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Abstract—Wireless power transfer (WPT) has proven to be an 
effective solution for electric vehicle charging. As two main-
stream near-field WPT technologies, inductive and capacitive 
power transfer (IPT and CPT) have many similarities. This pa-
per aims to explore the remaining opportunities in CPT systems, 
not yet reported in existing literature, based on duality with the 
mature IPT technology. First, a generic modeling method based 
on two-port network theory is proposed, which contributes to 
unified modeling and analysis for both inductive and capacitive 
couplings. Then, power transfer mechanism of IPT and CPT 
couplers is compared, and unified transfer efficiency is derived, 
promoting CPT theory developments. Last, the duality between 
existing IPT and CPT circuits is demonstrated in two aspects: 
compensation circuit configuration and resonant relationship. 14 
CPT topologies are derived based on duality with the existing 7 
mainstream IPT circuits, of which 11 circuits do not exist in lit-
erature, offering future opportunities in CPT. Detailed compari-
son and evaluation of the derived 14 CPT circuits are conducted, 
and high-performance circuits are recommended. As a demon-
stration, a case study of a 2.1kW 3MHz CPT system is imple-
mented in hardware based on the newly proposed M1-SS topolo-
gy. This example system achieves a peak efficiency of 93.19% 
with the predicted circuit properties of load-independent con-
stant-voltage (CV) output and zero-phase-angle (ZPA) property. 

Index Terms—Capacitive power transfer, inductive power 
transfer, duality, two-port parameter.  

I. INTRODUCTION 

Wireless power transfer (WPT) technology has shown great 
potential in electric vehicle (EV) charging [1]-[3], which gets 
rid of troublesome cables and can utilize underground instal-
lation, allowing higher space utilization, convenience, and 
safety over conventional conductive charging [4]-[6].  

Inductive power transfer (IPT) and capacitive power trans-
fer (CPT) are two mainstream WPT technologies for EV 
charging [7]-[9]. In principle, IPT achieves power transfer via 
an alternating magnetic field generated by a pair of mutually 
coupled coils while CPT relies on an alternating electric field 
of two pairs of metal plates, shown in Figs. 1 and 2, respec-
tively. IPT and CPT distinguish each other in couplers and 
fields. Meantime, similarities are also identifiable [10], typi-
cally in the compensation circuit designs. For example, in an 
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IPT system, there are four basic two-capacitor compensation 
circuits, namely, series-series (SS), series-parallel (SP), paral-
lel-series (PS), and parallel-parallel (PP) [11]-[14]. Likewise, 
four basic two-inductor compensations have also been pro-
posed for a CPT coupler with same configurations [15]-[18]. 
In another description, CPT technology could be considered 
as a reflection of IPT in a special “mirror”. Such a property is 
named duality between IPT and CPT systems in this paper. 

IPT has been developed for over 100 years and achieved 
success in EVs, medical equipment, and consumer electronics 
[19]-[21]. However, the bulky and expensive IPT coupler and 
the eddy current loss limit practical applications [22]-[23]. 
CPT is proposed within 20 years [24] with advantages of light 
weight, no eddy current loss, and good misalignment toler-
ance, which can be applied where the IPT is not convenient, 
such as in underwater applications and metal-intensive motor 
scenarios [22], [23]. However, due to a short history, the basic 
theory research and circuit opportunities of CPT technology 
are still insufficient. Besides, the existing research that ex-
plores feasible CPT circuits [17]-[18], [25]-[28] is limited to 
one particular topology, lacking systematic discovery and 
analysis of all applicable high-performance CPT circuits. This 
paper hence presents a methodology to comprehensively ex-
plore remaining CPT opportunities that are not yet reported in 
literature based on the duality between CPT and mature IPT 
technologies.  

The paper’s main contributions are summarized as follows. 
First, a generic modeling method based on the two-port net-
work theory is proposed, which contributes to a standardized 
and unified modeling method for both IPT and CPT systems. 
Second, the power transfer mechanism of IPT and CPT sys-
tems is compared in detail, and unified transfer efficiency is 
derived for both couplers, revealing their similarity and pro-
moting the CPT theory development. Third, the duality be-
tween IPT and CPT circuits is demonstrated in terms of the 
compensation circuit configuration and resonant relationship. 
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Fig.1 Structure of an inductive power transfer system. 
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Fig.2 Structure of a capacitive power transfer system. 
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14 CPT topologies can be derived in duality with existing 7 
mainstream IPT circuits, of which 11 CPT circuits are not yet 
reported in the existing literature. Furthermore, detailed com-
parison and evaluation of the derived 14 CPT circuits are 
conducted, and high-performance circuits are recommended. 
One case study of a 2.1kW 3MHz M1-SS CPT system is con-
structed in hardware, validating the demonstrated duality in-
vestigation.  

II. MODELING OF INDUCTIVE AND CAPACITIVE COUPLINGS 

A. Standardized Definition of IPT and CPT Couplers 

The inductive coupler consists of two coils L1 and L2, and 
the mutually coupled magnetic field transfers power, as 
shown in Fig.1. An inductive coupler is generally described 
by self-inductances L1 and L2, and mutual inductance LM (or 
coupling coefficient kL).  

A typical capacitive coupler includes four metal plates, 
P1~P4, as shown in Fig.2. The electric field between the plates 
contributes to power transfer. The six-capacitor modeling can 
be used to demonstrate the capacitive couplings in a four-plate 
CPT coupler, shown in Table I. C13 and C24 are the main cou-

plings between plate pairs P1 and P3, P2 and P4; C14 and C23 
are cross-couplings between P1 and P4, P2 and P3; C12 and C34 
are shunt capacitances between P1 and P2, P3 and P4. Accord-
ing to [28], self-capacitance C1, C2, and mutual capacitance 
CM can be defined in (1).  

Table I Description of IPT and CPT couplers. 
Property Inductive coupler Capacitive coupler 

Structure 
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Coupling 

LM

L1 L2

 

C12 C34

C13

C24

C14
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P1 P3

P2 P4  
Self-L/C L1, L2 C1, C2 

Mutual coupling LM CM 
Coupling coeff. kL=LM/(L1L2)0.5 kC=CM/(C1C2)0.5 

Table III. Behavior-source models of inductive coupler. 
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Table IV. Behavior-source models of capacitive coupler [29]. 
z-parameters y-parameters h-parameters g-parameters 

1 2
1 2 2

1

1 2
2 2 2

2

(1 ) (1 1)

(1 1) (1 )

C M C

M C C

I I
V

j C k j C k

I I
V

j C k j C k

 

 

    

  
  

 
1 1 1 2

2 1 2 2

M

M

I j C V j C V

I j C V j C V

 
 

 
   

 

1
1 2

1 1

2
2 1 2 2

1

(1 )

M

M
C

I C
V V

j C C

C
I I V j C k

C





   

      


 

2
1 1 1 2

2

2
2 1

2 2

(1 ) M
C

M

C
I V j C k I

C

C I
V V

C j C





     

   


 

V1

I1

V2

I2
+

-

+

-

+
‐

+
‐

C1(1-kC
2) C2(1-kC

2)

2
2(1 1)M C

I

j C k 
1

2(1 1)M C

I

j C k 

 

C1 C2V1

I1

V2

I2
+

-

+

-

jωCMV2 jωCMV1

 

C1

V1

I1

V2

I2
+

-

+

-

+
‐ C2(1-kC

2)2
1

MC
V

C 1
1

MC
I

C

 

C2

V1

I1

V2

I2
+

-

+

-

+
‐C1(1-kC

2) 2
2

MC
I

C 1
2

MC
V

C

 

Port #1

I1 I2
+

-

V1

+

-

V2

I1 I2

Passive network Port #2

 
Fig.3 A typical  two-port network.  

Table II Description of four two-port parameters [29]. 
Parameters Description Calculation 

z-parameter 
1 11 1 12 2

2 21 1 22 2

V z I z I

V z I z I

 
  

 2 1

2 1

1 1
11 12

1 20 0

2 2
21 22

1 20 0

,

,

I I

I I

V V
z z

I I

V V
z z

I I

 

 


 



  


 

y-parameter 
1 11 1 12 2

2 21 1 22 2

I y V y V

I y V y V

 
  

 2 1

2 1

1 1
11 12

1 20 0

2 2
21 22

1 20 0

,

,

V V

V V

I I
y y

V V

I I
y y

V V

 

 


 



  


 

h-parameter 
1 11 1 12 2

2 21 1 22 2

V h I h V

I h I h V

 
  

 2 1

2 1

1 1
11 12

1 20 0

2 2
21 22

1 20 0

,

,

V I

V I

V V
h h

I V

I I
h h

I V

 

 


 



  


 

g-parameter 
1 11 1 12 2

2 21 1 22 2

I g V g I

V g V g I

 
  

 2 1

2 1

1 1
11 12

1 20 0

2 2
21 22

1 20 0

,

,

I V

I V

I I
g g

V I

V V
g g

V I

 

 


 



  


 

 

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3225578

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 01,2022 at 07:34:56 UTC from IEEE Xplore.  Restrictions apply. 



13 14 23 24
1 12

13 14 23 24

13 23 14 24
2 34

13 14 23 24

13 24 23 14

13 14 23 24

( ) ( )

( ) ( )

M

C C C C
C C

C C C C

C C C C
C C

C C C C

C C C C
C

C C C C

   
    

     
  

   


  

             (1) 

Table I summarizes these concepts and notations, achieving 
similar descriptions for IPT and CPT couplers. 

B. Generic Two-Port Parameter Modeling 
Both IPT and CPT couplers can be considered a two-port 

circuit network. Each port consists of two terminals and satis-
fies the port condition: the current flowing into one terminal 
must equal the current flowing out of the other, which is 
demonstrated in Fig. 3. Considering this, a generic modeling 
method is proposed based on two-port network theory. 

In Fig. 3, a two-port network includes 4 variables: V1, I1, 
V2, and I2. Each port has an independent excitation, either 
voltage or current. According to the two-port network theory 
[29], there exist four categories of parameters, namely: z-
parameters (impedance), y-parameters (admittance), h-
parameters (hybrid), and g-parameters (inverse hybrid), as 
described in Table II. 

In each two-port parameter model, the network is linearly 
described by two independent excitations and four coeffi-
cients. It helps derive the equivalent behavior-source models 
of IPT and CPT coupler, respectively provided in Tables III 
and IV. For example, the inductive or capacitive coupler is 
equivalent to a behavior-voltage-source circuit by z-
parameters, or a behavior-current-source circuit by y-
parameters. Particularly, the two-port modeling for capacitive 
coupling has been reported in [29] while its application in IPT 
systems has not been clearly discussed. 

C. Power Transfer Mechanism 
The description of the power transfer mechanism of induc-

tive and capacitive couplers is provided in Table V. In both 
IPT and CPT couplers, the power flow from primary to sec-
ondary side is represented by S12, including both the active 
power P12 and the reactive power Q12 [19], [29].  

1) Inductive Power Transfer 
As shown in Table V, for an inductive coupler, the induc-

tive coupling is equivalent to two behavior-voltage-sources 
V12 and V21 based on z-parameter modeling. Current I2 is taken 
as the reference phasor and the phase angle of I1 is represent-
ed by θ12. Then, I2 is expressed below. 

1 1 12 12(cos sin )I I j                          (2) 

In an IPT coupler, the power flow S12 is calculated: 
*

12 12 1 1 2 12 1 2 12sin cosS V I M MIPT
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P12 and Q12 in an inductive coupler are provided below: 
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In an IPT coupler, P12 and Q12 are jointly determined by ω, 
LM, I1, I2 and θ12. P12 should be maximized to achieve effec-
tive power transfer while Q12 should be suppressed to reduce 
the Volt-Ampere (VA) rating and power loss. Namely, phase 
angle θ12 should be as close to 90° as possible, which can be 

achieved by double-sided compensation capacitors.  
In an IPT system, with a specified power level P12 and as-

suming identical current stress on primary and secondary coils, 
the coil currents I1 and I2 can be calculated by: 

12
1 2

12sinM

P
I I

L 
                         (5) 

In practice, it is easy for an IPT coupler to achieve a mutual 
inductance LM of tens of microhenry (μH). For example, with 
LM=60μH and θ12=90°, the coil currents versus working fre-
quency under a given power are provided in Fig. 4 (a). It 
shows that the IPT system can easily achieve several kW at 
85kHz and tens of amperes.  

2) Capacitive Power Transfer 
As shown in Table V, for a capacitive coupler, behavior-

current sources I12 and I21 are introduced based on the y-
parameters. Voltage V1 is considered as the reference phasor 
and the phase angle of V2 is represented by φ21, namely: 

2 2 21 21(cos sin )V V j                      (6) 
Then, in a CPT coupler, the power flow S12 is calculated as: 
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P12 and Q12 in a capacitive coupler are provided as: 
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In a CPT coupler, P12 and Q12 are determined by ω, CM, V1, 
V2, and φ21. Similar to an IPT coupler, to maximize P12 and 
minimize Q12, φ21 should be close to 90°, which can be 
achieved by using double-sided compensation inductors. 

In a CPT system, with specified power level P12 and identi-
cal port voltages of V1=V2, V1 and V2 can be calculated by: 

12
1 2

21sinM

P
V V

C 
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The capacitive coupling is usually much weaker than the 

Table V. Power transfer mechanism of IPT and CPT coupler. 
Inductive coupler Capacitive coupler 
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Fig.4 (a) IPT coil currents I1 and I2 vs. frequency f at specific power level; (b) 
CPT port voltage V1 and V2 vs. frequency f at specific power level. (I1 and I2, 
V1 and V2 are assumed to be the same, respectively.) 
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magnetic coupling. Typically, the coupling capacitance CM in 
an air-based CPT coupler is only at the picofarad (pF) level. 
To reach an effective power transfer of kilowatts, the frequen-
cy f and voltages V1 and V2 generally need to achieve mega-
hertz (MHz) and kilovolt (kV) levels, as shown in Fig.4 (b). 
For example, with CM=20pF and f=1.5MHz, the voltages V1 
and V2 must achieve 3.99kV to enable a 3kW power transfer. 

Furthermore, in an IPT system, the voltages across the 
transmitter and receiver plates are respectively defined as 
VCM1 and VCM2, which can be calculated by: 

2 2
1 2 1 2 1 2 21

1 2

2 cos

2 2

V V
CM CM

V V VV
V V

  
      (10) 

Particularly, when V1=V2 is achieved, with specified P12, ω, 
and CM, voltages VCM1 and VCM2 are provided below. 

1 2 21 12 21
1 2

(1 cos )
tan

2 2 2CM CM
M

V V P
V V

C

 



      (11) 

D. Transfer Efficiency of IPT and CPT Couplers 
In a real IPT or CPT system, the parasitic resistances of the 

coupler will cause power loss. Considering parasitic re-
sistances, the IPT and CPT systems are modeled as Figs. 5 
and 6. For an IPT coupler, RL1 and RL2 are series-modeled 
with L1 and L2 while in a CPT coupler, RC1 and RC2 are paral-
lel-modeled with C1 and C2. In addition, the equivalent load 
resistance is defined as RLe.  

1) Transfer Efficiency of IPT Coupler 
For an IPT coupler, the quality factors of inductors L1 and 

L2 are represented by QL1 and QL2, defined as: 

1 1 1 2 2 2,L L L LQ L R Q L R                   (12) 

Then, the transfer efficiency of an inductive coupler is cal-
culated as: 

2
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+ +
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L L Le Le L L
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Rk Q Q R R
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With aL=RLe/RL2, (13) is simplified: 

2
1 2

1
1 1 1

1 ( 2)
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L
L LL L L

a
a ak Q Q

 
   

                 (14) 

2) Transfer Efficiency of CPT Coupler 
For a CPT coupler, the quality factors are defined as: 

1 1 1 2 1 2,C C C CQ C R Q C R                     (15) 

The transfer efficiency of a capacitive coupler is calculated: 
2

2
22 2 2

21 1 2 2 2
2

1 2 2 2
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++ +
+ +
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Le C LeC C Le

C C C C Le C
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k Q Q R R R

   (16) 

With aC=RC2/RLe, (16) is simplified as:  

2
1 2

1
1 1 1

1 ( 2)
CPT

C
C CC C C

a
a ak Q Q

 
   

           (17) 

From (14) and (17), the inductive and capacitive couplers 
have a unified expression of transfer efficiency, which is 
mainly determined by coupling coefficient, quality factors, 
and load condition. Furthermore, it is also noted that (14) and 
(17) are not limited to calculating the transfer efficiency of 

inductive or capacitive coupler but are also suitable for esti-
mating the efficiency of the entire IPT and CPT system [29], 
in which the quality factors of primary and secondary circuits 
will be used instead of the quality factors of the pure coupler. 

3) Maximum Efficiency Performance 
A general form of the maximum efficiency for IPT and 

CPT couplers is provided in (18) when aL=aC=amax, where k, 
Q1, and Q2 satisfy k=kL=kC, Q1=QL1=QC1, Q2=QL2=QC2.  

2
21 2

max max 1 22 2
1 2

, 1
(1 1 )

k Q Q
a k Q Q

k Q Q
   

 
         (18) 

The theoretical maximum transfer efficiency of capacitive 
or inductive coupler versus coupling coefficient and quality 
factor is shown in Fig.7, which shows a positive relationship 
between k and Q1/Q2 and can guide the system parameter de-
sign. For example, with estimated quality factors Q1 and Q2 of 
400, to achieve an ac-ac efficiency of 95%, the coupling coef-
ficient k can not be smaller than 0.1. Meantime, with k=0.2 
and Q1=Q2=300, the maximum efficiency can only achieve 
96.7%.  

III. DUALITY BETWEEN BASIC IPT AND CPT COMPENSATIONS 

A. Comparison of Basic IPT and CPT Compensations 
To achieve effective power transfer, double-sided compen-

sation circuits are required to suppress the reactive power Q12, 
making phase angle θ12 or φ21 close to 90°. For both IPT and 
CPT couplers, there are four basic compensations, namely, 
SS, PP, SP, and PS, compared in Tables VI and VII.  

Particularly, z, y, h, and g-parameters are respectively suit-
able for SS, PP, SP, and PS circuits. Then, in the equivalent 
circuit, inductors and capacitors construct either series or par-
allel LC tanks. With such a configuration, it is straightforward 
to conclude the resonance relationship of the circuit by mak-
ing the series/parallel LC tanks fully resonate, facilitating the 
circuit resonance analysis.  

RL
Vin

Compensation CompensationRL1 L1 L2

+
-V12=jωLMI2 V21=jωLMI1

+
-

RL2I1 I2

RLe

Fig.5. Coupler loss circuit model of an IPT system. 
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Fig.6. Coupler loss circuit model of a CPT system. 
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Fig.7. Transfer efficiency of IPT or CPT coupler versus k, Q1 and Q2 
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1) SS Compensation  
SS IPT/CPT compensation is compatible with the z-

parameter modeling. At ZPA frequency, both SS IPT and 
CPT circuits realize the conversion between CC and CV 
properties. In an SS IPT circuit, the ZPA frequency is inde-
pendent of kL while in the SS CPT circuit, the ZPA frequency 
depends on kC. 

2) PP Compensation 
PP IPT/CPT compensation is compatible with y-parameter 

modeling, and they can also achieve conversion between CC 
and CV properties. In a PP IPT circuit, ZPA frequency is re-
lated to kL, while in a PP CPT circuit, ZPA frequency is inde-
pendent of kC.  

3) SP Compensation 
SP IPT/CPT compensation is compatible with the h-

parameters. Both SP IPT and CPT circuits work as a step-up 
“transformer”, which can boost the output voltage. For an SP 

IPT circuit, the conversion ratio is determined by L2/LM, while 
in an SP CPT circuit, the ratio is determined by C2/CM. 

4) PS Compensation 
PS IPT/CPT compensation is compatible with the g-

parameters. Both SP IPT and CPT circuits work as a step-
down “transformer”, which decreases the output. In a PS IPT 
circuit, the voltage conversion ratio is determined by LM/L1 
while in the PS CPT circuit, the ratio is determined by CM/C1. 

According to (4) and (8), when θ12 or φ21 achieves 90°, 
there is no reactive power circulation Q12 within coupler, 
which helps reduce power loss on the coupler and maximize 
the active power transfer P12. In an IPT system, θ21=90° is 
only achievable in an SS compensation, which makes the SS 
IPT circuit the optimal one. In a CPT system, φ21=90° is only 
achievable in a PP CPT compensation. However, in a PP CPT 
topology, the port voltages V1 and V2 are directly limited by 
the practical input and output voltages, which are generally in 

Table VI Four basic IPT compensation circuits. 
SS IPT Compensation [11] PP IPT Compensation [12] SP IPT Compensation [13] PS IPT Compensation [14] 
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Table VII Four basic CPT compensation circuits. 
SS CPT Compensation [15] PP CPT Compensation [16] SP CPT Compensation [17] PS CPT Compensation [18] 
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hundreds of volts, resulting in a low power transfer capability. 
Therefore, in practice, a pure PP CPT circuit is rarely adopted.  

B. Duality Between Basic IPT and CPT Topologies 
According to Tables VI and VII, the duality between basic 

IPT and CPT compensations exists in two aspects.  
First, compensation circuit configuration. The SS, PP, SP, 

and PS CPT topologies respectively have identical compensa-
tion configuration, two-port modeling, load-independent out-
put property, and inversion and rectification requirements as 
their IPT counterparts, namely SS, PP, SP, and PS ones. For 
example, both SS IPT and SS CPT configure the compensa-
tion component in series connection with the induc-
tive/capacitive coupler, show compatibility with two-port z-
parameter modeling, achieve load-independent CC output, 
and require voltage-source inverter (VSI) and voltage-source 
rectifier (VSR). Such duality can also be found in PP, SP, and 
PS-type IPT and CPT topologies. In summary, with the duali-
ty in compensation circuit configuration, the series (S) and 
parallel (P) compensation capacitors in an IPT circuit respec-
tively correspond to the series (S) and parallel (P) compensa-
tion inductor in a CPT circuit. 

Second, resonant relationship. In four basic IPT compensa-
tions, SS is considered the optimal one because its resonant 
frequency is independent of the coupling coefficient and there 
is no reactive power circulating in the inductive coupler in 
resonant conditions. In the CPT system, similar merits only 
exist in PP CPT compensation, not the SS one. From this per-
spective, PP CPT compensation is the counterpart of SS CPT. 
Similarly, PP, SP, and PS-type IPT compensations show simi-
larity with SS, PS, and SP-type CPT circuits in the resonant 
relationship, respectively. Therefore, considering duality of 
resonance, the series (S) and parallel (P) compensation ca-
pacitors in an IPT circuit respectively correspond to the paral-
lel (P) and series (S) compensation inductor in a CPT circuit.  

In summary, CPT technology could be considered a reflec-
tion of IPT in a special “mirror”, hence the name “duality” 
between IPT and CPT systems in this paper. The duality be-
tween IPT and CPT compensations, qualitatively and quanti-
tatively, is summarized in Tables VIII and IX. Each IPT to-
pology can find two counterparts of the CPT field in terms of 
compensation circuit configuration and resonant relationship, 
helping explore potential CPT circuits.  

Table VIII Duality between SS- and PP-type IPT and CPT compensations. 
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 Double-sided parallel compensation circuit 

 Two-port y-parameter modeling 

 Load-independent CC output 

 CSI and CSR required (2) 

(1) VSI: voltage-source inverter; VSR: voltage-source rectifier; (2) CSI: Current-source inverter; CSR: Current-source rectifier 

Table IX Duality between SP- and PS-type IPT and CPT compensations. 
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 Primary parallel and secondary series compensation circuit 

 Two-port h-parameter modeling 

 Load-independent step-down CV output  

 CSI and VSR required 
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IV. EXPLORATION OF CPT OPPORTUNITIES BASED ON DUALI-

TY WITH MAINSTREAM IPT CIRCUITS 

A. Exploration of CPT Opportunities  
According to the aforementioned duality investigation, for 

any IPT topology, it is accessible to find two CPT counter-
parts based on the duality of compensation configuration and 
resonant relationship. IPT technology has become very ma-
ture after development of over 100 years. According to the 
literature, apart from the 4 basic IPT topologies (SS, PP, SP, 
and PS), 7 higher-order IPT compensations, S-SP, LCC-S, 
LCC-P, LCC-SP, LCC-LCC, three-coil, and four-coil [30]-
[36], are most commonly researched and used, which can be 
considered as the optimal IPT circuit candidates. Based on the 

duality with the existing 7 optimal IPT circuits, 14 CPT to-
pologies are derived, which possibly have good performance 
as well. Among these 14 CPT circuits, 3 have been reported 
in [25]-[27], namely, LCL-S, LCL-LCL, and M1-SS-M2 CPT 
circuits, which are the counterparts of LCC-LCC, LCC-S, and 
four-coils IPT circuits; however, the rest are not and are ex-
plored in detail as the following, and the comparison between 
IPT circuits and their counterparts are provided in Table X.  

1) Duality with S-SP IPT Circuit: The S-SP compensated 
IPT [30] circuit is developed from the basic SP compensation. 
With an additional series capacitor at the secondary side, an 
S-SP IPT circuit can be designed in either voltage step-up or -
down mode, achieving more flexible control of output voltage. 

Table X. CPT Circuit Prediction based on the duality with IPT circuit. 
Existing IPT Topology Resonance CPT Counterpart Resonance 
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3.0 LCC-P IPT Circuit (LCL-S/P Compensation) [32] 3.1 LCL-P CPT Circuit (LCL-S/P Compensation) (New) 
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4.0 LCC-SP IPT Circuit (LCL-S/SP Compensation) [33] 4.1 LCL-SP CPT Circuit (LCL-S/SP Compensation) (New) 
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4.2 CLC-PS CPT Circuit (CLC-P/PS Compensation) (New) 
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5.0 Three-Coil IPT Circuit (M1-S/S Compensation) [34] 5.1. M1-SS CPT Circuit (M1-S/S Compensation) (New) 
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5.2 LCL-P CPT Circuit (M1-P/P Compensation) (New) 
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6.0 LCC-LCC IPT Circuit (LCL-S/S-LCL compensation) [35] 6.1. LCL-LCL CPT Circuit (LCL-S/S-LCL compensation) [26] 
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6.2 CLC-CLC CPT Circuit (CLC-P/P-CLC compensation) (New) 
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7.0 Four-Coil IPT Circuit (M1-S/S-M2 Compensation) [36] 7.1 M1-SS-M2 CPT circuit (M1-S/S-M2 Compensation) [27] 

Cf1 C2

Vdc L2

+

Vin

‐

Iout

Lf1

R
ectifier

Idc Iin

+

‐

Vout

LM

RL

+

‐

VL

IRL

In
verter

L1

C1LM1

Lf2

Cf2LM2

 

2
1 1

2
2 2

2
1 1

2
2 2

1

1

1

1

f f

f f

L C

L C

L C

L C









 










 

Vdc

CM1

CM2

P2 P4

P1 P3

+

Vin

‐

Iout

R
ectifier

In
verter

Idc Iin

+

‐

Vout RL

+

‐

VL

IRL
LM1

L1Lf1

Cf1 Cf2

Lf2L2

LM2

C12 C34

 

2
1 1

2
2 2

2 2
1 1

2 2
2 2

1

1

(1 ) 1

(1 ) 1

f f

f f

C

C

L C

L C

L C k

L C k









 





 


 

 

CC output:
2

3 2
1 2 1

in C
out

M M M C

V k
I

j L L C k


 


 (φ21<90°) 

7.2 LCL-PP-LCL CPT Circuit (LCL-P/P-LCL Compensation) (New) 
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Considering the duality in circuit structure, an S-SP com-
pensated CPT circuit is proposed, shown as case 1.1 in Table 
X. Compared to the basic SP CPT circuit, one more compen-
sation inductor is used, however, the total net inductance on 
the secondary side does not increase. Meantime, it can also be 
designed in voltage step-up or -down mode.  

Considering the duality in the resonant relationship, a P-PS 
compensated CPT circuit is proposed with flexible voltage 
step-down/up output, shown as case 1.2 in Table X. However, 
according to the resonant relationship, in the P-PS CPT circuit, 
the secondary-side net inductance increases compared to a PS 
CPT circuit, which is a drawback. 

2) Duality with LCC-S IPT Circuit: The LCC-S IPT circuit 
[31] is equivalent to a combination of a primary-side T-type 
LCL network and an SS IPT compensation. The second induc-
tor of the LCL network is canceled by the series capacitor of 
the SS circuit, resulting in an LCC-S IPT system. LCC-S is a 
classic IPT topology, which achieves constant transmitting 
current, load-independent CV output, and zero reactive power 
circulation in the magnetic coupler with a compact receiver. 

Considering the duality of circuit configuration with LCC-S 
IPT, the LCL-S CPT circuit is developed, shown as case 2.1 in 
Table X. It can achieve load-independent CV output with a 
compact receiver circuit, which has been reported in [25]. 

Considering the resonant relationship, the SS IPT is in du-
ality with PP CPT. Similarly, the T-type LCL network should 
be in duality with a Π-type CLC network [37]. Therefore, a 
CLC-P CPT circuit is developed as case 2.2 in Table X, in 
which the second capacitor of the Π-type CLC network can-
cels the primary compensation inductor of the PP CPT circuit. 
For the CLC-P CPT circuit, zero reactive power circulation 
(Q12=0) is achieved, and only two resonant inductors are re-
quired. However, the secondary port voltage V2 of the coupler 
is limited by the load voltage, which is adverse for high power 
transfer. Besides, the CLC-P CPT circuit requires a current-
source inverter. 

3) Duality with LCC-P IPT Circuit: The LCC-P IPT circuit 
[32] can be considered as a combination of a T-type LCL 
network and a basic SP IPT circuit. The secondary inductor of 
the LCL network is canceled by the series capacitor of an SP 
IPT circuit. It achieves CC output with a compact receiver.  

Considering the duality, LCL-P and CLC-S CPT circuits 
are respectively developed with CC output, shown in cases 
3.1 and 3.2 in Table X. For the LCL-P CPT circuit, port volt-
age V2 of the capacitive coupler is limited by the load voltage, 
which is adverse for high power transfer. In comparison, the 
CLC-S CPT circuit uses fewer resonant inductors and over-
comes the drawback of the LCL-P CPT circuit.  

4) Duality with LCC-SP IPT Circuit: The LCC-SP IPT cir-
cuit [33] is an improved version of the LCC-P IPT circuit, 
using an additional series capacitor at the secondary side to 
achieve more design flexibility.  

Considering the duality, LCL-SP and CLC-PS CPT circuits 
are respectively developed, shown in cases 4.1 and 4.2. The 
LCL-SP CPT circuit is an improved version of the LCL-P 
CPT circuit (case 3.1), which can boost the secondary port 
voltage V2 without increasing the secondary net inductance. In 
contrast, the CLC-PS circuit does not improve when com-
pared to the CLC-S CPT circuit (case 3.2).  

5) Duality with Three-Coil IPT Circuit: In the three-coil 
IPT circuit [34], a mutually coupled magnetic-link is used at 
the primary side, which works as a CC excitation for the fol-
lowed SS CPT circuit. In this case, a CV output property is 
achieved when neglecting the cross-coupling.  

Considering the duality in circuit configuration, an M1-SS 
CPT circuit is developed, shown as case 6.1. Considering the 
resonant relationship, the SS mutually coupled magnetic-link 
is in duality with the Π-type LCL network [37]. Hence the 
LCL-PP CPT circuit is developed as case 6.2. Similarly, in 
the LCL-PP CPT circuit, the coupler port voltage V2 is limited 
by load voltage, which is adverse for high power transfer. 

6) Duality with LCC-LCC IPT Circuit: LCC-LCC IPT cir-
cuit [35] is one of the most classic topologies, which is equiv-
alent to the combination of a double-side T-type LCL network 
and an SS IPT compensation. It achieves CC output, constant 
transmitting current, and zero reactive power circulation.  

Considering the duality, LCL-LCL and CLC-CLC CPT cir-
cuits are respectively developed. The LCL-LCL CPT circuit 
has been validated to achieve a high power of 2.4kW with 
over 90% efficiency [26]. In comparison, the newly proposed 
CLC-CLC CPT topology requires fewer resonant inductors. 
Meantime, the property of zero reactive power circulation 
potentially helps to further improve system efficiency. The 
CLC-CLC CPT circuit requires the current-source inverter 
and rectifier.  

7) Duality with Four-Coil IPT Circuit: The four-coil IPT 
circuit [36] uses two additional mutually coupled magnetic 
links on double sides, which have a similar function to a T-
type LCL/CLC network. The main coupling is designed as an 
SS circuit. Neglecting cross-couplings, CC output is achieved.  

Considering the duality in circuit configuration, the M1-SS-
M2 and LCL-PP-LCL CPT circuits are respectively developed 
as cases 7.1 and 7.2. M1-SS-M2 CPT circuit has been validated 
in [27], which achieves a high power of 3kW and an efficien-
cy of up to 95.7%. In comparison, the newly proposed LCL-
PP-LCL CPT circuit can achieve zero reactive power circula-
tion in the capacitive coupler, which is a potential merit.  

B. Evaluation of Developed CPT Circuits  
Based on the duality investigation with 7 mainstream high-

er-order IPT circuits, 14 CPT circuits are developed. Particu-
larly, 11 of these 14 CPT circuits are newly proposed in this 
paper. Table X marks all 14 circuits and indicates the ones 
already in literature and the ones explored in this paper.  

In comparison, the four basic CPT topologies, SS, PP, SP 
and PS, have the simplest circuit structure and are more suita-
ble for low-power applications. However, the newly devel-
oped 14 high-order CPT circuits tend to achieve more design 
flexibility and freedom for high power transfer capability and 
load-independent CC or CV output property, which can be 
selectively used for different scenarios. For example, the new-
ly proposed S-SP CPT circuit permits a more flexible CV out-
put design (either step-up or step-down) than the basic SP 
CPT that can only achieve voltage step-up. Besides, in the 
LCL-LCL CPT circuit, with the double-side LCL networks, 
additional two variables Cf1 and Cf2 are introduced, which can 
be leveraged to increase the system power level, meaning 
higher design flexibility. Table XI provides a summary and 
evaluation of the developed 14 CPT circuits in terms of inver-
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sion and rectification design, the number of compensation 
components, output property, circuit simplicity, and power 
transfer capability.  

Compared to basic CPT compensations, the S-SP and P-PS 
CPT circuits use only one more inductor on the secondary 
side to achieve a more flexible output voltage, which has a 
relatively compact system size and low power transfer capa-
bility. However, the P-PS CPT circuit requires larger second-
ary-side inductance than the S-SP circuit, and therefore, is not 
recommended.  

For the CPT circuits of cases 2.1~5.2 in Table XI, a T-type 
LCL or Π-type CLC network is used in the primary side when 
compared to the basic CPT circuits, which introduces addi-
tional design degrees of freedom for improving power transfer 
capability without significantly increasing the complexity of 
the secondary circuit. There are exceptions, however. For 
example, in the CLC-P, LCL-P, and LCL-P CPT circuits, the 
port voltage V2 of the capacitive coupler will be limited by the 
load voltage to hundreds of volts, which is adverse for high 
power transfer. Therefore, these circuits are not recommended.  

For the CPT circuits of cases 6.1~7.2, double-sided T-type 
LCL or Π-type CLC networks are used, which introduces two 
more design degrees for a high power transfer capability at 
the cost of increased circuit complexity, which are mainly 
expected to be applied to high-power scenarios. 

In summary, compared to the 4 basic CPT circuits, some of 
the new circuits clearly show 1) potentials of flexible output, 
such as S-SP; 2)  trade-off between circuit simplicity and 
power transfer capability, such as LCL-S, and M1-SS; and 3) 
high power transfer capability, such as M1-SS-M2, and LCL-
LCL which can be selectively used in various scenarios, such 
as electric vehicle charging, underwater capacitive power 
transfer, etc.  

V. CASE STUDY WITH EXPERIMENT VALIDATION  

A. Validation from the Existing Work 
Based on the presented duality analysis, 14 CPT topologies 

are derived from 7 mainstream IPT circuits. Their perfor-
mance in terms of resonant relationship, output property, and 
output power expressions are predicted. To validate the 
demonstrated duality analysis, the convincing approach is to 

experimentally verify the performance of the newly proposed 
CPT circuits with the prediction.  

Among these 14 CPT circuits, the LCL-S, LCL-LCL, and 
M1-SS-M2 topologies have been respectively reported and 
investigated in [25], [26], and [27]. The existing research 
shows that the LCL-S, LCL-LCL, and M1-SS-M2 CPT circuits 
respectively achieve load-independent CV, CC, and CC out-
put property. The resonant relationship and output power ex-
pressions are the same as predicted in this paper, which can 
validate the effectiveness of the proposed duality investiga-
tion in exploring high-performance CPT circuits. 

B. Case Study of M1-SS CPT Circuit 
Beyond the existing related research, in this paper the M1-

SS CPT circuit (case 5.1), which uses a mutually coupling 
magnetic link on the primary side to improve the power trans-
fer capability and only uses one inductor on the secondary 
side to achieve a compact receiver, is implemented to further 
validate the revealed duality between IPT and CPT systems.  

The simplified M1-SS CPT circuit is shown in Fig. 8. CM1 
and CM2 are the main coupled capacitances while C12 and C34 
are the parasitic shunt capacitance of the capacitive coupler. 
Cex1 and Cex2 are external capacitances. The coupler is de-
scribed as:  

1 2 1 2

1 1 12 2 2 34

( )

,
M M M M M

ex M ex M

C C C C C

C C C C C C C C

ì = × +ï
í

= + + = + +ïî
         (19) 

z-parameter is used to simplify the system. The equivalent 
circuit is provided in Fig. 9, and resonant relationship satisfies 

2 2
1 1 1 1 2 2

1 1 1

(1 ) (1 )f f C C
L C LC k L C k

  
 

        (20) 

Based on the circuit, the voltage relationship is described as 

1 1 1
1

1 22 2
2

1
( )

1 1
[ ]

(1 1) (1 )

in in f L M
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out L out
M C C

V I j L I j L
j C

V I I j L
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


 

    


     

  (21) 

The current IL1 is given below, which is independent of 
load, namely a CC excitation for the followed SS CPT circuit. 

1 1L in MI V j L                                    (22) 

The output voltage of the M1-SS CPT is provided as 

Table XI Summary and evaluation of the derived 14 high-order CPT circuits. 

CPT Circuit 
Inverter and 

Rectifier 
Compensation 
Inductor Num. 

Compensation 
Capacitor Num. 

Output 
Property 

Circuit  
Simplicity  

Power Transfer 
Capability 

Recommendation 

1.1 S-SP CPT VSI, VSR 3 0 CV ★★★★ Low  

1.2 P-PS CPT CSI, VSR 3 0 CV ★★★☆ Low  

2.1 LCL-S CPT [25] VSI, VSR 3 1 CV ★★★ Medium  

2.2 CLC-P CPT CSI, CSR 2 1 CV ★★★ Low  

3.1 LCL-P CPT VSI, CSR 3 1 CC ★★★ Low  

3.2 CLC-S CPT CSI, VSR 2 2 CC ★★★ Medium  

4.1 LCL-SP CPT VSI, VSR 4 1 CC ★★☆ Medium  

4.2 CLC-PS CPT CSI, VSR 3 2 CC ★★☆ Medium  

5.1. M1-SS CPT VSI, VSR 3 2 CV ★★★ Medium  

5.2 LCL-P CPT CSI, CSR 3 2 CV ★★☆ Low  

6.1. LCL-LCL CPT [26] VSI, VSR 4 2 CC ★★ High  

6.2 CLC-CLC CPT CSI, CSR 2 4 CC ★★ High  

7.1 M1-SS-M2 CPT [27] VSI, VSR 4 2 CC ★★ High  

7.2 LCL-PP-LCL CPT CSI, CSR 4 2 CC ★★ High  
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C. 2.1kW 3MHz CPT Experiment 

A 2.1kW CPT hardware prototype is implemented as 
shown in Fig. 10. A sleeve-type capacitive coupler is used, 
which can be usable in rotary applications [38]. With an air 
gap of 8mm, CM1 and CM2 achieve 50pF. A high frequency of 
3MHz is selected. Silicon carbide MOSFET C3M0120100K 
is used to design the inverter, and 3000-strand AWG46 Litz 
wire is used to fabricate inductors. It is noted that in the im-
plemented CPT system, the rectifier is not used. Multiple 
2Ω/140W non-inductive resistors of OHMITE THE140 Series 
are connected as a high-power load. The system parameters 
are provided in Table XII. 

With Vdc=300V, f=3MHz, and R=40Ω, the output power 
achieves 2.1kW and the experimental waveforms are provided 
in Fig. 11. The output voltage Vout is almost in phase with the 
input voltage Vin. Besides, the input current Iin only slightly 
lags Vin in phase, showing a ZPA property as well as zero-
voltage-switching (ZVS), which reduces the switching loss.  

The output voltage Vout and efficiency are provided in Fig. 
12. When the power increases by 250% from 606W to 
2122W, the output voltage only experiences a small decrease 
of 9.7% from 327.4V to 295.6V, validating the constant-
voltage (CV) output. The small voltage fluctuation is attribut-
ed to the parasitic circuit resistance and the slight detuning for 
ZVS. The maximum efficiency reaches 93.19% at 755W and 
an efficiency of 89.8% is achieved at 2122W.  

In this work, the purpose is to validate the feasibility of 
using the IPT-CPT duality for higher-order CPT exploration. 
In future work, high-quality components can be used to im-
prove efficiency, and a high-frequency rectification stage will 
be implemented to achieve a dc output.  

VI. CONCLUSION 

This paper comparatively investigates the duality between 
CPT and IPT technologies, aiming at exploring the full suite 
of potential CPT opportunities not yet reported in the litera-
ture. The CPT and IPT systems are systematically compared 
in terms of modeling, power transfer mechanism, compensa-
tion circuit, resonant relationship, and power and efficiency. 
A generic two-port modeling method is developed, and uni-
fied power transfer and efficiency expressions are derived. 
The duality is demonstrated in aspects of compensation circuit 
configuration and resonant relationship. 14 CPT topologies 
are discovered in duality with 7 mainstream IPT circuits, of 
which 11 CPT circuits are not reported in the literature. De-
tailed comparison and evaluation of the developed 14 CPT 
circuits are conducted, and high-performance circuits are rec-
ommended. As a case study, a 2.1kW 3MHz CPT system is 
implemented in hardware based on the newly proposed M1-SS 
CPT circuit which shows consistency with the predicted cir-
cuit properties of load-independent CV output, and ZPA 
property with a peak efficiency of 93.19%. The demonstrated 
experimental result and the existing research work in [25]-
[27] jointly validate the proposed duality analysis. Design and 
hardware demonstration for the other theoretically-feasible 
CPT circuits is beyond the scope of the paper. However, this 
work paves a pathway for future researchers in this direction. 
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Fig.8 Circuit topology of M1-SS CPT system. 
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Fig.9 Equivalent circuit of M1-SS CPT system based on z-parameter modeling.  
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Fig.10 Implemented 2.1kW CPT prototype. 

Table XII. Parameters of the implemented CPT prototype. 
Parameter Value Parameter Value 

Vdc 300 V f 3 MHz 
Lf1 4.8 μH Cf1 663.9 pF 
L1 70.0 μH Cex1+C12 20.5 pF 
L2 27.0 μH Cex2+C34 93.0pF 

LM1 13.6 μH CM1, CM2 50.0pF 
C1 45.5 pF C2 118.0pF 
CM 25.0 pF kC 0.34 

Air gap 8 mm Voltage gain GV 1.09 

0 0.5 1.0 1.5

Vgs

Vin

Iin

Vout

Iout

f=3MHz, Vdc=300V, R=40Ω, Pout=2.122kW

Vin RMS: 280.7V; Iin RMS: 9.66AZVS

Phase

Time(μs)

Vout RMS: 295.6V; Iout RMS: 7.26A; Voltage gain: 1.05

   
Fig.11 Experimental waveforms at 2.122kW and 3MHz. 
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Fig.12 Output voltage and efficiency versus power. 
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