND ECONOMIC 
IMPLICATIONS 

While we have thus far discussed variability in terms of 
power, we now transition to the effect variability has on energy 
capture. That is, some energy from the PV panel is not captured 
by the MPP converter if it uses obsolete MPP information. To 
quantify this missed energy, we envision our PV panels 
transferring energy through a lossless dc-dc boost converter to a 
lossless inverter and subsequently to an ideal grid, fixed at 
nominal voltage, as visualized in Fig. 9. 

 
Fig. 9. Idealized process of energy conversion from PV power to grid power. 

We assume that each solar panel is equipped with its own 
microinverter and boost converter so that each panel operates 
independently. In this set-up, the boost converter is controlled 
for MPPT at a predetermined update rate. The panel voltage 
VMPP will be set from the converter active switch duty ratio D as 

 !122 = !34 = 1 − 5 ⋅ !678  (2) 

For an ideal boost converter and system, missing energy will 
only occur if there is mismatch between the panel VMPP and the 
tracker VMPP value, which is held constant through the duration 
of a sampling period. Sampling period here refers to the 
duration of time before a new VMPP, and hence duty ratio D, is 
calculated. In this case, as in a hypothetical depiction of Fig. 10, 
there will be less energy captured. The reduction could be in 
either of the shaded regions in Fig. 10 if IMPP were to change but 
the legacy VMPP value did not update to the optimal MPP.  
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Fig. 10. Hypothetical MPP curve with exaggerated regions of missed energy 

depicted as the shaded regions. 

 To create the missed energy capture plot in Fig. 11, we 
assumed that a baseline MPP update rate of 5 kHz was 
effectively the same as a continuous update, capturing all 
possible changes in power output. Then, for a hypothetical 
MPP tracker that would update every 2, 5, 10, …, 106 samples 
(2500 Hz, 1000 Hz, 500 Hz, …, 0.005 Hz) the amount of 
energy missed at each time step was summed according to 

9:-;<=	?@AA-B = !122C ⋅ DEFG ⋅ DEH 	−	D122I

EJ

4KL

EM/EJ	

"KL

 (3) 

where ISF is the scaling factor between IMPP and ISC (slope in 
Fig. 6), ST is the total number of samples in the selected data 
segment, and SU is the number of samples per MPP update. 
Each total sum is then divided by the total amount of energy 
captured at the baseline rate of 5 kHz. This yields the missed 
energy fraction from sampling the MPP at a slower rate. Fig. 11 
summarizes the results of this calculation for the ten, 10-day 
periods discussed in Section II, with the mean of these in 
bolded black. If MPP’s are updated at 100 Hz, coinciding with 
the FFT floor in Fig. 8, about 1 part in 4000 of the available 
energy will not be captured compared to the baseline case. This 
is about 63 mW for a 250 W panel. For reference, the noise 
floor suggests that data resolution is no better than one part in 
10000.  As another example with the same panel size, a 1 Hz 
update rate sacrifices an average of about 1 part in 250, about 
16 times as much as a 100 Hz update rate.  A converter updating 
at 100 Hz should be able to capture an extra 1 W on average 
from a 250 W panel compared to a 1 Hz update rate.  

Fig. 11. Modeled energy sacrifice of 10, 10-day samples with varying MPPT update rates and mean in bolded black. Entries in legend represent final day in 10-day 
series. 

  



Fig. 11 can be used to analyze, in general terms,  the 
economic opportunity cost associated with increased update 
rates. We compare update rates of 1 Hz and 100 Hz for a 
hypothetical existing system. Using the relation from Fig. 11 
with 1 Hz on the x-axis yields a mean energy fraction sacrifice 
of 0.41% and 100 Hz input yields a sacrifice of 0.025%. Other 
assumed parameters are provided in Table I for one PV panel 
with a built-in microinverter. 

Table I. - Economic calculation assumptions 

Solar panel 
rating (W) 

Capacity 
Factor 

Hours 
per year 

Lifetime of 
panel (years) 

Electric cost 
per kWh 

245 0.24 [16] 8766 25 $0.11 USD 

We calculate the differential cost between the two cases: 

245	R ⋅ 0.24 ⋅
8766	ℎ;
=-Y;

⋅ 25	=-Y;A ⋅
1	ZRℎ
1000	Rℎ

⋅
$0.11\05
ZRℎ

⋅ 0.41% − 0.025%

= \0$5.46	^-;	^Y:-_ 

(4) 

Thus, an incremental cost of a few dollars per panel is 
worthwhile for increasing update rates from 1 Hz to 100 Hz.  
Following from (4), even if all the remaining 0.025% of energy 
could be captured, the remaining value to be captured is about 
US$0.35, so update rates above 100 Hz are unlikely to be cost 
effective.  

 

V. CONCLUSION AND FUTURE WORK 

In this paper we described how raw PV data was used to 
quantitatively determine the variability of energy production 
for various MPPT update rates. We started with 5 kHz 
short-circuit current data and slower I-V sweep data from a PV 
panel exposed to natural conditions for more than a year. We 
then justified how knowledge of the I-V sweeps together with 
high-speed short-circuit current was sufficient to be able to 
determine the dynamics of the MPP within relatively tight 
bounds. We transformed the panel dynamics into quantifiable 
missed energy capture due to fixed update rates by modeling an 
ideal boost converter fed with the raw data. We concluded by 
performing a basic cost-benefit analysis of MPPT systems to 
demonstrate one possible use of the energy variability result. 

Regarding future work, higher accuracy calculations may be 
feasible with existing data. In this paper, we treated the effect of 
irradiance on VMPP as a second-order effect. Future analysis can 
account for some of the variations faster than one slow meter 
sweep for days with tight correlations between VMPP vs ISC. 
Additional work will include filtering and down-sampling of 
the entire data set for easier handling. We also plan to use this 
energy content information for analyzing dynamic 
requirements of solar variability mitigation, such as methods in 
[17-19]. 
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