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Abstract—This work demonstrates a machine learning (ML)
based condition monitoring system for silicon carbide MOSFETs
in a hydrokinetic turbine (HKT) energy conversion system. In
this application, the power electronics are underwater, and their
maintenance is challenging and expensive. At the device level,
MOSFET on-state resistance (Rdson) can be monitored to track
MOSFET degradation. Conventionally, the variation in Rdson

with temperature is compensated for by explicit measurement
or estimation of junction temperature TJ , which can be difficult
to implement. Instead, in the proposed system, Rdson load and
temperature dependencies are accounted for via a ML model of
the system, which first predicts the Rdson of a healthy MOSFET
given the system operating conditions, and then this prediction of
healthy Rdson is compared to the actual Rdson measurement, with
the difference tracking the change in Rdson due to degradation.
This ML based method is particularly advantageous for the HKT
system, since the dynamics of the electrical and thermal systems
as well as their variation with water speed or temperature do not
need to be modeled. The proposed condition monitoring (CM)
systems using this ML approach are demonstrated by simulation
and experimental testing.

Index Terms—Turbines, Hydrokinetic energy, Power conver-
sion, Power electronics, Machine Learning, Condition monitor-
ing.

I. INTRODUCTION

The hydrokinetic turbine (HKT) system comprises of a
submerged turbine in a riverine environment, a permanent-
magnet synchronous generator (PMSG), a fully rated back-to-
back power electronic converter, and an LCL filter. Whilst
the electrical topology and controls are comparable to a
direct-drive wind turbine system, the thermal dynamics of the
electrical system are unique. Assuming the power electronics
are also submerged in the river, the heat transfer mechanism
from the enclosure to the water is mostly forced convection,
varying with water velocity and temperature. Silicon carbide
(SiC) MOSFETs are an attractive switching device for the
HKT system owing to their higher breakdown voltage, faster
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switching transitions, and reduced Rdson compared to tradi-
tional silicon switching devices. To optimize maintenance and
improve the converter system reliability, converter MOSFET
degradation can be monitored. This device-level condition
monitoring (CM) can provide an estimate of remaining useful
life of the converter, or can be used for failure prognosis.
In either case, CM can help reduce the high operating costs
of the HKT system via condition-based maintenance, and the
availability of the HKT system can be improved by replacing
a degraded part before it fails completely.

Device failures are either extrinsic or intrinsic. Extrinsic
failures relate to the device packaging, whereas intrinsic
failures occur within the die itself. SiC MOSFETs appear
particularly susceptible to dielectric breakdown, caused by
high temperatures and high electric fields across the gate oxide
layer. This is in contrast to devices such as IGBTs and silicon
MOSFETs, where packaging failures such as solder joint
cracking or wire bond liftoff are the dominant failure mech-
anisms [1], [2]. Accordingly, researchers have investigated
suitable failure precursors for SiC MOSFETs, which can track
dielectric breakdown in addition to packaging failures. Com-
monly proposed precursors include threshold voltage, Rdson,
body diode forward voltage, drain-source leakage current, and
gate leakage current [3], [4]. Monitoring Rdson is the focus of
this work, since it is feasible to measure in-situ and increases
with both packaging and gate oxide degradation [3]. However,
MOSFET Rdson depends on load and temperature. Hence
MOSFET drain current ID and junction temperature TJ must
be compensated for before a change in measured Rdson is
attributed to degradation. Whilst ID is easily measured, TJ

requires indirect measurement or estimation.
One solution is to measure MOSFET case temperature, and

then estimate TJ by considering the MOSFET’s power loss
and junction-case thermal resistance [3]. However, accurate
case temperature measurements for each converter MOS-
FET would have a high implementation cost. Alternatively,
TJ can be estimated using a thermally sensitive electrical
parameter (TSEP) [5]. Indeed, Rdson is a commonly used
TSEP for TJ monitoring. However, Rdson cannot be used



Fig. 1. HKT electrical system overview.

Fig. 2. MOSFET thermal equivalent circuit model.

to simultaneously estimate TJ and degradation. Other TSEPs
such as threshold voltage, turn-on delay, or turn-off delay
are challenging to measure, and the use of a TSEP for TJ

estimation would require significant additional circuitry for
each converter MOSFET.

In this paper, the proposed machine learning (ML) based
CM system offers an alternative method to account for TJ

in which these additional measurements at each MOSFET are
not required. Instead, TJ is implicitly accounted for by training
ML models to predict the Rdson of a healthy MOSFET over
the full operating space of the HKT system. These are ‘black-
box’ models, which map a set of measurements to the Rdson

prediction without requiring any knowledge of the system
parameters or dynamics. When degradation occurs, the ML
models still predict Rdson as though the MOSFET is in the
beginning-of-life (BOL) condition, even when the MOSFET
has degraded. This prediction is then compared to the degraded
MOSFET’s Rdson measurement, with the difference tracking
degradation independently of ID and TJ .

II. PROPOSED ML BASED CM SYSTEMS

An overview of the HKT system is shown in Fig. 1. The
hydrokinetic turbine drives a PMSG, which is connected via
a back-to-back AC-DC-AC power-electronic converter to the
grid. Fig. 2 shows the thermal equivalent circuit model for
the power-electronic converter MOSFETs. Q is the MOSFET
power loss or heat transfer, h is the convective heat transfer
coefficient, and A is the heatsink surface area. TJ , TC , TS ,
and Tsurface are the junction, case, heatsink, and heatsink
surface temperatures, respectively. T∞ is the water temperature
beyond the thermal boundary layer. θJC , θI , θS and CJ ,
CI , CS are the junction-case, interface, and heatsink thermal
resistances and capacitances, respectively. Note that θS repre-
sents the conductive heat transfer across the heatsink material,
whereas 1/(hA) represents the convective heat transfer from
the heatsink surface to the water. Therefore, TJ is dependent

on power loss, water temperature, and the conductive and
forced convection heat transfer mechanisms. These dynamics
are especially pronounced in the HKT application, since power
loss Q and the convective heat transfer coefficient h have
strong non-linear variations with water velocity. An advantage
of the proposed ML based CM system is that these complex
behaviors do not need to be modeled.

Fig. 3 shows two proposed CM systems, each leveraging
ML models to predict MOSFET Rdson. This prediction is
compared to the actual measurement of Rdson to generate
an error signal, which tracks any increase in Rdson due to
MOSFET degradation. The more complex Fig. 3(a) system
is investigated via simulation while the simplified system of
Fig. 3(b) is used for experimental testing. This simplified
system is used for the experimental testing since the ambient
temperature could not easily be controlled, and MOSFET
power loss Q would need to be experimentally measured in
order to train ML Model 1 in Fig. 3(a). However, note that
the overall principle of both systems is the same. Indeed, the
actual implementation of the ML models is flexible, and can be
tailored to the available system measurements and application.
The ML models are realized in Python 3 using pandas, scikit-
learn, and TensorFlow and Keras libraries. Once the models
have been trained and tested offline in Python, then they can
be deployed in real-time for system CM.

Considering Fig. 3(a) first, ML Model 1 predicts MOSFET
power loss from the converter current magnitude, DC bus
voltage, and water temperature and velocity. Then ML Model
2 predicts MOSFET Rdson from measured ID, the predicted
power loss from ML Model 1, and water temperature and
velocity. Model 1 uses ridge regression with 4th order poly-
nomial features [6]. The training uses a linear least squares fit
loss function with L2-norm regularization. Model 2 uses an
artificial neural network (ANN) [7] with four hidden layers,
with sizes of: 32; 16; 16; and 8 neurons. Each neuronuses
a rectified linear unit (RELU) non-linear activation function.
The model is trained using an Adam optimization algorithm
[8], which is an extension of the stochastic gradient descent
method. Now considering Fig. 3(b), the ML model predicted
MOSFET Rdson from measured ID, the converter current
magnitude, and the water velocity. The model uses ridge
regression with 5th order polynomial features and is trained
using the linear least squares fit loss function with L2-norm
regularization.

By training the ML models over the full range of expected
river water temperatures and velocities, the models learn the
relationships between ID and TJ and the observed Rdson. The
measured Rdson value is compared to the predicted value to
generate an error signal which tracks the increase in Rdson due
to degradation only. In Fig. 3(a), the error signal gives the %
change from BOL Rdson, while in Fig. 3(b) the error signal is
the absolute change from BOL Rdson. If the real system is in
the BOL condition, the error signals should be zero. When a
MOSFET degrades, the measurement of Rdson will be higher
than the predicted Rdson, and therefore the error signal should
track the increase in Rdson.



(a) (b)

Fig. 3. Overview of proposed CM systems. (a) Detailed two-stage model investigated by simulation. (b) Simplified single-stage model for experimental
testing.

III. CM TEST PLATFORM IN PLECS SIMULATION

A. PLECS System Model

A PLECS model incorporating mechanical, electrical, and
thermal behaviors is used to create a simulated test platform
for the CM system. A model of the HKT mechanical system
outputs rotor torque according to the water velocity and
PMSG speed, considering the tip-speed ratio (TSR) and power
coefficient (CP ) of the turbine. Next, a model of the PMSG de-
termines the phase currents and voltages that should be applied
by the gen-side converter. The converter features Microchip
MSC040SMA120B 1200 V SiC MOSFETs with a nominal
Rdson of 40 mΩ. In the PLECS simulation, the manufacturer’s
PLECS thermal model is used to model MOSFET power
loss. The simulation includes the thermal circuit of Fig. 2,
where h varies with river water velocity and temperature. For
simplicity, a single half-bridge of the three-phase gen-side
converter is considered in the test platform, without loss of
generality. The electrical behaviors of the gen-side converter
and PMSG are replicated by an H-bridge circuit with an
inductive load as described in [9]. One of the H-bridge half-
legs comprises the device-under-test (DUT) MOSFETs, which
see the same load current and switching behavior as a single
phase of the gen-side converter would see in controlling the
PMSG.

B. Simulated CM System Training

The first step of the training is to collect a large dataset
of measurements from the PLECS simulation, including all of
the required ML model features (inputs) and targets (outputs),
as shown in Fig. 3(a). The PLECS simulation is swept over
water temperatures from 0 to 20◦C in increments of 2.5◦C,
and over water speed from 0.9 to 4.65 m/s in increments of
0.25 m/s. Once each simulation reaches steady-state, 40 data
samples are collected. The samples are taken at the PMSG
fundamental frequency, and timed to coincide with the peak
of the load current. This maximizes the signal-to-noise ratio
of the drain-source voltage and drain current measurements.
This generates a dataset with 6120 instances (feature and target
sets). The dataset is then imported into the Python environment
for training and testing of the ML models. A randomized 80%

Fig. 4. Mission profile showing river speed and temperature over a 48-hour
period.

/ 20 % split is used to divide the dataset into training and
testing sets, respectively. In training, the known Q is given
to ML Model 1, and the known Rdson value calculated from
ID and Vds is given to ML Model 2. Whereas in testing, the
models must predict Q and Rdson, and these predictions are
compared to the known values to evaluate the performance of
the models. Using this training and testing process, the models’
hyperparameters such as the regularization weight or learning
rate are tuned in order to maximize the performance of the
models.

C. Simulated Mission Profile Test

Now that the ML models have been trained over the
expected operating conditions of the system, the CM system’s
performance during normal operation is investigated. In real
deployment, the CM system with the ML models would
be implemented in real-time. A 48-hour mission profile is
considered with two test cases. In the first case, the HKT
converter MOSFETs are in healthy BOL condition. In the
second case, the MOSFETs have degraded such that their
Rdson has increased by 10% compared to BOL Rdson. Fig.
4 shows the mission profile of river velocity and temperature.
River velocity initially increases by 3.48 m/s before decreasing



Fig. 5. Variation of HKT power and MOSFET junction temperature over the
48-hour mission profile.

(a)

(b)

Fig. 6. Measured vs ML model predicted MOSFET Rdson (blue) and CM
system error signal showing relative change from BOL Rdson. (a) MOSFET
in BOL condition. (b) Degraded MOSFET.

gradually, whilst temperature drops by 2◦C over the 48-hour
period. Fig. 5 shows HKT system turbine power (PMSG input
power) and converter MOSFET TJ for the two test cases.
Turbine power is proportional to the cube of the water velocity,
provided that optimal TSR is achieved where CP is at its
maximum. Therefore, the converter MOSFETs see a wide

Fig. 7. Hardware test platform with fan, custom PCB with test circuit and
measurement circuitry, MCU for controls and monitoring, and external load
inductance.

variation in load currents and temperatures over the mission
profile due to the HKT application.

Fig. 6 shows the performance of the proposed CM system
for the two test cases: (a) converter MOSFETs in BOL
condition; and (b) degraded converter MOSFETs where Rdson

is 10% higher than BOL Rdson. Fig. 6(a) shows that for
a BOL MOSFET, the ML model predicted Rdson closely
tracks the actual measurement. The error signal has only minor
variations from the expected value of 0 %. Fig. 6(b) shows
for a degraded MOSFET, the predicted Rdson is consistently
lower than the actual measurement. This is intended, since
the ML model still predicts Rdson as though the MOSFET
is in BOL condition. Indeed, the error signal successfully
tracks the known % increase in Rdson of 10%. At around
time = 14 hrs the error signal increases from 10% to around
12%, corresponding to the peak in TJ . While the simulation
sets Rdson to be 10% higher at any given drain current and
TJ , the increased resistance also causes increased conduction
losses and therefore increased TJ . Since Rdson has a strong
temperature dependence, the actual peak Rdson in the de-
graded MOSFET test case is 12.4% higher than in the healthy
MOSFET test case.

IV. EXPERIMENTAL TESTING

A. Experimental Test Platform Design

The test circuit simulated above is now implemented in
hardware. The hardware test platform uses a custom PCB
with control code deployed to a Texas Instruments F280049C
development board. The hardware test also uses the Microchip
MSC040SMA120B 1200 V SiC MOSFETs with a nominal
Rdson of 40 mΩ. Fig. 7 shows the experimental test platform.
Due to infrastructure limitation, the test platform is air-cooled
rather than water-cooled. However, regardless of the cooling
medium, the underlying physical mechanisms are the same.



Fig. 8. Simplified schematic to show measurement circuitry for lower DUT SiC MOSFET (as implemented in Fig. 7 PCB).

There is conductive heat transfer between the MOSFET junc-
tion and the heatsink surface, and from the heatsink surface
there is heat transfer to the water or air via forced convection.
However, in the water cooled case, the convective heat transfer
is many times more effective than in the air cooled case. In
practice, this means the temperature difference between the
heatsink and ambient will be far higher in the air-cooled case
compared to the water-cooled case.

There are three major challenges in realizing the proposed
CM system in hardware: Firstly, the measurements must be
precise and temperature-independent due to the low Rdson

of the SiC MOSFETs and high operating temperature range.
Secondly, voltage clamping circuity is required to protect the
sensitive low-voltage measurement circuitry from the DC bus
voltage. Thirdly, the measurements must be sent across the
isolation barrier between the high voltage power circuit and
the low voltage logic circuits. Note that while the DC bus
voltage in the hardware test is only 60 V, the use of isolated
gate drivers and isolation amplifiers allows the proposed CM
system to be implemented at much higher voltage levels.

Fig 8. shows a simplified schematic of the PCB measure-
ment circuitry for the lower DUT MOSFET. Note that the
equivalent measurement circuitry implemented for the upper
DUT MOSFET is not shown. Additionally, gate drive, power
supply, and other auxiliary circuitry are omitted. The proposed
CM solution requires precise measurement of each DUT
MOSFET’s drain current and drain-source voltage. Therefore,
kelvin connection shunt resistors with +-0.1% tolerance are
used for drain current sensing. The current sense resistor volt-
age drops are amplified by Broadcom ACPL-C78A isolation
amplifiers. An operational amplifier then converts the double-
ended output signal into a single ended signal for connection
to a microcontroller ADC. Low pass filters at the isolation
amplifier and ADC inputs filter out high-frequency noise.

The drain-source voltage measurements use Broadcom
ACNT-H87B isolation amplifiers. The voltage at the ampli-
fier’s VIN pin must not exceed 5 V relative to the GND1 pin.
Therefore, a clamping circuit must be employed to block the

DC bus voltage during the MOSFET’s off-state. For example,
when the lower MOSFET is off, the upper MOSFET is on,
and therefore the lower MOSFET drain voltage is pulled to
the DC bus voltage whilst the source is at ground. i.e. the DC
bus voltage would appear across the amplifier inputs when the
MOSFET is off. To prevent this, voltage clamping circuits us-
ing diodes, zener diodes or auxiliary MOSFETs are commonly
used. However, these conventional current clamping circuits
induce an error in the voltage measurement due to diode
leakage currents. This problem is exacerbated by the strong
temperature dependence of the leakage current, which leads
to an increasing error at higher temperatures. To alleviate the
leakage current issue, the authors of [10] propose a clamping
circuit in which a voltage source is used in place of a zener
diode. This circuit design is implemented here using a 60 kΩ
clamp resistor, a schottkey diode, and a 1V source referenced
to the MOSFET source. Here, the 1V source is implemented
using an isolated switching converter. Similar to the current
sensing circuitry, the double-ended output signal of the ACNT-
H87B is converted to a single-ended signal before connection
to the microcontroller ADC.

ADC measurements are trigged by the PWM generation,
such that the lower MOSFET measurements are obtained dur-
ing the midpoint of the lower MOSFET on-time, and the upper
MOSFET measurements during the midpoint of the upper
MOSFET on-time. Within the controller, these measurements
are sampled a second time to obtain V dspk and Idpk as the
measurements corresponding to the peak of the load current
sinusoid.

B. Experimental CM System Training

The experimental test platform considers scaled turbine and
PMSG models to calculate reference load current magnitudes
from the water velocity. Training data is gathered at a con-
stant ambient temperature of around 20◦C and a fundamental
frequency of 15.9 Hz. Water velocity is swept from 1 to 2
m/s in increments of 0.1 m/s. At each water velocity and
corresponding load current magnitude, 40 s of measurements



Fig. 9. Mission profile showing scaled river speed and reference load current
magnitude for the hardware test.

are obtained. The microcontroller records measured drain-
source voltages, drain currents, and the current space vector
magnitude. This data is then used to train and test the ML
model of Fig. 3(b), using the same process as described above
for the Fig. 3(a) models. The ML model features are now
the MOSFET drain current Idpk, the current space vector
magnitude Ismag , and the water velocity Vinf . The ML model
target is MOSFET Rdson, calculated as MOSFET drain-source
voltage V dspk divided by Idpk.

Note that Idpk and V dspk are not raw measurements.
The drain-source voltage and drain current measurements are
obtained over the entire load current sinusoid. However, the
controller takes one sample per fundamental frequency cycle
at the moment where the load current through each MOSFET
is at its maximum. Additionally, these controller sampled V ds
and Id measurements are then averaged over 0.5 s to obtain
V dspk and Idpk for Rdson calculation and input to the ML
model. In the experimental test, the averaging and ML model
deployment are performed offline. In real application, these
steps would be undertaken in real-time, either on the controller
board or on a remote system.

As in the PLECS simulated test, the trained ML model will
predict the Rdson of a MOSFET in its healthy BOL condition.
The proposed CM system then compares the measured Rdson

to this predicted Rdson to produce an error signal for Rdson.
If the MOSFET is in healthy condition, the error signal should
be approximately zero. However, when the MOSFET degrades
and the measured Rdson increases, the error signal should
reflect the increase in Rdson from the BOL Rdson value.

C. Experimental Mission Profile Test

The experimental CM system testing is performed in a
similar manner to the above simulated testing. The mission
profile of Fig. 9 is now applied to the hardware test platform.
However, since ambient temperature was uncontrolled, the
river temperature is not considered. The river velocity profile
is also scaled to the minimum and maximum values of the
experimental test platform, 0.1 and 0.2 m/s, respectively.

(a)

(b)

Fig. 10. Measured vs ML model predicted MOSFET Rdson (blue) and CM
system error signal showing absolute change from BOL Rdson. (a) MOSFET
in BOL condition. (b) Emulated degraded MOSFET.

This allows testing over the full range of expected operating
conditions. The experimental test applies time scaling to the
mission profile, such that it is completed 100x faster. i.e., the
48 hr mission corresponds to an actual test duration of 28.8
minutes.

As before, the mission profile is applied to two test cases.
The first test case represents a HKT converter MOSFET in
healthy BOL condition. In the experimental test platform, a
healthy BOL MOSFET is used, and Rtest in Fig. 8 is a 0
Ω jumper. The second test case represents a degraded HKT
converter MOSFET with increased Rdson. Here, the same
healthy BOL MOSFET is used, but Rtest is replaced with a 10
mΩ resistor. Therefore, the drain-source voltage measurement
circuit will measure Rdson as the MOSFET’s BOL Rdson plus
Rtest, emulating a degraded MOSFET for testing purposes.
To improve the clarity of the results, 2-hr moving averages
are shown for the calculated Rdson, ML model predicted
Rdson, and the output error signal of the CM system. In
real deployment, similar averaging can be applied to the CM
system error signal to balance the responsiveness and noise
rejection of the CM system.

Fig. 10. shows the performance of the experimental CM
system for the two test cases. The dashed blue line shows the



measured Rdson, which is directly calculated from the V ds
and Id hardware measurements. The solid blue line is the
ML model’s predicted Rdson. Recall that since the ML model
is trained only with healthy MOSFET data, the ML model
always predicts Rdson for a healthy MOSFET, regardless of
the actual MOSFET condition. The orange line is then the
absolute difference between the measured and predicted Rdson

values, obtained as shown in Fig. 3(b). In contrast to the
simulated tests, the measured Rdson actually reduces with
increasing load. This does not reflect the expected behavior,
and can likely be attributed to errors in the measurement
circuits. However, a benefit of the ML approach is that the
ML model adapts to the experienced behaviors, since the ML
model is trained on the same circuit with the same errors
present.

Fig. 10(a) shows the test with a healthy BOL condition
MOSFET. In this case, the predicted Rdson should match the
measured Rdson, and the absolute error signal should be zero.
Although some noise is present on the error signal, it remains
close to zero within ±1 mΩ over the full mission profile load
variation. Fig. 10(b) shows the test with the emulated degraded
MOSFET. In this case, the measured Rdson signal should
be 10 mΩ higher than the predicted Rdson across the entire
mission. However, the absolute error signal tracks a difference
of only around 2 mΩ.

Comparing between the error signals for the healthy and
degraded MOSFETs, the CM system is clearly capable of
drawing a distinction between the a healthy and degraded
MOSFET. However, the absolute accuracy of the system
is still lacking. This suggests the measurement circuitry is
not functioning as well as anticipated, and is not accurately
measuring the drain-source voltage or drain current. Despite
this, the ML based CM system shows promise for SiC
MOSFET degradation monitoring via an increase in drain-
source resistance. Future experimental testing should attempt
to increase the accuracy of the measurement circuitry, as well
as testing a more complex ML model which also considers
the ambient temperature.

V. CONCLUSION

This work proposes a ML based SiC MOSFET CM system,
especially for the HKT application. To account for MOSFET
Rdson load and temperature dependencies, supervised train-
ing is used across the entire operating space. Through this
process, changes in MOSFET TJ due to varying power loss,
river temperature, and the convective heat transfer coefficient
under changing river velocity are all compensated for in the
prediction of Rdson. The ML models are trained exclusively
with MOSFETs in the BOL condition, while the real Rdson

measurement will include any increase in resistance due to
intrinsic or extrinsic degradation mechanisms, including di-
electric breakdown. This allows the proposed CM system to
use the difference between predicted and measured Rdson to
track degradation independently of ID and TJ . Compared to
existing methods, this removes the need to explicitly measure
or estimate MOSFET TJ via a case temperature measurement

or MOSFET TSEP. An additional advantage is that neither
MOSFET power loss nor the complex HKT system cooling
behaviors need to be modeled.

The proposed ML models were successfully demonstrated
using a 48-hour mission profile case study in which the
river velocity sees a wide variation. In the simulated tests,
despite a change in junction temperature of over 100◦C in
the mission profile, the known % change in MOSFET Rdson

was successfully tracked in healthy and degraded test cases.
In the hardware testing, the performance of the CM system
was degraded compared to the simulated tests. However, the
CM system was still able to identify a clear increase in Rdson

over the mission profile.
The proposed CM system offers tangible benefits to HKT

systems, which often suffer from higher operational costs com-
pared to other renewable systems such as wind turbines. When
combined with accelerated life testing data, the CM system can
enable remaining useful life prediction or failure prognosis.
These techniques can support condition based maintenance, in
which the HKT system is serviced according to the system’s
current condition. HKT system availability is improved since
MOSFET failures and the associated system downtime can be
avoided. Reduced operational costs and increased availability
contribute to a reduction in the levelized cost of energy of
the HKT system, improving its commercial viability. The
proposed method is suitable for deployment in many other
applications, and the structure of the ML models can be
adapted to suit the available measurements and requirements
of each system.
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