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Abstract—With the emergence of multi-programmed work-
loads for Chip Multiprocessors (CMP), Quality of Service (QoS)
of each co-scheduled application on the CMP is increasingly
gaining importance. As more and more applications are con-
solidated into a single chip to compete for the limited off-chip
memory bandwidth, off-chip memory bandwidth partitioning
makes an increasing impact on system performance. Although
various existing heuristic-based memory scheduling schemes
have achieved significant system performance improvement by
better partitioning the bandwidth, it is still not clear what are
the best ways to partition off-chip bandwidth for improving
different system performance objectives.

The goal of this paper is to understand how off-chip memory
bandwidth partitioning affects various system performance
objectives. To achieve this goal, we propose an analytical
model that is simple yet powerful enough to reveal the re-
lationship between various memory bandwidth partitioning
schemes and different system performance objectives. From
our model, optimal memory bandwidth partitioning schemes
for different system-level objectives are derived. Experimen-
tal results from a cycle-accurate full-system simulator show
that, for heterogeneous workloads, performance improvements
over No_partitioning/Equal_partitioning in terms of harmonic
weighted speedup, minimum fairness, weighted speedup and
sum of IPCs are 20.3%/2.1%, 49.8%/38.7%, 32.8%/7.6% and
64.2%/24%, on average, with our corresponding optimal par-
titioning schemes (i.e., Square_root, Proportional, Priority_APC,
Priority_API), respectively.

Keywords-off-chip memory bandwidth; partitioning; analyti-
cal model

I. INTRODUCTION

Modern computer systems are becoming increasingly lim-

ited by memory performance. While processor performance

is expected to double every 18 months, the bandwidth of a

memory chip increases by only 10% per year [1]. As memory

performance has become increasingly important to overall

system performance, the need to carefully schedule memory

operations has increased. In general, memory scheduling can

affect bandwidth usage in two ways: to increase memory

bandwidth utilization and to balance memory bandwidth

partitioning among co-scheduled applications.

Early research work related to memory scheduling [2]–

[4] mainly focuses on improving bandwidth utilization. For

example, prioritizing memory column accesses over row

accesses will reduce average DRAM row access delay [2].

Batching and delaying write requests will mitigate DRAM

write-to-read turnover delay [5]. As average memory access

latency reduces, applications will run faster, which in turn

create more off-chip memory requests to occupy more band-

width.
Recently, with the emergence of multi-programmed work-

loads for CMP, Quality of Service (QoS) of co-scheduled

applications on the CMP has gained increasing attention.

Instead of merely increasing bandwidth utilization, various

memory scheduling schemes [6]–[13] are proposed to im-

prove the overall CMP system QoS performance by bet-

ter balancing the memory bandwidth among co-scheduled

applications. For example, Fair Queue Memory System [6]

partitions the memory bandwidth equally for each application

to avoid the starvation problem. Stall-time Fair scheduling [8]

improves system fairness further by equalizing the memory-

induced slowdowns of co-scheduled applications. Most recent

proposed memory scheduling schemes [9], [11], [13] aim

to strike a balance between fairness and throughput. While

heuristic-based memory bandwidth redistributions among co-

scheduled applications in these memory scheduling schemes

have improved the system performance significantly, ques-

tions like how partitioning of off-chip bandwidth exactly

affects system performance and what are the best partitioning

schemes for various system performance objectives are still

unclear.
Liu, et al., [14] propose an analytical queueing model

to derive an optimal memory bandwidth partitioning for

weighted speedup. However, the applicability of their model

is limited because the assumption of poisson arrival of

memory requests is not always valid.
The goal of this paper is to understand and optimize

how off-chip memory bandwidth partitioning affects various

system performance objectives. To achieve this goal, we

propose a unified analytical model that is simple yet powerful

enough to reveal the relationship between off-chip memory

bandwidth partitioning and various system-level performance

objectives. Compared to the prior state-of-art proposal [14]

which is limited to the queueing assumption and the single

system objective, our model is versatile enough to derive op-

timal memory bandwidth partitioning schemes for any IPC-

based system performance metrics in a more generalized

CMP system (i.e., no queueing assumption).
Our contributions are summarized as follows.

1) A unified analytical model is proposed to reveal the

relationship between off-chip memory bandwidth par-



titioning and various system performance objectives.

2) From our model, different optimal off-chip band-

width partitioning schemes are derived to maximize a

broad range of system objectives, including throughput-

oriented metrics (i.e., sum of IPCs and weighted

speedup), fairness, and harmonic weighted speedup.

3) Results from application of the model are obtained by

simulation using a cycle-accurate full-system simula-

tor (i.e., GEM5 + DRAMSim2) and show that com-

pared to No_partitioning/Equal_partitioning scheme,

the optimal memory bandwidth partitioning schemes

derived from our model, i.e., Square_root, Propor-

tional, Priority_APC and Priority_API, improve cor-

responding system performance objectives, i.e., har-

monic weighted speedup, minimum fairness, weighted

speedup and sum of IPCs under heterogeneous work-

loads by 20.3%/2.1%, 49.8%/38.7%, 32.8%/7.6% and

64.2%/24%, respectively. Extended experiments on

scalability analysis and QoS guaranteed partitioning are

also conducted.

The remainder of this paper is organized as follows. Section

II provides the background and our motivation. We present

our analytical model for optimizing off-chip memory band-

width partitioning in Section III. We discuss the implemen-

tation details about our proposal in IV. Our experimental

setup and evaluation are presented in Section V and Section

VI, respectively. Related work is discussed in Section VII.

We conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Memory Scheduling

As off-chip memory bandwidth becomes the system bottle-

neck in modern computer systems [1], memory scheduling is

increasingly influencing overall system performance. In gen-

eral, memory scheduling can improve system performance

in two different ways: one is to increase memory bandwidth

utilization; the other is to better partition memory bandwidth

among co-scheduled applications.

1) Increasing Bandwidth Utilization: Early research work

related to memory request scheduling policy [2]–[4] mainly

focuses on improving bandwidth utilization. For an appli-

cation, the more memory bandwidth it can occupy (i.e.,

higher memory Accesses Per Cycle (APC)), the faster it

runs (i.e., higher Instructions Per Cycle IPC) since IPC
is proportional to APC (i.e., IPC = APC/API while

memory Access Per Instruction (API) is constant to memory

scheduling).

Memory scheduling can improve bandwidth utilization by

leveraging DRAM characteristics. For example, by prior-

itizing column accesses over row accesses, FR-FCFS [2]

maximizes row buffer hit rate. By batching and delaying

write operations, Virtual Write Queue [5] mitigates write-to-

read turnover delay. Memory scheduling can also reduce bank

conflicts [3] which, in turn, improves bank-level parallelism

[9]. As average memory access delay reduces with these

memory scheduling policies, applications will run faster,

which in turn create more off-chip memory requests per unit

of time to utilize more bandwidth.
2) Better Bandwidth Partitioning: In the era of chip

multiprocessors (CMP), more and more applications are co-

scheduled on a single chip to share the off-chip mem-

ory bandwidth. This exacerbates the contention problem on

shared off-chip memory bandwidth. Thus, sharing memory

bandwidth among co-scheduled applications becomes in-

creasingly important to overall system performance. Tradi-

tional memory scheduling schemes (e.g., FR-FCFS [2]) im-

prove memory bandwidth utilization through biased schedul-

ing, which will suffer serious starvation problems [6], [7].

Instead of merely increasing bandwidth utilization, various

memory bandwidth partitioning schemes [6], [8], [9], [14]

are proposed to improve the overall CMP system QoS

performance by better balancing the speedups among co-

scheduled applications. For example, Fair Queue Memory

System [6] partitions the bandwidth equally to each ap-

plication to avoid starvation. Stall-time Fair scheduling [8]

improves system fairness further by equalizing the memory-

induced slowdowns of co-scheduled applications.
3) Combination of the Two: Partitioning off-chip memory

bandwidth and increasing bandwidth utilization can be inte-

grated together seamlessly. Memory bandwidth partitioning

aims to adjust the ratio of the number of accumulated

memory requests of each application served over a relatively

long period of time (e.g., 10 million CPU cycles), while

various mechanisms (e.g., FR-FCFS) for improving memory

bandwidth utilization focuses on optimizing the orders of

neighboring memory requests. Bandwidth partitioning can be

enforced in the context that some particular orders (e.g., col-

umn access are prioritized over row access) are also largely

maintained. Existing bandwidth partitioning schemes are

capable of both optimizing memory requests and enforcing

bandwidth shares of co-scheduled applications. For example,

FQ-VFTF [6] and DSFQ [8] use priority inversion blocking

time (e.g., tRAS) and Starvation Prevention Threshold (SPT),

respectively, to maximize row buffer hits over a short interval

and enforce bandwidth partitioning in the long run. In this

paper, we focus on understanding how memory bandwidth

partitioning affects various system performance objectives.

Therefore, in the model presented in the next section, we

assume that memory bandwidth utilization with different

partitioning schemes is constant.

B. Motivation

Although memory bandwidth partitioning cannot increase

memory system throughput, it still can improve various sys-

tem performance objectives significantly by better balancing

the speedups of co-scheduled applications for two reasons.

On the one hand, different applications have different sen-

sitivities to bandwidth resources, e.g., low-API applications

can gain higher IPC improvement than the ones with high

APIs by increasing the same amount of off-chip memory

bandwidth. On the other hand, different applications can

have different impacts on the overall system performance

objective. For example, the system performance metric may



be defined in such way that applications with higher priority

have more weights than those with lower priority. Thus,

allocating more bandwidth to high-priority applications will

have more performance gain.

Various memory bandwidth partitioning schemes have

been proposed to improve system QoS performance. For

example, Nesbit, et al., [6] uses an Equal partitioning

scheme to avoid starvation, which improves fairness. Liu, et

al., [14] derives an optimal memory bandwidth partitioning

for weighted speedup based on a queuing theory model.

However, these works do not have enough generality to

answer the question of what is the best partitioning for all

kinds of performance objectives.
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Figure 1. Normalized performance to No_partitioning of harmonic
weighted speedup, minimum fairness, sum of IPCs and weighted
speedup with five bandwidth partitioning schemes of Equal, Proportional,
Square_root, Priority_API and Priority_APC.

Figure 1 shows the potential impact of different mem-

ory bandwidth partitioning schemes on different system

performance objectives. Four SPEC2006 applications (i.e.,

libquantum, milc, gromacs and gobmk) with five partition-

ing schemes including Equal, Proportional, Square_root,

Priority_API and Priority_APC run on a four-core CMP.

Detailed descriptions about each partitioning scheme can be

found in Section V-D. We compared four different system

performance metrics including harmonic weighted speedup,

minimum fairness (defined in Eq. (14)), sum of IPCs and

weighted speedup among all the partitioning schemes. We

use DDR2-400 (i.e., total off-chip bandwidth is 3.2 GB/s)

as the off-chip memory system. The detailed configuration

information is provided in Section V-B. All performance

results are normalized to No_partitioning.

From Figure 1, we can see that different partition-

ing schemes favor different system performance objectives.

Square_root yields highest harmonic weighted speedup. Pro-

portional partitioning has best minimum fairness. Prior-

ity_APC is best for weighted speedup while Priority_API

achieves highest sum of IPCs. Equal partitioning, which is

most commonly used in previous work, can improve the sys-

tem performance in most cases compared to No_partitioning.

However, it is not optimal for any system objective that

is evaluated. From the figure, we can see that there is

no single partitioning scheme optimized for all the system

performance objectives. Different partitioning schemes are

required to optimize different objectives. It is thus important

to understand how off-chip memory bandwidth partitioning

affects different system performance objectives.

III. OUR PROPOSED MODEL

In this section, we propose an analytical performance

model for partitioning off-chip memory bandwidth. We first

present the general structure of the model. Then we show

how to derive a series of optimal partitioning schemes for

a broad range of system performance objectives, which

includes throughput oriented metrics (i.e., weighted speedup

(Wsp) and sum of IPCs (IPCsum), fairness and harmonic

weighted speedup (Hsp). At last, we show our model can be

applied to the context where the QoS of some applications are

guaranteed while the performance for the rest of best effort

services are maximized. The terminology used throughout

this paper is listed in Table I.

A. General Structure of the Model

The off-chip memory bandwidth that an application occu-

pies in the system can be measured in terms of memory

Accesses Per Cycle (APC). Note that this unit can be

easily converted to more commonly used units for off-chip

memory bandwidth, such as Bytes Per Second (B/s) if

CPU frequency and last level cache line size are given. For

example, assume cache line size is 64 bytes and CPU clock

frequency is 5Ghz, then 0.01 APC equals 3.2GB/s (i.e.,

GB/s = APC ×Cache_Line_Size×CPU_Frequency).

The performance of an application can be measured in

terms of Instructions Per Cycle (IPC). The memory Ac-

cess Per Instruction (API) of one application depends the

program itself and the input data set. The API value is

not affected by bandwidth partitioning. Hence, the impact of

memory bandwidth usage of an application on performance

(i.e., IPC) can be expressed in a simple equation:

IPC = APC/API (1)

The API of the application can be measured online, and

APC is controlled by the memory bandwidth partitioning.

Equation (1) shows the relationship between bandwidth usage

and performance. This equation also shows the sensitivity of

an application to its off-chip bandwidth occupancy. Gener-

ally, the performance of an application with higher API is

less sensitive to the bandwidth resource.

Moreover, total memory accesses per cycle

(
∑N

i=1 APCshared,i) equals the total off-chip bandwidth

utilized (B), so we have

N
∑

i=1

APCshared,i = B (2)

In our model, we consider B is a constant value to different

memory bandwidth partitioning schemes. By doing this, we

can factor out the performance changes caused by band-

width utilization improvement and focus on understanding



Table I
NOTATIONS

Abbreviation Meaning
IPCalone,i Instructions Per Cycle that application i can achieve when it runs alone with the dedicated off-chip memory bandwidth
IPCshared,i Instructions Per Cycle that application i can achieve when it shares the off-chip memory bandwidth with other applications in a CMP
APCalone,i Memory Accesses Per Cycle for application i when it runs alone (i.e., APIi × IPCalone,i)
APCshared,i Memory Accesses Per Cycle for application i when it shares the off-chip memory bandwidth with other applications in a CMP (i.e.,

APIi × IPCshared,i)
APIi Memory Accesses Per Instruction for application i

βi Fraction of total bandwidth assigned to application i (Note that
∑N

i=1
βi = 1)

B Total utilized off-chip memory bandwidth (i.e., total memory accesses served per cycle)

the system performance changes caused by pure memory

bandwidth partitioning. If a performance objective can be

expressed in term of IPCs (e.g., sum of IPCs), then it

can be translated into APC equations based on Eq. (1).

The total bandwidth constraint (i.e., Eq. (2)) and the APC
based performance objective function (e.g., sum of IPCs) can

be formulated into a constrained optimization problem. By

solving this optimization problem, the optimal bandwidth

partitioning scheme for a particular performance objective

can be obtained.

In the following subsections, we show how to find different

optimal partitioning schemes for different system objectives

by formulating the constrained optimization problem.

B. Harmonic Weighted Speedup

Harmonic Weighted Speedup (Hsp) [15] is a metric that

strikes a balance between throughput and fairness. It is

defined as the following:

Hsp =
N

∑N
i=1

IPCalone,i

IPCshared,i

=
N

∑N
i=1

APCalone,i

APCshared,i

(3)

We can find maximum Hsp expressed in Eq. (3), with

the constraint expressed in Eq. (2), by using Lagrange

Multipliers:

maxHsp =
N ×B

(

∑N

i=1

√

APCalone,i

)2 (4)

when

APCshared,i = B ·
√

APCalone,i
∑N

j=1

√

APCalone,j

(5)

The fraction of bandwidth share of application i (βi) is

proportional to its memory access frequency in shared mode

(i.e., APCshare,i). Therefore, we can obtain the optimal

memory bandwidth partitioning (i.e., the ratio of bandwidth

shared), which is

βi

βj

=
APCshared,i

APCshared,j

=

√

APCalone,i
√

APCalone,j

This equation shows that the optimal bandwidth share of

application i is proportional to the square root of its inherent

memory access frequency (i.e., APCalone,i). Hence, we refer

to this partitioning scheme as Square_root. From this optimal

partitioning scheme, we can see that the optimal bandwidth

partitioning for harmonic weighted speedup tends to slightly

(but not overly) constrain applications with high miss fre-

quencies, preventing them from dominating the bandwidth

usage and starving applications with lower miss frequencies,

as has been observed in previous research [6], [8].

We can also have the weighted speedup expression of

Square_root partitioning scheme, which is

W sqrt
sp =

B

N
×

(

N
∑

i=1

1
√

APCalone,i

)2

(6)

C. Fairness

A CMP system is fair if the speedups of equal-priority

applications running together on the CMP system are the

same. So, ideal fairness is achieved when:

IPCshared,i

IPCalone,i

=
IPCshared,j

IPCalone,j

⇒
APCshared,i

APCalone,i

=
APCshared,j

APCalone,j

(7)

To achieve this ideal fairness, we can have optimal off-chip

bandwidth partitioning:

βi

βj

=
APCshared,i

APCshared,j

=
APCalone,i

APCalone,j

This shows that the optimal bandwidth share of application

i is proportional to its inherent memory access frequency

(APCalone,i). Hence, we refer to this partitioning scheme as

Proportional partitioning.

Although the Proportional partitioning scheme is ideal for

fairness, it is suboptimal for harmonic weighted speedup and

weighted speedup compared to the Square_root partition-

ing scheme. The harmonic weighted speedup and weighted

speedup of Proportional partitioning are the same, which are

Hprop
sp = W prop

sp =
B

∑N

i=1 APCalone,i

(8)

From Eq. (8), we can see that the harmonic weighted speedup

and weighted speedup of Proportional scheme are worse

than those of Square_root partitioning scheme (compared



to Eq. (4) and Eq. (6), respectively) according to Cauchy’s

inequality. Compared to the Square_root scheme, the Pro-

portional scheme tends to allocate more bandwidth resources

to bandwidth insensitive applications (i.e., applications with

high API), which degrades the overall throughput. This also

reflects that different partitioning schemes favor different

optimizing objectives.

D. Weighted Speedup

Weighted Speedup [16] aims to measure the overall re-

duction in execution time, by normalizing each application’s

performance to its inherent IPC value (i.e., IPCalone).

The optimal partitioning scheme can be found by maximiz-

ing Wsp, expressed in Eq. (9), subject to the total bandwidth

constraint (i.e., Eq. (2)):

Wsp =

N
∑

i=1

IPCshared,i

IPCalone,i

/N =

N
∑

i=1

APCshared,i

APCalone,i

/N (9)

This optimization problem can be formulated as a frac-

tional Knapsack Problem [17]. Take APCshared,i as the

quantity of the item i. Note that APCshared,i can be frac-

tional. The value of each item is 1/ (N ×APCalone,i). The

maximum quantity that we can carry in the bag is B (i.e.,

total off-chip bandwidth). Our goal is to maximize the sum

of values of the items (i.e., maximize Wsp) so that the

total quantity must be less than the knapsack’s capacity. The

fractional knapsack problem can be solved by a greedy algo-

rithm. The best scheme is to get as many items with higher

value (i.e., 1/ (N ×APCalone,i)) as possible, in other words,

always give the application with lower APCalone higher

priority. Note that the maximum bandwidth one application

can occupy (i.e., APCshared,i) is bounded by APCalone,i.

This priority-based memory scheduling can be considered as

a special form of partitioning, which first allocates enough

off-chip memory bandwidth to the application with its max-

imum occupancy capacity, and then allocates the remaining

bandwidth to the application with secondary priority, and so

on. Obviously, this scheme causes starvation for applications

with higher APCalone, degrading fairness significantly. We

refer to this partitioning scheme as Priority_APC since it

prioritizes applications based on their APCalone.

E. Sum of IPCs

When latency is less critical, Sum of IPCs can be used to

measure the overall system throughput.

To get optimal performance, we can maximize Eq. (10),

subject to the constraint of Eq. (2):

IPCsum =

N
∑

i=1

IPCshared,i =

N
∑

i=1

(

APCshared,i

APIi

)

(10)

Similar to weighted speedup, this problem can also be for-

mulated as a fractional Knapsack Problem and easily solved

by a greedy algorithm. To achieve maximum IPCsum,

applications with lower APIs should have higher priority.

For this priority-based scheduling, some applications will

gain more benefits than others, which implies it has poor

fairness properties. We refer to this partitioning scheme as

Priority_API since it prioritizes the applications based on

their API .

F. Discussion

Our model is simple yet powerful enough to reveal the

relationship between various memory bandwidth partitioning

schemes and different system performance objectives. For

example, given a particular memory bandwidth partitioning,

we can easily have the bandwidth share of each application

(i.e, APCi). Then we can translate APCi to IPCi, based

on Eq. (1), and calculate the final IPC-based system perfor-

mance objective (e.g., weighted speedup). From our analyti-

cal model, we can easily analyze how a particular partitioning

scheme performs for a particular evaluation metric or derive

what is the best bandwidth partitioning for this particular

metric. For example, we can have thorough comparison of

the performance in terms of harmonic weighted speedup and

weighted speedup between Proportional and Square_root
partitioning schemes, based on Eq. (4), (6) and (8), derived

from our model.
For our model, four optimal bandwidth schemes

(i.e., Square_Root, Proportional, Priority_APC and

Priority_API) are derived to maximize four different sys-

tem objectives, i.e., harmonic weighted speedup, fairness,

weighted speedup and sum of IPCs, respectively. In general,

for other bandwidth partitioning schemes, the closer it is to

our optimal partitioning scheme, the better performance it

will achieve.
Our optimal partitioning schemes match the characteristics

of various system performance metrics. For example, the

priority-based partitioning schemes (i.e., Priority_API and

Priority_APC) correspond to throughput oriented metrics

(i.e., sum of IPCs and weighted speedup), which implies

possible starvation problems. Square_root scheme is a bal-

ance between Priority_APC scheme and Proportional.
Among these three partitioning schemes, Priority_APC
allocates the most bandwidth to low-APC applications while

Proportional allocates the least. Square_root’s allocation

to low-APC applications is in the middle. This balance

reflects that harmonic weighted speedup is a metric that

balances throughput and fairness.
Our optimal partitioning schemes also increase the un-

derstanding of various system performance metrics. For

example, weighted speedup is proposed to overcome the

unfairness caused by sum of IPCs for multi-programmed

workloads [16]. However, from our optimal partitioning

scheme for weighted speedup (i.e., Priority_APC), we can

see that a system optimized for weighted speedup can still

suffer starvation, which implies that weighted speedup is

still not good enough for multi-programmed environments.

The comparison among our Square_root, Priority_APC
and Proportional schemes not only qualitatively but also

quantitatively show how harmonic weighted speedup strikes

a balance between throughput and fairness [15].



Our model is more versatile than a prior state-of-art

proposal [14] in two aspects. First, our proposed model

can be applied to a more practical CMP system without a

queueing assumption. Second, although we only show four

optimal bandwidth partitioning for four system objectives,

our proposed model can be used for deriving optimal band-

width partitioning for any IPC based system performance

metrics.

G. QoS Guarantee

In a more general case, applications in a CMP system

can be divided into two groups: QoS Guarantee and Best

Effort. For QoS Guaranteed workload, the performance of

applications needs to be guaranteed by allocating sufficient

resources. Meanwhile, applications in the Best Effort group

should use the rest of the bandwidth resources efficiently to

maximize their overall performance. Our model can be used

to efficiently allocate off-chip memory bandwidth resource in

this case. We guarantee the performance of applications in

the QoS-Guaranteed group by allocating enough bandwidth

(i.e., BQoS = IPCtarget × API), and maximize system

performance (e.g., weighted speedup) for the applications in

the Best Effort group by using the rest of the bandwidth

(BBE). By combining the bandwidth constraint (i.e., Eq.

(11)) and the system objectives (e.g., Eq. (3), (7), (9) and

(10)), we can find the optimal performance for best-effort

applications with the bandwidth of BBE .

NBE
∑

i=1

APCBE
shared,i = BBE = B −BQoS (11)

where NBE is the number of applications in the Best Effort

group.

IV. IMPLEMENTATION DETAILS

A. CMP Architecture

We assume a typical CMP architecture throughout this

paper. Both L1 and L2 caches are private1. Off-chip memory

bandwidth is shared by multiple cores on the chip. Through-

out this paper, we assume that each core runs only one

application.

B. Bandwidth Enforcement Mechanism

The enforcement mechanism for our off-chip memory

bandwidth partitioning is slightly modified from DRAM

Start-Time Fair (DSTF [7]). Basically, we calculate a start-

time tag when the packet arrives, the memory scheduler

chooses the packet with smallest start-time tag to be served

first. The start-time tag is calculated as follows.
Let Sa

i be the start-time tag of the ith memory request of

application and βa be the fraction of off-chip bandwidth that

application a is assigned. Our start-time tags are

1Note that our model can also be extended to a partitioned shared L2 CMP
system. In a shared L2 CMP, an application’s API will be affected by its
L2 cache capacity share. Hence, we can extend our model by replacing
APIi with APIshared,i and APIalone,i properly. Both APIshared,i
and APIalone,i are constant to memory bandwidth partitioning and can be
obtained online with a non-invasive resource profiler [18].

Sa
i = Sa

i−1 + 1/βα

Note that this start-time tag calculation is different from

[7]. Our start-tag only depends on the start-time tag of the

last served packet (Sa
i−1) and service rate βα. It does not

depend on packet arrival time. Our modification allows one

application to use more bandwidth share if it did not receive

enough allocated bandwidth fraction during the previous

period. This modification will allow low memory intensive

applications to more easily achieve their bandwidth share.

C. APCalone Profiling

Our partitioning schemes need APCalone,i to calculate the

bandwidth share of each application. We can get APCalone,i

as follows:

APCalone,i = IPCalone,i ×APIi =
Naccesses,i

Tcyc,alone,i

(12)

where Naccesses,i is the number of memory accesses (both

reads and writes) served for application i and Tcyc,alone,i

is the number of cycles for application i running in a

standalone context with these Naccesses,i memory requests

served. Naccesses,i can be counted online easily.
We can find Tcyc,alone,i through

Tcyc,alone,i = Tcyc,shared,i − Tcyc,interference,i (13)

where Tcyc,shared,i is the number of cycles for application

i running in a shared context with the Naccesses,i memory

requests served and can be counted online. Tcyc,interference,i

is the memory interference delay and counted for each ap-

plication. Memory interference occurs when an application’s

memory request is blocked by the requests from another

application. The memory interference, including DRAM bus

and bank conflict, can be detected as described in [8], [19].

At each cycle, if interference for application i is detected, we

increment Tcyc,interference,i by one. So, in total, three coun-

ters (i.e., Naccesses,i, Tcyc,shared,i and Tcyc,interference,i) are

added for each application.
Note that our profiled APCalone,i is an approximation. To

exactly profile the standalone performance of co-scheduled

applications in a shared CMP context is still challenging [20].

However, the inaccuracy existing in APCalone,i estimation

will not affect the efficiency of our partitioning scheme since

APCalone,i is just a reference value and we use the same

values (i.e., our estimated APCalone,i) in both our partition-

ing calculation and final performance result calculation. In a

more general QoS-enabled system, the operating system may

specify performance objectives along with some reference

values (e.g., IPCref,i or APCref,i). In such a scenario,

our partitioning framework can take these reference values

(e.g., IPCref,i or APCref,i) as input to avoid estimation of

APCalone,i.
APCalone,i is profiled periodically (e.g., every 10 mil-

lion cycles). When an application’s behavior changes, its



APCalone,i will be updated (based on Eq. (12) and (13)) cor-

respondingly. Our partitioning schemes will change an appli-

cation’s bandwidth share correspondingly when APCalone,i

(either itself or its co-scheduled applications) changes.

V. EXPERIMENTAL SETUP

A. Performance Metrics

We evaluate the efficacy and versatility of our model by

using four general optimization targets, including (1) sum of

IPCs, (2) weighted speedup, (3) fairness, and (4) harmonic

weighted speedup. We also evaluate the situation where strict

QoS needs to be guaranteed. The expression of harmonic

weighted speedup, weighted speedup, and sum of IPCs can

be found in Eq. (3) (9) and (10), respectively. To measure

the fairness, we use minimum Fairness criteria [21], which

is defined as in Eq. (14):

MinF = N ×
N

min
i

{

IPCshared,i

IPCalone,i

}

(14)

The minimum fairness of the system depends on minimum

speedup of co-scheduled applications. If all the applications

have at least 1/N speedup (i.e., minF ≥ 1), we say the

system achieves minimum fairness [21]. Note that minimum

speedup is also equivalent to maximum slowdown metrics

[22].

B. Architecture

We evaluate our model using simulation models of a four-

core CMP with a DDR2-400 memory subsystem. We use

a cycle-accurate full-system simulator GEM5 [23] to model

the out-of-order cores and the on-chip L1/L2 caches. The

DRAM subsystem is modeled by DRAMSim2 [24]. Table II

summarizes the baseline configuration for our four-core CMP

system.

Table II
BASELINE SYSTEM CONFIGURATION

Core
5 GHz out of order processor
Decode/Issue/Execute/Retire up to 8 instructions
192-entry reorder buffer

Front
End

16-bit BTB tag, 4K-entry BTB
Tournament branch predictor

Caches
L1 I-cache/D-cache: 32KB, 2-way, 1 ns, 64B line
Private unified L2: 256KB, 8-way, 5 ns, 64B line

DRAM

200 MHz bus cycle, 8 GB DDR2-PC3200
Close page policy
8B-wide data bus
Latency: 12.5-12.5-12.5ns (tRP-tRCD-CL)
Address Mapping: channel/row/col/bank/rank
32 DRAM banks

We fast-forward each application by 500 million instruc-

tions (in atomic mode) to warm-up the cache and then run

10 million cycles to profile APCalone of each application,

and finally run 10 million cycles to collect final performance

results.

Table III
BENCHMARK CLASSIFICATION

Name Type APKCalone APKI Intensity

lbm FP 9.38517 53.1331 high
libquantum INT 6.91693 34.1188 middle

milc FP 6.87143 42.2216 middle
soplex FP 6.05614 37.8789 middle
hmmer INT 5.29083 4.6008 middle

omnetpp INT 5.18984 30.5707 middle
sphinx3 FP 4.88898 13.5657 middle
leslie3d FP 4.3855 7.5847 middle
bzip2 INT 3.93331 5.6413 low

gromacs FP 3.36604 5.1976 low
h264ref INT 3.04387 2.2705 low
zeusmp FP 2.42424 4.521 low
gobmk INT 1.91485 4.0668 low
namd FP 0.61975 0.428 low
sjeng INT 0.559802 0.7906 low

povray FP 0.553825 0.6977 low

C. Benchmarks

1) Benchmark Classification: We use the SPEC CPU

2006 benchmarks with reference input for our evaluation.

Each benchmark was compiled using GCC or GFORTRAN

with the -O3 option. We use Simpoint [25] to select a

representative portion of applications for our experiments.

We classify benchmarks into three categories based on

their inherent memory access frequency (i.e., APCalone).

We refer to a benchmark as highly memory intensive if its

memory Accesses Per Kilo Cycle (APKCalone) is greater

than 8. If the APKCalone value is greater than 4 but less

than 8, we say the benchmark has middle memory intensity.

If the APKCalone value is less than 4, we refer to it as

low intensive. This classification is based on measurements

made when each benchmark runs alone. Table III shows the

characteristics of the benchmarks that appear in the evaluated

workloads.

2) Workload Construction: In our four-core experiments,

each workload includes four applications. Each core runs

one application. The mixed workloads are constructed into

two categories: heterogeneous and homogeneous. For the

heterogeneous workload, applications are picked from dif-

ferent memory-intensity groups, while for the homogeneous

workload, applications are from the same memory-intensity

group. We define the heterogeneity as the Relative Standard

Deviation (RSD) of APCalones of co-scheduled applications.

We say a workload is heterogeneous if its heterogeneity is

greater than 30. Otherwise, if its heterogeneity is smaller than

30, we say it is homogeneous.

The mixed workloads used in our evaluation are shown in

Table IV.

D. Partitioning Schemes

We evaluate seven partitioning schemes in our experiments

as follows:

No_partitioning: This scheme does not manage off-chip

memory bandwidth resources with partitioning. The memory

controller serves all the memory requests based on a First

Come First Served (FCFS) Policy.



Table IV
WORKLOAD CONSTRUCTION

workload benchmark heterogeneity(RSD)

homo-1 libquantum-milc-soplex-hmmer 12.27
homo-2 libquantum-milc-soplex-omnetpp 13.02
homo-3 hmmer-gromacs-sphinx3-leslie3d 18.55
homo-4 hmmer-gromacs-bzip2-leslie3d 19.16
homo-5 h264ref-zeusmp-bzip2-gromacs 19.74
homo-6 h264ref-zeusmp-gobmk-gromacs 24.06
homo-7 h264ref-zeusmp-gobmk-bzip2 29.71

hetero-1 milc-soplex-zeusmp-bzip2 41.93
hetero-2 soplex-hmmer-gromacs-gobmk 45.10
hetero-3 libquantum-soplex-zeusmp-h264ref 47.92
hetero-4 lbm-soplex-h264ref-bzip2 50.31
hetero-5 libquantum-milc-gromacs-gobmk 52.99
hetero-6 lbm-libquantum-gromacs-zeusmp 58.31
hetero-7 lbm-milc-gobmk-zeusmp 69.84

Equal: This scheme assigns an equal fraction of off-

chip memory bandwidth to each individual application. This

scheme is proposed in [6]. The fraction of the total off-chip

memory bandwidth that application i is assigned to (βi) is

βi =
1
N

.

2/3_Power: In this partitioning scheme, the fraction of off-

chip memory bandwidth (βi) that application i is assigned

to is proportional to the two-thirds power of its inherent

memory access frequency (i.e., APCalone,i.), which is βi =
(APCalone,i)

2/3

∑N

j=1
(APCalone,j)

2/3
. This partitioning scheme is proposed

in [14] (i.e., Eq. (19) in [14]) as the best partitioning scheme

for weighted speedup based on their queuing model.

Proportional: In this partitioning scheme, the fraction

of off-chip memory bandwidth (βi) that application i is

assigned to is proportional to its inherent memory access

frequency (APCalone,i). This is the best partitioning scheme

for fairness. The fraction of the amount of total off-chip

bandwidth that application i should be assigned to (βi) is

βi =
APCalone,i

∑N

j=1
APCalone,j

.

Square_root: In this partitioning scheme, the fraction of

off-chip memory bandwidth (βi) that is assigned to each

application is proportional to the square root of their inherent

memory access frequencies (i.e., APCalone). This is the

optimal partitioning scheme for harmonic weighted speedup.

The fraction of total off-chip bandwidth that application i is

assigned (βi) is βi =

√
APCalone,i

∑N

j=1

√
APCalone,j

.

Priority_API: This scheme prioritizes the memory re-

quests from applications with lower API over ones with

higher API . This scheme is best for sum of IPCs.

Priority_APC: This scheme priorities the memory requests

from applications with lower APCalone over ones with

higher APCalone. This scheme is best for weighted speedup.

VI. EVALUATION

A. Performance

Figure 2 shows the performance comparison of six off-

chip memory bandwidth partitioning schemes (i.e., Equal,

Proportional, Square_root, 2/3_power, Priority_APC and

Priority_API) in terms of four system performance objectives

(i.e., harmonic weighted speedup, fairness, weighted speedup

and sum of IPCs). All the performance results are normalized

to No_partitioning. From Figure 2, we can see that different

partitioning schemes favor different system objectives.

Generally, for heterogeneous workloads, due to the large

variety in applications’ sensitivities to the off-chip memory

bandwidth resource, the performance differences among dif-

ferent partitioning schemes are large, e.g., Priority_API has

50% more performance than Proportional in terms of sum of

IPCs. The performance of homogeneous workloads are less

diverse in terms of all performance metrics with different

partitioning schemes because all partitioning schemes are

similar. For example, if two applications have exact same

inherent memory access frequency (APCalone), there will

be no difference among Equal, Proportional, Square_root

partitioning schemes. In the rest of this section, without

explicit mention, all the data is from the measurement of

heterogeneous workloads.

For No_partitioning, high API applications tend to oc-

cupy more off-chip bandwidth resources to starve out low

API applications. Since high API applications have low

sensitivity to the bandwidth, No_partitioning has poor overall

throughput.

Equal partitioning has moderate performance

improvements in harmonic weighted speedup (17.7%),

weighted speedup (23.4%) and sum of IPCs (32.4%) over

No_partitioning. These performance improvements are

because it increases the overall throughput by allocating

more bandwidth to low API applications. It has relatively

poor fairness since the speedups of high API applications

are degraded, which causes unbalanced speedups between

high API and low API applications. Note that Equal

partitioning is not the optimal partitioning scheme for any

of the objectives that are evaluated.

Square_root partitioning yields best performance (20.3%)

in terms of harmonic weighted speedup, as is expected. It also

has moderate performance improvements in terms of both

fairness (26.7%) and throughput, e.g., sum of IPC (16.2%)

and weighted speedup (16.2%), which implies harmonic

weighted speedup itself is a metric that balances both fairness

and throughput.

Proportional partitioning is best for the fairness metric

as expected. It has the worst performance in terms of

throughput-oriented metrics (i.e., IPCsum and Wsp) since

it does not favor low API applications to achieve high

IPC. Note that Proportional partitioning is different from

No_partitioning, which implies the bandwidth that an appli-

cation occupies naturally is not exactly proportional to its

inherent memory access frequency (APCalone).

2/3_power partitioning scheme partitions bandwidth in

between Square_root and Proportional, which implies its

performance is also between those two. For example, in

terms of fairness, it is better than Square_root and worse

than Proportional. In terms of harmonic weighted speedup,

it is higher than Proportional but lower than Square_root.
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Figure 2. Normalized performance to No_partitioning of (a) harmonic weighted speedup (b) minimum Fairness (c) weighted speedup and (d) sum of
IPCs with six partitioning schemes of Equal, Proportional, Square_root, 2/3_power, Priority_APC and Priority_API.



Although the 2/3_power scheme is expected to produce

highest weighted speedup in [14] based on their model, our

experimental results show that this is not the case. 2/3_power

only achieves 84.4% of Priority_APC in terms of weighted

speedup. The main reason comes from different assumptions.

In [14], the memory access frequency (denoted as MA in

[14]) of an application is assumed to stay unchanged no mat-

ter how fast/slow an application runs, which leads to limited

performance gain (Wsp) by always favoring applications with

low APC. However, in our model, the invariant is API .

Memory access frequency (APCshare) will change based on

the application execution speed (IPCshare). When an appli-

cation runs faster, its memory access frequency will become

higher correspondingly. This matches reality more closely.

While [14] presumes the optimum bandwidth partitioning for

weighted speedup should slightly but not overly constrain

applications with high miss frequencies, our model indicates

that strictly prioritizing low-APC applications over high-

APC (i.e., should overly constrain applications with high

miss frequencies) is the best scheme for weighted speedup.

Although weighted speedup is proposed to overcome the

unfairness caused by sum of IPCs for multi-programmed

workloads [16], our results show that Wsp is a throughput-

oriented metric intrinsically and is still not good enough for

multi-programmed environments. Systems that are optimized

for weighted speedup can still suffer from starvation. Com-

pared to the model in [14], our conclusion is valid due to the

use of more realistic assumptions.

As is expected, for priority-based partitioning, Prior-

ity_API and Priority_APC achieve highest performance for

sum of IPCs and weighted speedup, respectively. However,

they yield very poor performance for fairness and harmonic

weighted speedup since starvation happens. Due to the strict

priority policy, memory requests from applications with high

APCalone or API may not get served at all. Priority_API

and Priority_APC achieve the same result for heterogeneous

workload because applications with higher API are appli-

cations with higher APCalone. However, for homogeneous

workloads, high API applications may not be high APCalone

applications, for example, hmmer has higher APCalone but

lower API than leslie3d.

In summary, our optimal partitioning schemes achieve

better performance for corresponding performance objectives.

Among the rest of partitioning schemes, the closer they are

to the optimal scheme, the better results that can be achieved.

B. QoS Guarantee

In this experiment, we evaluate two mixed workloads.

Mix−1 is constructed from four applications: lbm, libquan-

tum, omnetpp and hmmer. Mix − 2 has h264ref, zeusmp,

leslie3d and hmmer. They run on an four-core CMP. For

both workloads, the objective is to guarantee the IPC of

hmmer to be 0.62 and maximize the performance of the rest

applications.

2We choose this value empirically to ensure that this IPC target is
reachable through allocating sufficient memory bandwidth.
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Figure 3. The IPCs of QoS Guaranteed application and normalized
performance (i.e., harmonic weighed speedup, weighted speedup and sum
of IPCs) of Best Effort applications in two mixed workloads.
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Figure 4. Normalized Performance to Equal partitioning of heterogeneous
workloads in terms of harmonic weighted speedup, weighted speedup, sum
of IPCs and minimum fairness with total bandwidth scaling from 3.2 GB/s
to 12.8 GB/s.

Figure 3 shows the IPCs of the QoS Guaranteed ap-

plication (i.e. hmmer) and the normalized performance of

Best Effort applications (i.e. rest of three applications) in

these two mixed workloads. The first two groups shows the

performance (IPC) of hmmer with No_partitioning and QoS

Guaranteed partitioning respectively. The remaining three

groups show the performance results (i.e., normalized to

No_partitioning) of the best effort applications in terms of

harmonic weighted speedup, weighted speedup and sum of

IPCs, respectively. From the figure, we can see that with

No_partitioning scheme, the performance of hmmer is not

guaranteed, i.e., either is below or above 0.6. Our QoS

Guaranteed partitioning maintains hmmer’s IPC at 0.6 in both

workloads. Additionally, we can see that the performance

of the best effort applications have been largely improved

compared to No_partitioning.

C. Scalability

Figure 4 shows how performance changes when the off-

chip bandwidth scales from 3.2GB/s to 12.8GB/s. Note

that we change bandwidth by only changing the memory

bus frequency, while the latency related parameters are

not changed (i.e., tRP-tRCD-CL is 12.5-12.5-12.5ns for all

bandwidths). With the scaling of bandwidth, the number



of cores is also scaled proportionally (4, 8, 16 cores for

3.2, 6.4 and 12.8GB/s, respectively). The heterogeneous

workloads in Table IV are scaled with 1, 2, 4 copies of each

application for 3.2, 6.4 and 12.8GB/s, respectively. For each

performance objective, the performance results are from its

corresponding optimal partitioning scheme and normalized

to Equal partitioning.

From the figure, we can see that with the increase in

bandwidth, the improvements of all metrics (i.e., Hsp , Wsp,

IPCsum and minFairness) increase. The reason is that with

increase in bandwidth, the workloads become more heteroge-

neous, i.e., the APCalone of bandwidth bounded applications

(e.g., lbm) increases much faster than that of latency bounded

applications (e.g., leslie3d). For example, as the bandwidth

scales from 3.2GB/s to 6.4GB/s, the APCalone of lbm

goes from 9.38154 to 17.2329 (i.e., increases by 83.7%)

while the APCalone of leslie3d only goes from 4.38538 to

5.46125 (i.e., increases 24.5%). In a more heterogeneous

environments, differences between equal partitioning and

various optimal partitioning become larger, which implies the

normalized performance (to equal partitioning) of the optimal

partitioning schemes become higher. Hence, our optimal

partitioning schemes scale well as the number of cores and

off-chip memory bandwidth increases.

VII. RELATED WORK

Generally, research work related to scheduling policies for

memory requests can be categorized into two groups: (1)

to increase the bandwidth utilization by reordering various

types of memory requests and (2) to balance the performance

of co-scheduled applications in a shared CMP context by

partitioning off-chip memory bandwidth.

Improving Memory Bandwidth Utilization: Proposals from

the first category (like FR-FCFS [2] and Virtual Write

Queue [5]) focus on improving memory bandwidth utiliza-

tion by considering the characteristics of modern DRAM

systems. The system throughput will increase if off-chip

memory bandwidth utilization is improved. While FR-FCFS

[2] scheduling reduces row buffer miss delay, Virtual Write

Queue [5] mitigates write-to-read turnover delay. Both works

improve the bandwidth utilization by reducing average mem-

ory access delay. Minimalist Open-page policy [13] can

increase bandwidth utilization by balancing locality and

parallelism. Previous work in this category focus only on

improving overall system throughput without considering the

Quality of Service (QoS) of each individual application (e.g.,

fairness) in a shared CMP context.

Balancing Memory Bandwidth Partitioning: With the

emergence of multi-programmed workloads for CMP, Quality

of Service of each independent workload is increasingly

important. Various off-chip memory bandwidth partitioning

schemes have been proposed to improve fairness among co-

scheduled applications [6], [8], [9], [14]. Nesbit, et al., [6]

propose to divide bandwidth equally among all the appli-

cations to avoid starving low memory intensive workloads.

Mutlu, et al., [8] propose Stall-time Fair Memory Scheduler

(STFM) to equalize the memory slowdowns experienced

by co-scheduled applications. Most recent works related to

memory scheduling focus on improving both throughput

and fairness [9], [11]. Parallelism-Aware Batch-Scheduling

(PARBS) [9] tries to improve overall QoS objectives without

adversely effecting individual workload’s efficiency. Thread

Cluster Memory (TCM) [11] scheduling improves both sys-

tem performance and fairness by clustering different types

of threads together. Self-Optimizing Memory Controllers

[26] and MORSE [27] use a machine learning approach to

select best scheduling sequence. Although those heuristic-

based memory scheduling schemes gain system performance

by distributing bandwidth among co-scheduled applications

in a better way, they do not explicitly specify how much

bandwidth should be allocated to each application. Therefore,

it is still unclear how bandwidth partitioning affect system

performance and what are the best partitioning schemes for

different performance metrics.

Liu, et al., [14] propose an analytical model to derive

an optimal memory bandwidth partitioning for weighted

speedup. This work is most related to ours. The model

proposed in [14] assumes poisson arrival of memory requests,

which limits its applicability to more realistic scenarios. The

goal of our paper is to understand how best to partition off-

chip memory bandwidth in terms of various system perfor-

mance objectives. Our proposed model is general enough

to be applied in more general scenarios (i.e., no queueing

assumption) and to be used to optimize multiple system

performance metrics.

VIII. CONCLUSION

The goal of this paper is to understand and opti-

mize how off-chip bandwidth partitioning affects differ-

ent system performance objectives. We present an analyti-

cal model to derive optimal memory bandwidth partition-

ing schemes for various system QoS objectives. From the

model, we derive four optimal off-chip memory bandwidth

partitioning schemes, including Square_root, Proportional,

Priority_APC, and Priority_API for four different system-

level performance objectives, which are harmonic weighted

speedup, fairness, weighted speedup, and sum of IPCs.

Our model is applied and verified by experimental re-

sults from a cycle-accurate full-system simulator (GEM5

with DRAMSim2). Experimental results show that, for

heterogeneous workloads, performance improvements over

No_partitioning/Equal_partitioning in terms of harmonic

weighted speedup, minimum fairness, weighted speedup and

sum of IPCs are 20.3%/2.1%, 49.8%/38.7%, 32.8%/7.6%

and 64.2%/24%, on average, with our corresponding optimal

partitioning schemes (i.e., Square_root, Proportional, Prior-

ity_APC, and Priority_API), respectively.
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