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Abstract – Heavy-duty commercial electric vehicle (HDEV) 
charging stations, such as for freight trucks, must handle large 
peak power demands. Installing on-site energy storage can reduce 
the peak charging demand to avoid expensive and oversized utility-
managed distribution equipment. To ensure optimal design of 
charging infrastructure, the trade-off between energy storage size 
and grid equipment ratings should be considered. This paper 
presents a bi-level multi-objective optimization framework to 
discover Pareto optimal designs, under the constraint of optimally 
sized power electronic converters and realistic power loss models. 
Under these considerations, the bi-level approach can greatly 
simplify the design process by breaking up charging station 
optimization into a system-level problem and multiple converter-
level problems. Using industry-based HDEV arrival times and 
charging conditions, this bi-level approach is demonstrated for a 9-
port charging station. The resulting Pareto front showcases 
equipment sizing trade-offs that are necessary for informed 
charging infrastructure development decisions. The bi-level 
optimization Pareto front is compared the Pareto fronts of 
traditional, fixed efficiency converter models. 
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I. INTRODUCTION 

The transition to heavy-duty commercial electric vehicles 
(HDEV), such as Class 8 “18-wheeler” trucks, in the near future 
requires major infrastructure development to ensure charging 
demands are met. With battery sizes larger than 400 kWh, a 
single HDEV will require charging rates of 400 kW to 1 MW+ 
[1]. For a multi-port charging station, the peak load can reach 
well into the MW range. These large peak ratings may result in 
expensive and oversized utility-managed distribution equipment. 
An increasingly common solution to reduce grid infrastructure 
investments is to offset the peak demands with an on-site energy 
storage system (ESS), where the ESS is recharged at times of 
low demand and discharged during high demand. It is therefore 
beneficial to consider the trade-off between ESS size and grid 
equipment ratings in the design of an HDEV charging station 
(HDEVCS). 

Energy storage sizing for light-duty electric vehicle 
charging stations has been researched extensively in the 
literature (see [2]-[7] for a few examples with varying 
objectives), but there is a relative paucity of research focused on 
HDEVCS design. Charging station topologies are expected to 
be similar for light- and heavy-duty vehicles; on-site energy 
storage and connection to a utility-managed grid require power 
electronic converters to supply the charging power, regardless 
of a DC or AC architecture [10],[11]. However, their charging 

loads are very different. An HDEV requires much larger 
charging power and their arrival times tend to be densely 
clustered within a few periods per day [1], resulting in a large 
peak power demand and long periods of infrequent charging. 
This increases the challenge of peak power shaving, where a 
larger on-site energy storage is needed to achieve a comparable 
peak power demand of a light-duty electric vehicle charging 
station. 

Another consideration where the existing literature neglects 
for ESS sizing is power converter losses. While [5]-[7] do 
account for some losses, only fixed or near-ideal efficiencies are 
assumed. In an actual system, power converter efficiency is not 
constant and operates with varying efficiencies dependent on the 
load. Additionally, power losses are more apparent when 
managing the high power levels of an HDEVCS, where 
semiconductor device ratings and thermal management become 
limiting factors to converter operation. 

Considering realistic power losses requires detailed 
modeling of the power electronics, and the extra details 
significantly slow down the model-based simulation design 
process. For a system level study where converter design or 
performance details may be unknown at the time, abstracting to 
a near-ideal charging station can greatly simplify the ESS sizing 
procedure. However, this abstraction leads to the loss of 
important design considerations in addition to inaccurate power 
losses, such as optimizing the nominal DC bus voltage and ESS 
voltage/current ratings. Ignoring these system design 
considerations through idealized operation can result in 
potentially undersized ESS or grid equipment. 

In this paper, a bi-level multi-objective optimization 
framework is presented for HDEVCS design that 

 
Fig. 1. Bi-level optimization interface between system-level (upper) and 
converter-level (lower) problems.  



 

accommodates power conversion losses and additional station 
design parameters. The optimization framework results in 
Pareto optimal HDEVCS designs, capturing the trade-off 
between ESS sizing and peak grid-side support under the 
assumption of optimally sized power converters. A bi-level 
hierarchy breaks down design into upper and lower levels with 
simpler optimization problems, where the upper-level decisions 
act as fixed system parameters for the lower-level [8], and the 
lower-level converter optimal design then serves as a constraint 
to the upper level (see Fig. 1). The bi-level hierarchy allows 
detailed power electronic design decisions to stay at the lower-
level, without adding significant complexity to the upper-level. 
By optimizing each power converter at the lower-level, the 
upper-level optimization can focus on the design decisions of 
the charging station as a whole. An overview of the HDEVCS 
and models is first given in Section II. Then Section III presents 
the bi-level optimization framework setup, objectives, and 
constraints. Demonstration and discussion of charging station 
optimization, including a comparison to simulations using fixed 
efficiency power converters, are presented in Section IV. 
Section V provides a conclusion and future research 
considerations.  

II. CHARGING STATION MODEL DEVELOPMENT 

The charging station architecture designed in this paper can 
be considered as a DC microgrid with a single connection to the 
main grid, on-site ESS, and multiple charging ports connected 
to a common voltage bus. A high-level diagram of the charging 
station is shown in Fig. 2. Note that, while included in Fig. 2, 
the grid-connected AC/DC converter is not explicitly modeled 
in this analysis, as the focus is within the DC microgrid.  

Simulation of the station begins with the HDEV charging 
demands. A power management controller determines how 
much power is supplied from both the ESS and the grid, 
ensuring the rated power of each converter is not exceeded. The 
power flow from the ESS to the HDEV goes through two 
DC/DC converters, and their power losses are accounted for. 

It should be noted that the bi-level optimization framework 
is not dependent on the specific models presented in this section 
although the models are required to demonstrate the 
optimization. The framework can be used with varying model 
types, charging profiles, arrival data, and controls.  

A. HDEV Arrival and Charging Model 

The arrival time and initial state-of-charge (SOC) of the 
HDEVs are modeled as random processes using probability 
distributions presented in [1], which is derived from real-world 

heavy-duty vehicle telemetry data. A Poisson random process 
with a time-varying mean arrival rate determines when each 
HDEV arrives. The initial SOC of each HDEV is generated 
from a beta distribution with shape parameters 𝛼 = 1.1 and 𝛽 =
3.2 , fitted between 5% SOC and 100% SOC. The charging 
voltage and current load profile is generated using a parametric 
battery model [9], starting with a typical constant current rate 
and limited to a maximum charging voltage and power (CCCV 
charging). Five Monte Carlo samples were generated from these 
distributions, where the normalized HDEV arrival times and 
initial SOC distributions are shown in Fig. 3. Each Monte Carlo 
charging load profile is used for optimization. 

B. Power Management Controller 

The power management controller’s two functions are to 
average out the load power delivered by the grid while also 
mediating the ESS SOC. The controller diagram is provided in 
Fig. 4. The grid’s entire load consists of an averaged HDEV 
charging power 𝑃௟௢௔ௗ(௚), ESS SOC correction power 𝑃ௌை஼ , and 
bias constant power 𝑃௕௜௔௦. 

First, adjusting the length 𝑇௪  of a moving time-window 
average controls how aggressive the averaging is and is a design 
variable. Averaging the total load power 𝑃௟௢௔ௗ  over a specified 
period 𝑇௪ acts as a low-pass filter, reducing the power variation 
and peaks handled by the grid. Then the ESS SOC correction 
regulates the charging power of the ESS, where a lower SOC 

(a) 

(b) 
Fig. 3. (a) HDEV arrival times and (b) initial SOC normalized from five Monte 
Carlo samples generated from the probability distributions. 

 
Fig. 2. High-level diagram of heavy-duty electric vehicle charging station DC microgrid. 



 

correlates to a larger charging power. The intensity of the SOC 
correction is dependent on the total stored energy in the ESS 
𝑊ாௌ  and a correction factor time constant 𝜏ௌை஼ . The time 
constant is chosen to prevent the ESS SOC from exceeding the 
max SOC while no HDEVs are charging (i.e., when 𝑃௟௢௔ௗ = 0). 
The last component of the grid’s load power controller is a bias 
constant 𝑃௕௜௔௦ . Design of the station assumes the expected 
number of HDEV’s per day is known, and therefore the 
expected total energy. 𝑃௕௜௔௦  is set so that the expected total 
energy is delivered throughout an entire day. For the Monte 
Carlo samples generated from the distributions in Section II-A, 
the actual total load energy will vary from the expected value. 

Two saturation blocks are included within the power 
management controller. The first prevents 𝑃௟௢௔ௗ(ாௌௌ)  from 
dropping below zero, which otherwise would induce additional 
loading on the grid. The other saturation block constrains 𝑃ாௌௌ 
to be within the ratings of the ESS DC/DC converter.  

C. Energy Storage Model 

A Li-ion battery pack serves as the on-site energy storage. 
The same battery model as the HDEV charging model is used 
[9], where the electrochemical dynamics of the battery is 
modeled through RC parallel networks. The battery pack 
consists of battery modules in series 𝑁௦ , and each module 
contains Li-ion cells in parallel 𝑁௣. The battery pack voltage can 
be adjusted by varying 𝑁௦ while the total energy stored is the 
product of 𝑁௦, 𝑁௣, and the cell capacity. 

D. DC/DC Converter Model 

Dual active bridge (DAB) DC/DC converters are used for 
all power conversion stages in the charging station. DAB 
converters are often used in DC microgrids as they provide 
galvanic isolation, high efficiency under heavy loads, and high 
power density [10]. A steady-state power loss model is 
developed based on [12]-[14]. DAB conduction losses are 
calculated using (1), where 𝐼௅(௥௠௦) is the rms current through the 
transformer leakage inductor, 𝑅௅ is the transformer resistance, 
and 𝑛௧ is the transformer windings secondary to primary ratio. 
𝑅௣(௢௡)  and 𝑅௦(௢௡)  are the SiC MOSFET drain-source on-
resistances of the primary and secondary H-bridges. The 
inductor rms current is calculated using (2), where the peak 
inductor currents 𝐼1 and 𝐼2 are found with (3) and (4), 𝑓

𝑠𝑤
 is the 

converter switching frequency, and 𝑑  is the duty ratio 
representing the phase shift between the primary and secondary 
waveforms [14]. Note that 𝐼𝐿(𝑟𝑚𝑠)  is the leakage inductance 

current referred to the secondary side and is why 𝑅𝑝(𝑜𝑛)  is 

scaled by 𝑛𝑡 in (1).   
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The high efficiency operation of a DAB converter is largely 
attributed to their zero-voltage switching (ZVS) capabilities that 
cause switching losses to be negligible under certain load 
conditions. To achieve ZVS conditions, the phase shift 𝑑 
between the primary and secondary waveforms is constrained 
by (5) and (6), respectively [14]. Where 𝐶௣(௢௦௦) and 𝐶௦(௢௦௦) are 
the output capacitances of the primary and secondary switches, 
and 𝑀 = 𝑉௢/𝑛௧𝑉௜௡. These ZVS conditions act as constraints to 
the DAB design optimization and therefore switching losses are 
assumed to be zero. The large power ratings required by 
converters in a HDEVCS can be realized by combining multiple 
DAB converters in parallel, denoted by 𝑁஽஺஻ . The power 
demand of the DAB is then divided equally among the 𝑁஽஺஻ 
converters. 
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III. BI-LEVEL OPTIMIZATION FRAMEWORK 

Finding Pareto optimal designs under power converter 
constraints is broken into an upper or system-level problem, and 
multiple lower or converter-level problems. The nested bi-level 
method is applied [8], where converter-level optimization is 
completed for every system-level design candidate. Prior to 
evaluating a system-level design, the design variables are sent 
to the converter-level and serve as design specifications that the 
converters are optimized for. Once the optimal converter 
designs are found, the converter parameters are shared with the 
system-level where the entire charging station is simulated (see 
Fig. 1). This process repeats for every design candidate picked 
by the system-level during optimization. 

In a bi-level framework, it is possible that a certain set of 
upper-level design variables results in an infeasible lower-level 
design. To circumvent this, system-level design bounds are 
selected to avoid converter infeasibility from exceeding device 
ratings, and the parallelization of power converters allows for 
any power rating to be achieved. 

A. System-Level Optimization 

The objectives at the system-level are to minimize required 
ESS power capacity 𝑊ாௌ and minimize peak grid power 𝑃௚(௣௞), 
which relates to the utility infrastructure requirement. These two 
objectives are inherently conflicting as a larger ESS can allow 
more smoothing of power from the grid. This results in a Pareto 

Fig. 4. Power management controller diagram. 



 

front showing the trade-off of the two objectives. The design 
constraints are minimum and maximum bounds on the ESS 
SOC, 𝑆𝑂𝐶௠௜௡  and 𝑆𝑂𝐶௠௔௫, and terminal voltage, 𝑉ாௌௌ(௠௜௡) and  
𝑉ாௌௌ(௠௔௫). The design variables for this level should be limited 
to high-level details that affect the overall performance of the 
system. Therefore, the design variables are ESS battery pack 
modules in series 𝑁௦, cells per module 𝑁௣, DC bus voltage 𝑉௕௨௦, 
and the controller time-average window size 𝑇௪ . To simplify 
notation, system design parameters are grouped into a vector 𝒙௦. 
The system-level problem is formally defined as (7). It is subject 
to the optimal design parameters of both converter-level 
problems, represented by the last two rows of (7). 

min
𝒙ೞ,𝒙೎భ,𝒙೎మ

{ 𝑃௚(௣௞), 𝑊ாௌ}

𝑠. 𝑡. 𝑆𝑂𝐶௠௜௡ ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶௠௔௫

𝑉ாௌௌ(௠௜௡) ≤ 𝑉ாௌௌ ≤ 𝑉ாௌௌ(௠௔௫)

𝒙௖ଵ ∈ argmin{𝑒𝑞. (11)}

𝒙௖ଶ ∈ argmin{𝑒𝑞. (12)}

  (7) 

B. Converter-Level Optimization 

For nested bi-level optimization, the lower-level problem 
can contain either a single or multiple objectives. However, 
seeking multiple objectives at the converter-level would result 
in multiple converter design options that the system-level must 
choose from, requiring further system design evaluations. For 
this demonstration, the converter design problem is formulated 
in a way to avoid multiple objectives. Converters are often 
optimized for an objective of maximum efficiency in practice, 
where a conflicting objective or limiting constraint would be 
necessary to avoid simply oversizing the converter. Such 
conflicting objectives could be to minimize cost or weight. 
However, weight is of little concern for a stationary power 
converter. To avoid introducing a cost metric into the design 
problem, minimizing the number of converters in parallel 𝑁஽஺஻ 
serves as a representative to minimizing cost. As power loss is 
still a primary concern, a minimum efficiency 𝜂௠௜௡ serves as a 
design constraint. The efficiency constraint considers the 
maximum output voltage and power, so in application the 
operating efficiency may be slightly lower. 

The remaining constraints are the rated power minimum 
𝑃௥௔௧௘ௗ(୫୧୬) and maximum 𝑃௥௔௧௘ௗ(୫ୟ୶), and the ZVS conditions 
given in (5)-(6). These constraints are selected to achieve 
realistic efficiency and proper sizing of the converter. The 
converter design variables are transformer leakage inductance 
𝐿௧ , winding turns ratio 𝑛௧ , switching frequency 𝑓௦௪ , and the 
number of converters in parallel 𝑁஽஺஻ . Converter design 
parameters are aggregated into a vector 𝒙௖ଵ  for the ESS tied 
DAB converter, and 𝒙௖ଶ for the charging port DAB converters. 

The DAB converters power rating is defined as the 
maximum possible power output of the converter given an 
output voltage 𝑉௢, and calculated using (8). The average output 
current is equivalent to the average inductor current 𝐼௅ , found 
with (9) for positive power flow [13], where 
𝑅 = 𝑅௧ + 2𝑛௧

ଶ𝑅௣(௢௡) + 2𝑅௦(௢௡) , and 𝜃 = 𝑅/4𝑓௦௪𝐿௧ . The 
maximum inductor current 𝐼௅(௠௔௫) occurs at the maximum duty 

ratio  𝑑௠௔௫ , given in (10). 𝑑௠௔௫  is found by solving for 𝑑 in 
𝜕𝐼௅/𝜕𝑑 =  0. 

𝑃௥௔௧௘ௗ = 𝑁஽஺஻𝑉௢𝐼௅(௠௔௫)   (8) 

𝐼௅ =
௡೟௏೔೙ି௏೚

ோ
+

௏೚

ఏோ
tanh(𝜃)

+
௡೟௏೔೙

ఏோ
൫1 − 2𝜃𝑑 − sech(𝜃) 𝑒ఏିଶఏௗ൯

  (9) 

𝑑௠௔௫ =
୪୬(ଶ)ି୪୬ (ଵା௘షమഇ)

ଶఏ
   (10) 

For the ESS tied DAB converter, the optimization problem 
is formally defined as  

min
𝒙೎భ

{𝑁஽஺஻}

𝑠. 𝑡. 𝜂௠௜௡ ≤ 𝜂஽஺஻

𝑃௥௔௧௘ௗ(௠௜௡) ≤ 𝑃௥௔௧௘ௗ ≤ 𝑃௥௔௧௘ௗ(௠௔௫)

𝑍𝑉𝑆 𝑒𝑞. (5)

𝑍𝑉𝑆 𝑒𝑞. (6)

  (11) 

and is dependent on the system-level parameters 𝑉௕௨௦, 𝑁௦, and 
𝑁௣. The system-level parameters influence the converters input 
and output voltages, and the minimum rated power. To ensure 
the ESS can supply the rated power at all voltage levels, (9) is 
evaluated using 𝑉௜௡ = 𝑉ாௌௌ(௠௜௡). Similarly, the ZVS conditions 
of (5)-(6) are evaluated at 𝑃௥௔௧௘ௗ(௠௜௡) and 𝑉ாௌௌ(௠௜௡). 

The charging port DAB converters are all sized identically 
and based on system-level parameter 𝑉௕௨௦ ,  HDEV charging 
voltage minimum 𝑉௖௣(௠௜௡)  and maximum 𝑉௖௣(௠௔௫) , and 
maximum charging power 𝑃௖௣(௠௔௫). The optimization problem 
is formally defined as (12). The converter power rating 
constraint uses 𝑉௖௣(௠௜௡) and 𝑃௖௣(௠௔௫). 

min
𝒙೎మ

{𝑁஽஺஻}

𝑠. 𝑡. 𝜂௠௜௡ ≤ 𝜂஽஺஻

𝑃௥௔௧௘ௗ(௠௜௡) ≤ 𝑃௥௔௧௘ௗ ≤ 𝑃௥௔௧௘ௗ(௠௔௫)

𝑍𝑉𝑆 𝑒𝑞. (5)

𝑍𝑉𝑆 𝑒𝑞. (6)

  (12) 

IV. OPTIMIZATION DEMONSTRATION 

In this section, the bi-level optimization framework is 
demonstrated for a HDEVCS with nine charging ports rated for 
400 kW each. The charging station simulation is developed in 
MATLAB/Simulink. System-level optimization uses a multi-
objective genetic algorithm (GA) and converter-level 
optimization is performed using a single-objective GA, both 
provided in the MATLAB Global Optimization Toolbox. The 
system-level GA was configured with a population of 75 
designs and had a maximum generation count of 150, which 
equates to approximately 7% of the entire design space. The 
converter-level GA was configured with a population of 10,000 
designs, with a maximum generation count of 500. However, 
optimization was typically completed with fewer than 200 
generations. System-level and converter-level design variable 
bounds and constraints are listed in Table I. For discussion on 



 

how the design variables impact the charging station operation, 
refer to Section II. The ESS DAB converter 𝑃௥௔௧௘ௗ  constraint 
uses the maximum power rating of a battery cell 𝑃௖௘௟௟ , 
approximated as the max C rating current times the nominal 
voltage. 

Each candidate design is evaluated by simulating the 
charging station for all five Monte Carlo samples (discussed in 
Section II-B), each of a 24-hour duration. The constraints of (7) 
are evaluated for all five simulations, while the maximum 
𝑃௚(௣௞) is used as the objective. An example charging load and 
the power delivered by the ESS and grid, along with the ESS 
SOC, is shown in Fig. 5. In this case, a 12-hour 𝑇௪  is used, 
yielding a peak grid power of 2 MW. 

The resulting Pareto front for the two objectives, minimum 
𝑊ாௌ and 𝑃௚(௣௞) is shown in Fig. 6, where the expected trend of 
increasing 𝑊ாௌ  causing a corresponding decrease in 𝑃௚(௣௞)  is 
observed. The bias constant 𝑃௕௜௔௦ of the grid power controller 
causes the absolute minimum 𝑃௚(௣௞) to be 1 MW (assuming no 
power losses and the average number of EV arrivals), where the 
ESS would mitigate all load changes. Aside from this minimum, 
any peak grid power can be achieved with sufficient 𝑊ாௌ . 
However, reducing the peak grid power to 𝑃௕௜௔௦ will require a 
very large ESS investment due to the nonlinear relation between 
𝑊ாௌ and 𝑃௚(௣௞). In other words, to reduce 𝑃௚(௣௞) by 0.5 MW 
near its lower limit requires two times as much 𝑊ாௌ. While all 
designs on the Pareto front are technically optimal solutions, the 

achieved reduction in 𝑃௚(௣௞)  clearly diminishes with an ESS 
size greater than 15 MWh. This design scenario suggests that 
additional ESS capacity beyond 15 MWh would not be 
economical. 

Fig. 6 also includes the alternative Pareto fronts if the 
converter power losses were modeled with fixed efficiency 
values, which were used mostly in other literature but are 
replaced by actual efficiency numbers in this paper. Since 
efficiency numbers vary between sources found in the literature, 
three fixed efficiencies will be compared to the bi-level 
framework. Instead of running a new optimization procedure for 
each approach, the Pareto optimal designs found from the bi-
level framework are simulated again under the same charging 
station load conditions, this time with fixed efficiency. This 
method of comparison is chosen instead of performing a whole 
new optimization procedure to ensure the variations in the 
Pareto front are clear. If a whole new optimization procedure 
was executed for each fixed efficiency station model, there 
would be no guarantee that each Pareto front would be 
comparable due to the randomness within the GA and the 
absence of ESS voltage constraints. 

The new Pareto fronts using 𝜂 = 95%, 𝜂 = 97%, and 𝜂 =
100%  converter efficiencies are shown in Fig. 6. To avoid 
altering the power management controls, 𝑊ாௌ  for the fixed 
efficiency charging station simulations are configured the same 
as the bi-level simulation. The alternative ESS sizes shown in 

 
Fig. 6. System-level Pareto fronts for the bi-level framework that uses power 
loss models, and an ideal charging station model. 

Table I. Design variable ranges and constraint limits for system-level and converter-level optimization. 

System-level (𝒙𝒔) Converter-level (ESS DAB) (𝒙𝒄𝟏) Converter-level (CP DAB) (𝒙𝒄𝟐) 

Design Parameter Range Design Parameter Range Design Parameter Range 

𝑉௕௨௦ (𝑉) [800:1600] 𝐿௧ (𝑛𝐻) [1:1e6] 𝐿௧  (𝑛𝐻) [1:1e6] 

𝑇௪ (ℎ𝑜𝑢𝑟𝑠) [1:24] 𝑛௧ (#) [0.1:10] 𝑛௧ (#) [0.1:10] 

𝑁௦ (#) [200:400] 𝑓௦௪  (𝑘𝐻𝑧) [100:500] 𝑓௦௪  (𝑘𝐻𝑧) [100:500] 

𝑁௣ (#) [1000:10,000] 𝑁஽஺஻ (#) [30:80] 𝑁஽஺஻ (#) [5:20] 

Constraint Limits Constraint Limits Constraint Limits 

20% ≤ 𝑆𝑂𝐶 ≤ 95% 95% ≤ 𝜂஽஺஻ 95% ≤ 𝜂஽஺஻ 

3.0 𝑉 ≤ 𝑉ாௌௌ ≤ 4.2 𝑉 𝑁௣𝑁௦𝑃௖௘௟௟ ≤ 𝑃௥௔௧௘ௗ ≤ 1.5𝑁௣𝑁௦𝑃௖௘௟௟ 400 𝑘𝑊 ≤ 𝑃௥௔௧௘ௗ ≤ 600 𝑘𝑊 

 

 
(a) 

 
(b) 

Fig. 5. Charging station power demand, (a) ES/grid load distribution, and (b) 
ES SOC for a 24-hour simulation. 



 

Fig. 6 represent the equivalent ESS size, provided each 
approach had an equivalent ESS depth of discharge. In other 
words, the alternative ESS sizes in Fig. 6 are the required energy 
capacity using an ideal ESS and fixed efficiency power 
electronic converters. 

For all Pareto optimal designs, 𝜂 = 97%  and 𝜂 = 100% 
result in an underestimate of the required 𝑊ாௌ, while 𝜂 = 95% 
results in an overestimate. Similarly, 𝑃௚(௣௞)  are universally 
lower than the 𝑃௚(௣௞)  values for 𝜂 = 97%  and 𝜂 = 100% 
compared to the bi-level approach. From Fig. 6, it can also be 
concluded that the changes in objective values between the bi-
level and fixed efficiency approaches cannot simply be 
represented by linear scaling, as the deviation from the bi-level 
Pareto front is not constant. This can be attributed to the power 
loss models used in the bi-level approach that result in non-
constant efficiencies. This comparison to charging station 
simulations using fixed efficiency components demonstrates the 
improvements in optimization and sizing accuracy provided by 
the bi-level framework. 

V. CONCLUSION AND FUTURE WORK 

To independently supply the high peak power demand of 
HDEVCS, grid infrastructure may be subject to much higher 
loads, greatly increasing the investment cost. This peak power 
can be mitigated through on-site ESS that offsets the energy 
during peak hours. Considering the trade-off between ESS size 
and the peak power experienced by the grid is key to charging 
station design. To analyze this trade-off, Pareto optimal designs 
are found using a bi-level optimization framework that 
considers the design and impact of power electronic converters 
within the station. The bi-level hierarchy separates the problem 
of ESS size and peak power minimization from the problem of 
converter design. By incorporating converter design and power 
loss models within the sizing problem can lead to more informed 
design decisions. 
Future work to improve the optimization approach includes 
increasing the number of Monte Carlo simulations, or finding 
an alternative, approximate approach to capturing the variability 
in charging station loads. Converter design can be enhanced by 
including thermal management constraints. A battery lifetime 
constraint can also be added to the system level design problem, 
ensuring the ESS lasts for the desired amount of time. 
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