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Abstract—With the rise of more electric and all-electric 

aviation power systems, engineering efforts of system optimization 

shift to the electrical domain. A substantial amount of time and 

resources are dedicated to finding the best system architecture and 

design specifications to meet energy efficiency goals and physical 

constraints. Current processes utilize models of power system 

components to determine the optimal designs. However, such 

modeling is computationally expensive as numerous iterations are 

required to settle on an optimal design. This paper proposes a 

machine learning (ML) enabled constrained multi-objective 

optimization solver to drastically reduce the amount of design 

iterations required for Pareto set discovery for power systems. The 

process contributes significantly to design automation. A heavy-

duty vertical-takeoff-landing (VTOL) unmanned aerial vehicle 

(UAV) power system is selected to demonstrate the efficacy and 

limitation of ML enabled optimization. Two extreme trials were 

run: 1) a search throughout the entire design space with only 9% 

valid designs within constraints; 2) a search throughout the valid 

design space. While Trial 1 was unsuccessful in discovering the 

Pareto front, Trial 2 uncovered all Pareto optimal designs with a 

99% reduction of iterations compared to a brute force method. 
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I. INTRODUCTION 

Modern aviation power systems are trending towards more 
electric or all-electric. Boeing 787, a more electric aircraft 
(MEA), has been in use for a few years; Amazon Prime Air 
autonomous unmanned aerial vehicles (UAVs) delivery has 
become a reality; NASA N+3 electric passenger aircraft is under 
development, to name a few [1]. As aerial vehicles become more 
electrified, power systems will require multiple power electronic 
converters, electric machines, energy storage, wiring, and 
cooling devices. Optimizing system performance, such as 
energy efficiency, weight, and size, can be approached at a 
component level or a system level. While recent technological 
advancements have allowed for power converters to reach 99%+ 

efficiency [2], such designs may not be feasible in any 
application due to size, weight, temperature constraints, or 
integration requirement with the rest of the system. Therefore, 
proper sizing of individual components is critical for system-
level optimization.  

For an aircraft’s design, an electric power system team 
usually works with a multi-disciplinary optimization (MDO) 
team by providing necessary modeling pieces of subsystems, 
including power converters, electric machines, batteries, and so 
on. The MDO team then runs the models on numerous 
combination scenarios, sometimes on the order of thousands, 
either through brute force looping or Monte Carlo search [3]. 
Depending on the complexity or interface with other physical 
models, such simulation runs can take from hours to several 
days, to map the entire design space. After the simulations, 
engineers determine a Pareto front to find the system optimality, 
usually circling a few final candidates and then picking one by 
experience. When a subsystem model is modified, or a new 
mission is imposed, such iteration processes occur several times 
before an ultimate design can be generated. This represents a 
substantial amount of engineering time and effort.  

Computer algorithms for solving general Multi-Objective 
Optimization (MOO) problems with a reduced number of 
simulations exist, discussed in [4]-[5]. Machine learning (ML) 
algorithms have been investigated and show promising results to 
reduce the time and resources for Pareto set discovery [6-11]. 
Circuit level design of power electronics utilizing machine 
learning has achieved a 90% reduction in the number of 
simulations needed to optimize design parameters [12]. 
However, there has been little research in the development of a 
machine learning-based search method to optimize design 
parameters at the system level of a power system.  

This paper proposes a machine learning algorithm called 
Max-value Entropy Search for Multi-objective Optimization 
with Constraints (MESMOC) to reduce the number of simulation 
iterations required to discover the Pareto set. Experiments using 
a prior version of the ML algorithm without constraints, i.e., 
MESMO, consistently outperform state-of-the-art algorithms at 
providing an accurate, computationally-efficient, and robust 
optimization solver [9]. This work builds upon MESMO with 
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the development of the constraints add-on. The ML algorithm 
requires a physical model. A high level static or averaged model 
is developed for each component in the power system, including 
multiple physics domains in electrical, thermal, and mechanical. 
Plenty of research exists on the development and experimental 
validity of both static and dynamic models of power subsystems. 
A multi-timescale parametric electrical battery model is 
described in [13], and [14]-[16] demonstrates the integration of 
multiple subsystems for UAVs and MEA. Once the physical 
models are combined to form a desired system architecture, 
MESMOC can treat the simulation as a black-box function 
where the outputs are optimization objectives and constraints, 
and the design parameters serve as the function inputs. 
MESMOC then evaluates the input design parameters to 
maximize the information gain about the optimal Pareto front in 
each iteration until an optimal Pareto set is found. 

Due to the scope of this paper, the focus will be on the 
optimization of a vertical-takeoff-landing (VTOL) UAV power 
system. However, the proposed ML-based power system design 
approach can be abstracted to a variety of complex applications, 
such as MEA, on/off-road vehicles, ships, grid-connected 
buildings, renewable energy systems, etc. This paper, using a 
UAV system, serves to demonstrate the efficacy of the approach, 
especially, the drastic reduction of the number of simulation 
iterations towards converging to an optimal design. 

 

II. POWER SYSTEM MODELING AND SIMULATION 

As the intent of this paper is to explore the use of ML to 
reduce the number of simulations for electrical power system 
optimization, technical details of the power system models will 
not be the focus but are discussed in separate literature [14]-[16]. 
Actually, the type of power system modelling is of little 
importance as the optimization algorithm treats it as a black-box 
function. Still some level of the physical understanding allows 
to better comprehend the application of the ML algorithm. In this 
paper, a time-based static simulation capturing averaged power 
calculations on the order of seconds is used.  

The UAV system architecture consists of a central Li-ion 
battery pack, hex-bridge DC-AC inverters, PMSM motors, and 
necessary wiring, as shown in Fig. 1. A set of variable design 
parameters, such as the battery pack configuration and motor 
size, are included in the system models. This set, known as the 
design space, will be searched by the machine learning algorithm 
to find the optimal designs. Table 1 summarizes the design 
parameters and their sweeping ranges. 

A mission profile, defining the workload of the UAV, is used 
for every simulation run. The mission profile, shown in Fig. 2, 
contains 30 minutes of thrust values normalized to the total craft 
mass, representing a flight to and from a location. The mass of 
the craft frame and its cargo is held constant for all designs. 

Additional mass is added to the total craft mass depending on 
the number of cells in the battery pack, motor sizing, and the 
number of motors. A single motor and an inverter are simulated 
to reduce repetitive calculations, where the number of motors 
������ scales thrust and battery current demand. A single 
simulation time-step begins with the power and current 
requirements for the motor and propagates through the inverter 
to the battery to calculate the next time-step’s battery voltage and 
SOC. Note that power electronics mass is assumed constant for 
this study, since the semiconductor weight variation is relatively 
small. Other design details may be included, such as heat sinks 
or filters. However, this paper focuses on the development of the 
ML-physical integrated framework rather than a high-fidelity 
model. 

TABLE I.  UAV DESIGN SPACE RANGES 

Design Parameter Range 

Battery cells in series, Nseries (#) [8:18] 

Battery cells in parallel, Nparallel (#) [12:96] 

Quantity of motors, Nmotors (#) [6:10] 

Motor stator winding length, hstator (mm) [4:32] 

Motor stator winding turns, Nturns (#) [145:250] 

 

To represent the design of a PMSM motor, two parameters 
control the motor sizing: 1) ������ is the number of wire-turns 
for a stator coil; 2) ℎ������ is the height of the stator coils and 
governs the machine fill factor. The number of pole pairs is held 
constant for this study. Motor design is accomplished by 
perturbing reference values of stator resistance, synchronous 
inductance, back EMF constant, and mass using the 
aforementioned design parameters. The motor reference values 
are experimentally measured from a specific PMSM family. For 
a given �����  and ℎ������ , the maximum wire gauge for the 
stator is selected while still satisfying the fill factor limit. 

 
Fig. 1. Block diagram of UAV power system showing the interfaces between each component model. 

 
Fig. 2. Mission profile thrust values for UAV simulation. 



Modeling of the motor follows the work from [15]. 
Calculations of the back EMF, electrical and mechanical power 
losses, and modulation index depend on the motor RPM, torque, 
and the voltage level of the inverter. Motor RPM and torque 
come from the mission profile thrust values, where an 
experimentally derived curve fit relates the thrust to RPM and 
torque. Steady-state motor temperature is calculated from power 
losses, surface area of the motor, and heat transfer coefficient 
approximations. For system integration, per-phase current, 
required modulation index, and total power used are sent to the 
inverter model. 

The DC-AC inverter uses a three-phase hex-bridge topology 
with specifications from the datasheet of a Toshiba 
TPH4R008NH MOSFET and TPH4R10ANL as the diode. 
Similar to [15], PWM based switching power loss calculations 
use an averaged switching current, derived from the current of 
one motor phase. Methods to find switching voltage rise and fall 
times are from [17], which results in worst-case scenario 
estimations. MOSFET and diode conduction losses depend on 
the one-phase current and modulation index from the motor 
model. Adding various power losses to the motor output power, 
battery current is found. An accurate model of a Li-ion battery 
pack must consider the SOC, terminal voltage, and the current 
demand. This simulation uses a multi-timescale parametric 
electric battery model, based on [14]. The work builds upon 
Randle’s equivalent circuit and utilizes multiple RC time 
constants to model the transient behavior of a cell’s terminal 
voltage and provides the battery cell impedance for power loss 
calculations. In this model, voltage and impedance are 
dependent on SOC. There are two design parameters considered 

in the battery: 1) ������ represents the number of cells in series 
for one stack, i.e., the battery pack voltage. 2) ���������  

represents the number of cell stacks connected in parallel. 
Inverter current demand serves as an input to the battery and is 
used along with ���������  to determine the current of an 

individual cell. Individual cell current, along with voltage and 
internal resistance, is used to calculate power losses for each 
time-step. The new SOC and battery pack voltage can then be 
derived from the energy consumed and current demand of the 
present time-step. 

 

III. MESMOC ALGORITHM 

To overcome the computational overhead of determining an 
optimal power system design, MESMOC aims to reduce the 
number of simulations required to find the Pareto optimal set of 
solutions. A solution is called Pareto optimal when one objective 
cannot be improved without compromising another objective. In 
the context of power system design, a Pareto optimal set contains 
designs that have the best combination of total energy 
consumption, weight, and cost. 

By treating the physical models and simulation as a black-
box function, Bayesian Optimization (BO) [17], an effective 
framework for solving expensive black-box function 
evaluations, can be employed. BO begins by building cheap 
surrogate models (e.g., Gaussian Process [18]) using simulation 
results. Gaussian Processes (GPs) are effective surrogate models 
for multi-objective BO. The desired objective functions are 
modeled using K independent GP models. Each surrogate model 
is learned by using past simulation runs as training data. 



Subsequently, these models are used to define an acquisition 
function, which will be used to score the utility of each candidate 
design and  then select the design with highest utility for design 
evaluation. This acquisition function, defined as α, will be used 
to intelligently select the next sequence of design parameters for 
evaluation to accelerate the discovery of the optimal Pareto 
front. Rather than using an input space entropy-based acquisition 
function such as the state-of-the-art BO algorithm in [7], 
MESMOC utilizes an output space entropy-based acquisition 
function. Output space entropy search allows for much tighter 
approximations, is significantly cheaper to compute, and 
naturally lends itself to robust optimization. MESMOC’s 
acquisition function maximizes the information gain about the 
optimal Pareto front, which is equivalent to expected reduction 
in entropy over the optimal Pareto front.  

Two key algorithmic steps of the acquisition function are (a) 
computing the Pareto front samples; and (b) computing entropy 
with respect to a given Pareto front sample. Pareto front samples 
are computed by sampling the posterior GP models via random 
Fourier features for use in cheap MOO over the K sampled 
functions. The sample Pareto fronts are used to compute the 
information gain. The algorithm will select the input design that 
maximizes the information gain to be evaluated next. The 
information gain equation is given in equation (1). Details about 
the mathematical derivation will not be covered due to the scope 
of the paper, but can be found in [9]. A complete description of 
the MESMOC algorithm is given in Algorithm 1. The blue 
colored steps correspond to computation of the output space 
entropy-based acquisition function via sampling. 

 

IV. PHYSICAL MODEL-ML INTEGRATION 

Power system design is a constraint heavy optimization 
problem within a large design space. Even the comparably 
simple electrical architecture of a UAV can include hundreds of 
thousands of design parameter combinations. However, the 
design space consists of many invalid parameter combinations. 
Some designs may not be capable of providing the motor the 
necessary power for flight, the power rating of the motors or 
electronics may be too low and cause overheat, or there is 
insufficient energy storage to complete the mission, etc. A set of 
constraints are thus required to ensure a valid design. 

Throughout a simulation, each constrained model variable is 
monitored. For example, a maximum temperature for the motors 
and inverters is selected to ensure no overheating. The 
modulation index of the inverter switching control is constrained 
as the DC bus voltage can only be utilized a limited amount. In 
the large design space, many designs do not include energy 
storage capable of supplying the required current demand. Too 
much current drawn from the battery at any instant will 
significantly decrease the battery terminal voltage, which in-turn 
increases the load current further, creating a positive feedback 
loop. A minimum battery cell voltage is thus required for a valid 
design. The battery pack must also contain enough energy to 
complete a mission. A Depth of Discharge (DOD) limit is then 
set to match the common maximum discharge of Li-ion 
batteries. Table II outlines the set of constraints used for 
optimization. With these constraints, the set of valid designs are 
only a small subset of the entire design space. 

As MESMOC treats the simulations as a black-box function, 
it has no knowledge of what occurs during the simulation. Even 
if a design exceeds one of the constraints, the algorithm will still 
use the simulated results in its search of the Pareto front. An 
invalid design simulation must therefore provide useful 
information as well. Unfortunately, each electrical subsystem is 
modeled in a way that assumes valid operation. If a constrained 
variable exceeds the limit by too much, the models will 
breakdown and cause the simulation to return results with values 
that can be misleading to the algorithm, thereby decreasing its 
ability to find the Pareto front. To mitigate this issue, a ‘soft 
limit’ is set for the previously discussed constraints. During a 
simulation, a constrained variable which exceeds a certain value 
is suppressed exponentially as to remain within the operating 
bounds of the model. A hyperbolic tangent-like curve is 
employed as the ‘soft limit’ which will only activate when the 
constrained variables exceed the limits listed in Table II. This 
technique is more favorable than holding these variables at a 
‘hard limit’ (saturation) as little information of the Pareto front 
is gained when many unique designs return the same results. 

 
Fig. 3. Mass vs energy plot of the brute force and MESMOC results using 

the entire design space. 

 
Fig. 4. Mass vs energy plot of the brute force and MESMOC results using 

the valid design space. 



At the end of a simulation, results are sent to the machine 
learning algorithm for analysis. The results include constrained 
variables along with the optimization objectives. The surrogate 
models for each objective are updated in MESMOC and the next 
set of design parameters are chosen, which will maximize the 
information gain about the Pareto front. 

TABLE II.  DESIGN CONSTRAINTS AND LIMITS 

Constraint 
Design 

Limit 

Maximum final DOD 75% 

Minimum cell voltage 3.0V 

Maximum motor temperature 125℃ 

Maximum inverter temperature 120℃ 

Maximum modulation index 1.3 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

To demonstrate the efficacy of the ML-based power system 
MO optimization solver, minimization of total energy used and 
vehicle mass are selected as the objectives. For a design to be 
valid, the simulated UAV must be capable of completing the 
specified mission without violating the constraints in Table II. A 
reference base is required to determine the accuracy of the Pareto 
front found by MESMOC. Thus, a brute force approach 
simulated a total of approximately 250,000 combinations of 
design parameters. Out of the entire design space, only 9% of 
design combinations passed all the constraints. As the valid 
points are only a small subset of the design space, two separate 
Pareto search trials were done over the entire set and the subset 
of passing designs, respectively.  

A. Trial 1: Entire Design Space 

Employing MESMOC on the entire design space resulted in 
none of the Pareto optimal points discovered after more than 
1000 iterations. Due to the sparsity of valid designs only 50% of 
the simulated parameters passed the constraints, highlighting the 

difficulty of this algorithm with a highly constrained design 
space. Interestingly, the best Pareto front was found within the 
first 100 iterations. Fig. 3 shows these results compared to the 
brute force method. The most optimal designs are located at the 
bottom left corner, as the axes are the two objectives to 
minimize. 

B. Trial 2: Valid Design Space 

By allowing MESMOC to search the subset of valid design 
parameters, it discovered all 5 points of the Pareto front in only 
270 iterations. This implies that 1% of the iterations are required 
compared to the brute force. This considerable reduction in ML-
based iterations still retains the search accuracy. 

Similar to Fig. 3, a mass vs. energy plot in Fig. 4 shows the 
results of valid designs from the brute force approach along with 
the points MESMOC tested. A few points are numbered to show 
the iteration steps of the ML search. The set of points considered 
as the Pareto front can be seen in Fig. 5, a close up of the optimal 
design region of the mass vs. energy plot. Fig. 5 also includes 
the Pareto front found in Trial 1 to show its distance from the 
true Pareto front.  

Note that in these plots the discrete boundaries seen on the 
distribution of brute force points are due to a few factors: 1) Fig. 
3,4,5 show only valid design points and many designs are not 
valid due to the temperature and DOD constraints, or an inability 
to provide sufficient voltage to the motor to maintain the 

 
Fig. 5. Mass vs energy plot showing a subset of the designs found by brute 

force, MESMOC, and the ML discovered Pareto fronts. The iteration number 

of the Pareto points for trial 1 are included. 

Fig. 6. Percent of designs which pass all constraints for motor sizing 
parameters (top) and battery sizing parameters (bottom). 



necessary RPM. 2) The energy requirement and vehicle mass of 
n-motored UAVs, all shown in the plot, are inherently different. 
3) The battery parameters, ���������  and ������, cause discrete 

changes to the vehicle mass and therein the total energy used. 

C. Discussion 

In application, the subset of valid designs is unknown to the 
optimization algorithm. However, it serves as a demonstration 
of the capability of MESMOC. In a non-constrained search, 
MESMOC drastically reduces the number of iterations required 
to discover the Pareto front. 

The primary challenge MESMOC has with this multi-
objective optimization is the quantity of invalid points in the 
design space. Only 50% of the points sampled by the algorithm 
were valid, with an unsuccessful discovery of the true Pareto 
front after more than 1000 evaluations. The ratio of valid designs 
for a given motor size or battery pack configuration, shown in 
Fig. 6, helps realize the sparsity of the design space. 50.1% of all 
motor sizes never resulted in a valid design. Within the motor 
sizes which can result in a valid design, more than half of the 
possible designs will still fail due to other design parameters. 
Similarly, 65.4% of battery pack configurations never resulted 
in a valid design. By removing the chance of sampling an invalid 
design, all Pareto optimal points were found in 270 iterations, 
which is about 0.11% of the entire design space. Therefore, the 
two trials suggest any reduction of invalid designs would 
improve Pareto front discovery. Note that these two trials are 
extreme cases for a majority non-valid design space and an all-
valid design space. 

 

VI. CONCLUSIONS AND FUTURE WORK 

This paper demonstrated the potential of ML algorithms to 
considerably reduce the number of design iterations to discover 
the Pareto front for MOO of power electronic systems. Utilizing 
a physical model simulation, the capability of MESMOC was 
demonstrated with a search through the entire design space and 
the valid sub-space. The unsuccessful Pareto front discovery due 
to 91% of designs failing the constraints showcased the 
limitations of the algorithm. A more robust optimization search 
is enabled by reducing the number of invalid designs within the 
design space. For example, when the search is limited to valid 
designs only, the capability of MESMOC is demonstrated by a 
successful Pareto front discovery with a substantial reduction in 
iterations. This ML enabled search is a promising solution to 
saving many hours of engineering effort to determine an optimal 
power system design, although challenges still exist. 

Future work to investigate the reliability of the search and 
ways to improve full Pareto front discovery is under way. A 
reduction in the number of invalid points in the design space is 
expected to increase this discovery. Additional work will 
improve the physical models. The simulation currently utilizes 
only static component models of the power system. Dynamic 
models of each power system component are to be added, which 
will allow for a more detailed analysis of system behaviors such 
as current and voltage transients, motor controls, and so on.  
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