
  
Abstract—Big data is driving future renewable energy 

research and, in particular, has implications for fast dynamic 
control of power electronics. This paper discusses the collection 
of a full year of rooftop 5 kHz solar data. The database includes 
open-circuit voltage, short-circuit current, and maximum power 
information. Data reduction involved remapping of missing 
intervals, correction of unsynchronized metering, and 
regularization to go from more than eighteen months of raw data 
to a consistent full-year database.  The results are made available 
at the full sampling rate. Data analysis shows how much 
downsampling can be employed without loss of useful 
information about variability.  The downsampled databases are 
also made available. Given prior work that typically limits 
sampling rates to 1 Hz or takes fast samples over short intervals, 
the databases provided here support much more comprehensive 
examination of photovoltaic energy variability. 

Index Terms—photovoltaic data, renewable energy 
variability, solar, big data, data analysis, fast dynamics, open 
circuit voltage, short circuit current, maximum power point, 
energy conversion, power converters 
 
 

I. INTRODUCTION 

Solar energy generators can exhibit rapid power changes. 
This unpredictability threatens the stability and reliability of 
the electric grid [1]. However, there are limited data available 
to quantify actual variability. The objective of this paper is to 
prepare and provide databases of measured point-source 
photovoltaic (PV) production, obtained at rates fast enough to 
capture the full range of operating dynamics.  The paper seeks 
to process the data introduced in [2], [3], [4] into formats 
suitable for broad use, and to link these data for public access.  

To understand PV variability, long-term real-life solar data 
are needed to identify relevant dynamic behaviors and time 
scales. Some of the time scales are obvious (diurnal and 
seasonal details of sun positions), but only fast data can support 
evaluation of all relevant time scales. The effort described here 
sets up a solar data collection system and applies a sampling 
rate intended to be much faster than expected dynamic 
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behaviors. The resulting data are imperfect, so the paper 
describes the processing methods used to derive usable 
metrics, and the assumptions made as a complete year-long 
database is prepared.  

A key focus of this work is to quantify PV variability at 
various time scales and ensure that all possible dynamics are 
captured.  For example, a shadow moving across a 10 cm solar 
cell at 100 m/s (equivalent to 10 cm/ms) would seem to be an 
extreme situation; sampling theory constraints imply that 
sampling rates faster than 500 µs should capture even this case.  
Previous work has reported dynamic solar data with sampling 
rates ranging from 1 min [5] to 20 s [6]-[7] and topping out at 
about 1 Hz [8]. These data would not seem to be fast enough to 
capture the full possible dynamic range. Here, a sampling rate 
of 200 µs is used for short-circuit current. The objective is to 
sample at a rate at least twice as fast as the most rapid plausible 
dynamics. 

 
Fig. 1. Solar data acquisition hardware setup [4]. 

A few recent papers [2], [3], [4] have employed the database 
presented in this paper. They have explored, for example, how 
fast data can provide insight about power converter maximum 
power point tracking (MPPT) update rates, or how to optimize 
solar production for various weather conditions. Additional 
publications [9], [10] take advantage of these data for 
solar-tied energy efficient buildings and energy storage related 
research. Research utilizing external solar databases has also 
yielded advanced real-time estimation [11] and automatic 
detection [12] methods. These papers generally use only a few 
representative days of solar data, whereas the database offers a 
full year of results. Given emerging trends of data-driven 
energy applications and enabling data storage platforms, it is 
timely to publish comprehensive long-term (one year in this 
case), measured fast solar data. In addition, down-sampled 
versions have been prepared to meet a range of user needs. 
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Fast data collection over intervals of weeks or months offers 
its own challenges. Software glitches, file access errors, 
network dropouts and long-term timing synchronization errors 
lead to various imperfections and inconsistencies. In this 
particular project, raw data were gathered over an interval of 
about 18 months.  The extra information supports a variety of 
strategies that yield a consistent full year end result. It is 
important to discuss the methods and assumptions that have 
been employed to produce the final databases.  

II. SOLAR DATA ACQUISITION  

Raw PV data was collected, as described in [4], over a span 
of 18 months. Two identical rooftop-mounted PV panels, 
placed side by side, with nominal ratings of 20 W, were 
connected to two different meters. One meter was a Keithley 
2420, set to perform a sweep across the panel current-voltage 
(I-V) curve every 2.5-3.9 s. The other was an Agilent 34410A 
that recorded short-circuit currents on sampling intervals of 
about 200 µs. The hardware setup is depicted in Fig. 1. The 
location was a rooftop at approximately north latitude 
40.1108°, west longitude 88.2284°, the roof of Everitt 
Laboratory in Urbana, Illinois.  This is about 14 km from the 
Bondville, Illinois site (site number 725315) in the U.S. 
national solar database [13]. The sweeps from the Keithley 
(“slow”) meter enable the calculation of open-circuit voltage 
(VOC), short-circuit current, and maximum power point (MPP) 
voltage, current, and power (VMPP, IMPP, PMPP). The Agilent 
(“fast”) data provide rapid short-circuit current readings (ISC) 
that can be used to calculate high-frequency changes in the 
available power. The Keithley meter records slow short-circuit 
current data for verification of measurement accuracy against 

the Agilent meter and as a check of instrument 
synchronization. 

Sampling at 5 kHz might seem excessive, but the objective 
is a sampling rate that can capture every possible transient 
without aliasing. Common sources of rapid transient creation 
might be fast-moving clouds, birds, or even airplanes casting 
flickering shadows on time scales much less than 1 s. Post 
processing will be employed to determine the likelihood that 
aliasing has been avoided. Atmospheric noise and local 
perturbations have the potential to induce fast dynamics.   

III. DATA PROCESSING AND CLEAN-UP  

Typical problems encountered in the raw data are intervals 
of local missing data, often linked to temporary equipment 
downtimes, system software updates, or similar system-side 
glitches. Here, missing data were detected by scanning the raw 
data for out-of-sequence time stamps. For example, Fig. 2 
shows output data over several consecutive days with red 
boxes indicating missing segments.  

A fundamental advantage for PV data is that there is a long 
daily interval with zero power. This means that missing data 
can be corrected by inserting data from a different year, on a 
complete day basis. Here, whole days are used even when 
partial data are available on existing days. This avoids 
introducing sudden changes or inconsistent weather pattern 
contrasts. Substitution was made according to the following 
rules:  

1) Use a complete day if available from the same date in a 
different year – 4 days in this category; 

Fig. 2. A sample of consecutive days indicating missing data segments. 

 

Fig. 3. Two sample windows of data alignment for synchronization. 

 



2) If this is not possible, use a complete day from a date 
equidistant from the winter or summer solstice – 3 days in this 
category;  

3) If neither is available, use a complete day with similar 
historic weather patterns and temperatures close to the original 
date. In this case, a scaling factor from the substitute is chosen 
to account for annual changes in solar irradiance if the problem 
day is mostly missing, or scaled to match the original data if 
valid partial data are present – 5 days in this category.  

Notice that none of these rules involves interpolation or 
extrapolation.  The final result is indeed a full year of actual 
measured data, with sequenced time stamps, preserving the 
data and all of its dynamics.  

After missing data substitutions, data synchronization is 
required because the time stamps on slow and fast meters are 
not fully aligned. One challenge is incompatible file length 
with varying numbers of data points per file. For example, the 
fast short-circuit current data are recorded in segments of 
about one minute.  The actual rates vary between 5000 Hz to 
5250 Hz and total time stamps span between 56 and 60 s for 
each file. Therefore, synchronizing to a constant 5 kHz 
sampling rate causes time offset accumulation. To remedy 
this, the computer program that scans the data utilizes its 
master clock to increment with mean period Tmean between 
data samples as determined by 

          (1)

   (2) 

Since it is expected that the short-circuit current will be the 
same in both the fast and slow data at a given instant, it is 
reasonable to adjust the slow meter time stamp to better match 
the time stamp of the fast meter. This is accomplished by 
maximizing the correlation between the two current 
measurements for each day. The timestamp offset for the slow 
meter will be the value of toffset that maximizes (2), where n is 
the total number of points in a day, and m is the maximum 
sample offset to be considered. Two example windows of fast 
meter data, slow meter data, and timestamp-corrected slow 
meter data are shown in Fig. 3. These samples depict results 
after alignment of data from the two separate meters. 

Following data substitution and time synchronization, the 5 
kHz data for short-circuit current are in an immediately usable 
form. The slow I-V curve data require processing to obtain 
short-circuit current, open-circuit voltage, MPP current, MPP 
voltage, and MPP power values. Slow short-circuit current 
data consists of three data points near 0 V, indicated by the 
square symbols in Fig. 4. Open-circuit voltages are obtained 
from the sweeps that cross the voltage axis, shown as the 
triangle symbols. In Fig. 4, the MPP region is taken from 
among 100 points across the knee of the I-V curve for MPP 
voltage, current, and power calculations. However, as can be 
seen in Fig. 5, the measurements contain a combination of 
high-frequency fluctuations and measurement noise. Simply 

picking the raw point with the peak value tends to yield 
misleading and inaccurate MPP values. To alleviate this, a 
4th-order polynomial fit is applied to each sweep for 
smoothing. Implementing a 4th-order fit instead of the 
2nd-order polynomial used in [4] increases the regression 
coefficient from R2 = 0.95 to R2 = 0.995 for a typical MPP 
sweep. Rather than solving for the peak algebraically, it is 
computationally efficient to evaluate the polynomial function 
at 500 equally spaced points over the same range of voltages 
as the original MPP region and then select the maximum from 
this discretized set.  

There are data instances when the polynomial keeps 
increasing or decreasing monotonically because the slow 
meter sweep has missed the MPP for some reason. In such 
cases, the local maximum, usually an endpoint, is chosen as 
the MPP. An example is provided in Fig. 6, which shows three 
consecutive MPP sweeps.  In this case, the middle sweep has 
failed to span the peak power value. This failure is likely due 
to a sudden drop in irradiance following a previously 
increasing trend. In this example, the MPP power at the 
specific moment in time is taken to be the power at the left end 
of the middle curve.  

       
Fig. 4. I-V sweep showing short-circuit current, open-circuit voltage, 
and MPP regions.  

 

Fig. 5. I-V sweep for MPP and polynomial least squares fits showing 
max power curves. 



 

Fig. 6. Three consecutive MPP power curve sweeps with the middle 
sweep missing the MPP. 

 

Fig. 7. Rapid transient during MPP sweep showing poor fit 
polynomial approximation. 

   Sometimes the fluctuations are so fast that within a single 
MPP sweep of the slow meter, the polynomial approximation 
generates multiple peaks. Fig. 7 shows such a scenario, where 
the polynomial has produced a poor approximation of the raw 
data. In cases like this one, the maximum is taken directly from 
the raw sweep data rather than from the polynomial fit.  
 

IV. WHAT SAMPLING RATE IS FAST ENOUGH?  

The discussion of this section starts with evaluation of 
whether a 5 kHz sampling rate is sufficiently fast to capture all 
meaningful PV system dynamics, followed by investigation of 
down-sampling rates that would preserve dynamic 
information in a compressed database. To determine whether 
the sampling rate is sufficient, one metric is to show that the 
data are smooth, do not contain discontinuities, and in general 
can be represented sufficiently at a bandwidth of about 1 kHz. 
To explore this, one sample day with an especially high 
variability is closely investigated in Fig. 8. On this day, the 
solar panels experienced intermittent cloud coverage, 
resulting in rapid ramp rates as seen in the top image of Fig. 8. 
The subsequent images depict subsets of data to demonstrate 
that during the most variable moments, all dynamics are 
captured. The bottom image, selected as an interval of 
extremely fast variation, still contains about 100,000 data 
points. There are many points even during the quickest 
variations, and the data provide a smooth re-creation of the 
actual irradiance change.  

  
Fig. 8. A sample day containing rapid transients and subsequent 
zoom-in windows. 

Fig. 9. Sample solar data containing multiple rapid dips in power output (circled). 
 



As the database was explored for the fastest dynamics, the 
most likely explanations for infrequent rapid changes were 
flickering shadows of birds or airplanes. Large birds such as 
Canada geese are active in the area, and their fast-moving 
shadows have been observed to cross the panels. To help 
identify narrow spikes, a high-pass Butterworth filter was 
applied to the raw short-circuit current data, as shown in Fig. 9. 
Four power dips of interest are circled there. Zooming in on 
these circled regions, as in Fig. 10, reveals fine details of these 
transients.  Instance #2 on the left, for example, lasts about 70 
ms, and therefore contains about 350 samples. Instance #4 on 
the right most likely captures the details as a fast-moving small 
shadow crosses the four columns of solar cells on the panel.  
This transient lasts about 35 ms and includes about 175 
samples.  The inferred motion is about 10 cm in 6 ms, or about 
17 m/s.  Even these extreme dynamics have bandwidth below 1 
kHz. Fig. 10 shows what will happen with 100 Hz 
downsampling for these two fast changes.  The 70 ms interval 
is covered well.  The 35 ms interval still yields a PV energy 
source estimate very close to the actual value, although it 
cannot track the fast column-by-column changes in the raw 
data. 

The discussion so far provides evidence that a sampling rate 
of 5 kHz captures realistic PV panel dynamics up to the fastest 
changes. The results offer, for the first time, a basis for 
determining suitable PV sampling rates.  Can the database be 

downsampled to achieve compression without loss of 
information? Signal content was evaluated with fast Fourier 
transforms (FFT) for various test days to confirm the frequency 
content.  Results for three days are shown in Fig. 11.  In these 
traces, small peaks can be seen at 60 Hz and at 180 Hz, 
indicating that power line interference is detectable. 
Otherwise, the FFT results suggest that measurement accuracy 
and other factors yield a noise floor that is crossed very close to 
100 Hz.  This is an indication that 200 µs sampling is indeed 
capturing all dynamics up to the resolution limits of the meters. 
The FFT results presented suggest that, other than the grid 
harmonic at 180 Hz, frequency content above 100 Hz is below 
one part in 10 million. At these scales, frequency content is 
effectively negligible, limited by measurement accuracy.  

Downsampled data imposes a certain risk of error. In this 
case, the objective is to represent the amount of solar energy 
that can be captured by a PV system given a sufficiently fast 
MPPT control. To determine such missed energy, and based on 
the rate results above, an MPP update rate of 200 µs is taken as 
a baseline, equivalent to an unlimited continuous update 
control.  A hypothetical MPPT process is then applied to the 
data. The amount of energy missed at each time step is 
summed according to 

 

Fig. 10. Zoomed-in views of two most significant circled instances. 

Fig. 11. Full-day FFT of 5 kHz short-circuit current for three different days.  
 



 

 
           (3) 

where ISF is a scaling factor between IMPP and ISC [3], ST is the 
total number of samples in the selected data segment, and SU is 
the number of samples per MPPT control update. This is 
normalized to the result at 5 kHz to represent the missed 
energy fraction. 

Fig. 12 summarizes the results of this calculation for  ten 
different 10-day periods. The mean is shown in bold. For 
example, if the MPPT control updates at 100 Hz, about 1 part 
in 4000 of the available energy will not be captured compared 
to the baseline case. This is about 63 mW for a 250 W panel.  It 
is likely to be an overestimate, since the noise floor suggests 
that data resolution is no better than one part in 10,000. Indeed, 
uncertainty in power converter ripple makes it unlikely that 
any MPPT control can extract as much as 99% of the available 
incident radiation.  A 1 Hz update rate sacrifices an average of 
about 1 part in 250 in terms of energy production, about 16 
times as much as a 100 Hz update rate. An MPPT controlled 
converter updating at 100 Hz should be able to capture an extra 
1 W on average from a 250 W panel compared to a 1 Hz update 
rate. Fig. 12 can be used to analyze, in general terms, the 
economic opportunity cost associated with increased update 
rates.  An update rate of 1 Hz yields a mean energy fraction 
sacrifice of 0.41%, and 100 Hz update yields a sacrifice of 
0.025%.  The extra effort of a 100 Hz update rate can be valued 
at about 0.38% of the value of panel energy production.  

 A general result from the FFT results and from Fig. 12 is that 
downsampling to 100 Hz will capture almost all the dynamics 
of interest.  It should be possible to use a downsampled 100 Hz 
version of the database (a compression of 50:1) to analyze and 
compare control strategies for energy capture and grid 
interfacing without introducing uncertainty higher than about 
±0.02%.   

V. DATA ARCHIVES  

The process of gathering raw PV data at time intervals of 
about 200 µs and post-processing to recover a full year of 
measured data at this rate have been discussed. A further 
day-by-day downsampled version, converted to 10 ms 
intervals, has been discussed. The end results are two 
databases, available for public use: 

1.  The original, raw, data, including both fast (short circuit, 
200 µs) and slow (sweep, 2.5-3.9 s) information for 18 
months. These show intervals of missing points, but are 
provided to allow potential users to reproduce any new 
work. 

2. Data provided at consistent 10 ms (short circuit) and 2.5-3.9 
s (sweep) time bases for 365 days, after being corrected and 
recovered. The dataset includes short-circuit current, 
open-circuit voltage, and MPP voltage, current, and power 
extracted. 

The database is available as open access at DOI: 
10.21227/5s8f-ha92, hosted by IEEE DataPort. The DataPort 
page includes detailed download and usage instructions. 
Sample screenshots of the data archive, after download and 
extraction, are shown in Fig. 13 and Fig. 14. 

VI. CONCLUSION  

A point-based PV dataset was gathered at a sampling rate of 
approximately 5 kHz. It has been confirmed that this rate is fast 
enough to capture even the most extreme dynamics of a PV 
system. The raw data have been post processed in a manner 
that yields a full year of measured data. It has been shown that 
downsampling to rates as slow as 100 Hz can be performed 
with minimal loss of fidelity. The measured data and 
downsampled 100 Hz database are made available for public 
use.  

Fig. 12. Modeled energy sacrifice of ten 10-day samples with varying MPPT update rates 
and mean in bolded black. Entries in the legend represent the last day in each 10-day series. 



 
Fig. 13. Screenshot of the downsampled short circuit current data 
archive text file from an example date and time. 

 
Fig. 14. Screenshot of the sweep data archive text file from an 
example date and time. 
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