
Routerless Networks-on-Chip

Fawaz Alazemi, Arash Azizimazreah, Bella Bose, Lizhong Chen
Oregon State University, USA

{alazemif, azizimaa, bose, chenliz}@oregonstate.edu

ABSTRACT
Traditional bus-based interconnects are simple and easy to
implement, but the scalability is greatly limited. While
router-based networks-on-chip (NoCs) offer superior scal-
ability, they also incur significant power and area overhead
due to complex router structures. In this paper, we explore
a new class of on-chip networks, referred to as Routerless
NoCs, where routers are completely eliminated. We propose a
novel design that utilizes on-chip wiring resources smartly to
achieve comparable hop count and scalability as router-based
NoCs. Several effective techniques are also proposed that
significantly reduce the resource requirement to avoid new
network abnormalities in routerless NoC designs. Evaluation
results show that, compared with a conventional mesh, the
proposed routerless NoC achieves 9.5X reduction in power,
7.2X reduction in area, 2.5X reduction in zero-load packet
latency, and 1.7X increase in throughput. Compared with a
state-of-the-art low-cost NoC design, the proposed approach
achieves 7.7X reduction in power, 3.3X reduction in area,
1.3X reduction in zero-load packet latency, and 1.6X increase
in throughput.

1. INTRODUCTION
As technologies continue to advance, tens of processing

cores on a single chip-multiprocessor (CMP) has already been
commercially offered. Intel Xeon Phi Knight Landing [12] is
an example of a single CMP that has 72 cores. With hundreds
of cores in a CMP around the corner, there is a pressing need
to provide efficient networks-on-chip (NoCs) to connect the
cores. In particular, recent chips have exhibited the trend to
use many but simple cores (especially for special-purpose
many-core accelerators), as opposed to a few but large cores,
for better power efficiency. Thus, it is imperative to design
highly scalable and ultra-low cost NoCs that can match with
many simple cores.

Prior to NoCs, buses have been used to provide on-chip
interconnects for multi-core chips [7, 8, 14, 17, 37, 38]. While
many techniques have been proposed to improve traditional
buses, it is hard for their scalability to keep up with modern
many-core processors. In contrast, NoCs offer a decentral-
ized solution by the use of routers and links. Thanks to the
switching capability of routers to provide multiple paths and
parallel communications, the throughput of NoCs is signifi-
cantly higher than that of buses. Unfortunately, routers have
been notorious for consuming a substantial percentage of
chip’s power and area [20, 21]. Moreover, the cost of routers
increases rapidly as link width increases. Thus, except for a
few ad hoc designs, most on-chip networks do not employ
link width higher than 256-bit or 512-bit, even though addi-
tional wiring resources may be available. In fact, our study
shows that, a 6x6 256-bit Mesh only uses 3% of the total
available wiring resources (more details in Section 3).

The high overhead of routers motivates researchers to de-
velop routerless NoCs that eliminate the costly routers but
use wires more efficiently to achieve scalable performance.
While the notion of routerless NoC has not been formally
mentioned before, prior research has tried to remove routers
with sophisticated use of buses and switches, although with
varying success. The goal of routerless NoCs is to select a
set of smartly placed loops (composed of wires) to connect
cores such that the average hop count is comparable to that
of conventional router-based NoCs. However, the main road-
blocks are the enormous design space of loop selection and
the difficulty in avoiding deadlock with little or no use of
buffer resources (otherwise, large buffers would defeat the
purpose of having routerless NoCs).

In this paper, we explore efficient design and implementa-
tion to materialize the promising benefits of routerless NoCs.
Specifically, we propose a layered progressive method that
is able to find a set of loops that meet the requirement of
connectivity and the limitation of wiring resources. The
method progressively constructs the design of a large router-
less network from good designs of smaller networks, and is
applicable to any n×m many-core chips with superior scala-
bility. Moreover, we propose several novel techniques to ad-
dress the challenges in designing routerless interface to avoid
network abnormalities such as deadlock, livelock and star-
vation. These techniques result in markedly reduced buffer
requirement and injection/ejection hardware overhead. Com-
pared with a conventional router-based Mesh, the proposed
routerless design achieves 9.48X reduction in power, 7.2X
reduction in area, 2.5X reduction in zero-load packet latency,
and 1.73X increase in throughput. Compared with the current
state-of-the-art scheme that tries to replace routers with less
costly structures (IMR [28]), the proposed scheme achieves
7.75X reduction in power, 3.32X reduction in area,1.26X
reduction in zero-load packet latency, and 1.6X increase in
throughput.

2. BACKGROUND AND MOTIVATION

2.1 Related Work
Prior work on on-chip interconnects can be classified into

bus-based and network-based. The latter can be further cate-
gorized as router-based NoCs and routerless NoCs. The main
difference between bus-based interconnects and routerless
NoCs is that bus-based interconnects use buses in a direct,
simple and primitive way, whereas routerless NoCs use a
network of buses in a sophisticated way and typically need
some sort of switching that earlier bus systems do not need.
Each of the three categories is discussed in more detail below.

Bus-based Interconnects are centralized communication
systems that are straightforward and cheap to implement.
While buses work very well for a few cores, the overall
performance degrades significantly as more cores are con-
nected to the bus [17, 37]. The two main reasons for such



degradation are the length of the bus and its capacitive load.
Rings [7,8,14] can also be considered as variants of bus-based
systems where all the cores are attached to a single bus/ring.
IBM Cell processor [38] is an improved bus-based system
which incorporates a number of bus optimization techniques
in a single chip. Despite having a better performance over
conventional bus/ring implementations, IBM Cell process
still suffers from serious scalability issues [4].

Router-based NoCs are decentralized communication sys-
tems. A great deal of research has gone into this (e.g.,
[10, 13, 18, 23, 25, 26, 31, 33], too many to cite all here). The
switching capability of routers provides multiple paths and
parallel communications to improve throughput, but the over-
head of routers is also quite substantial. Bufferless NoC
(e.g., [15]) is a recent interesting line of work. In this ap-
proach, buffer resources in a router are reduced to the mini-
mal possible size (i.e. one flit buffer per input port). Although
bufferless NoC is a clever approach to reduce area and power
overhead, the router still has other expensive components
that are eliminated in the routerless approach (Section 7.5
compares the hardware cost).

Routerless NoCs aim to eliminate the costly routers while
having scalable performance. While the notion of routerless
NoC has not been formally mentioned before, there are sev-
eral works that try to remove routers with sophisticated use
of buses and switches. However, as discussed below, the
hardware overhead in these works is quite high, some re-
quiring comparable buffer resources as conventional routers,
thus not truly materializing the benefits of routerless NoCs.
One approach is presented in [34], where the NoC is divided
into segments. Each segment is a bus, and all the segments
are connected by a central bus. Segments and central bus
are linked by a switching element. In large NoCs, either
the segments or the central bus may suffer from scalability
issues due to their bus-based nature. A potential solution is
to increase the number of wires in the central bus and the
number of cores in a segment. However, for NoCs larger
than 8×8, it would be challenging to find the best size for
the segments and central bus without affecting scalability.
Hierarchical rings (HR) [16] has a similar design approach
to [34]. The NoC is divided into disjoint sets of cores, and
each set is connected by a ring. Such rings are called local
rings. Additionally, a set of global rings bring together the
local rings. Packets switch between local and global rings
through a low-cost switching element. Although the design
has many nice features, the number of switching element is
still not small. For example, for an 8×8 NoC, there are 40
switching element, which is close to the number of routers in
the 8×8 network. Recently, a multi-ring-based NoC called
isolated multiple rings (IMR) is proposed in [28] and has been
shown to be superior than the above Hierarchical rings. To
our knowledge, this is the latest and best scheme so far along
the line of work on removing routers. While the proposed
concept is promising, the specific IMR design has several
major issues and the results are far from optimal, as discussed
in the next subsection.

2.2 Need for New Routerless NoC Designs

2.2.1 Principles and Challenges
We use Figure 1 to explain the basic principles of routerless

NoCs. This figure depicts an example of a 16-core chip. The
4× 4 layout specifies only the positions of the cores, not

(b)(a)

Figure 1: An example of loops in a 4×4 grid.

Table 1: Number of unidirectional loops in n×n grid [2].

n # of loops n # of loops
1 0 2 2
3 26 4 426
5 18,698 6 2,444,726
7 974,300,742 8 1,207,683,297,862

any topology. A straightforward but naive way to achieve
routerless NoC is to use a long loop (e.g., a Hamiltonian
cycle) that connects every node on the chip as shown in Figure
1(a). Each node injects packets to the loop and receives
packets from the loop through a simple interface (referred to
as RL interface hereafter). Apparently, even if a flit on the
loop can be forwarded to the next node at the speed of one
hop per cycle, this design would still be very slow because of
the average O(n2) hop count, assuming an n×n many-core
chip. Scalability is poor in this case, as conventional topology
as such Mesh has an average hop count of O(n).

To reduce the hop count, we need to select a better set of
loops to connect the nodes, while guaranteeing that every
pair of nodes is connected by at least one loop (so that a
node can reach another node directly in one loop). Figure
1(b) shows an example with the use of three loops, which
satisfies the connectivity requirement and reduces the all-pair
average hop count by 46% compared with (a). Note that,
when injecting a packet, a source node chooses a loop that
connects to the destination node. Once the packet is injected
into a loop, it stays on this loop and travels at the speed of
one hop per cycle all the way to the destination node. No
changing loops is needed at RL interfaces, thus avoiding the
complex switching hardware and per-hop contention that may
occur in conventional router-based on-chip networks.

Several key questions can be asked immediately. Is the
design in Figure 1(b) optimal? Is it possible to select loops
that achieve comparable hop count as conventional NoCs
such as Mesh? Is there a generalized method that we can use
to find the loops for any n×n network? How can this be done
without exceeding the available on-chip wiring resources?
Unfortunately, answering these questions is extremely chal-
lenging due to the enormous design space. We calculated the
number of possible loops for n×n chips based on the method
used in [2], where a loop can be any unidirectional circular
path with the length between 4 and n. Table 1 lists the results
up to n = 8. As can be seen, the number of possible loops
grows extremely rapidly. To make things more challenging,
because the task is to find a set of loops, the design space that
the routerless NoC approach is looking at is not the number
of loops, but the combination of these loops! A large portion
of the combinations would be invalid, as not all combinations
can provide the connectivity where there is at least one loop
between any source and destination pair.

Meanwhile, any selected final set of loops needs to comfort-
ably fit in the available wiring resources on the chip. Specif-
ically, when loops are superpositioned, the number of over-



Figure 2: A long wire in NoCs with repeaters.

Table 2: Wiring resources in a many-core
processor chip.

Many Core
Processor

Xeon Phi,
Knights Landing

Number of Cores 72
NoC Size 6×6

Die Area (31.9mm x 21.4mm)
683 mm2 [3]

Technology FinFET 14nm
Interconnect 13 Metal Layers

Inter-core Metal
Layers

Metal
Layer Pitch [22] [30]

M4 80nm
M5 104nm

lapped loops between any neighboring node pairs should not
exceed a limit. In what follows, we use overlapping to refer
to the number of overlapped loops between two neighboring
nodes (e.g., in Figure 1(b) some neighboring nodes have two
loops passing through them while others have only one loop
passing), and use overlapping cap to refer to the limit of the
overlapping. Note that the cap should be much lower than the
theoretical wiring resources on chip due to various practical
considerations (analyzed in Section 3). As an example, if the
overlapping cap is 1, then Figure 1(a) has to be the final set.
If the overlapping cap increases to 2, it provides more op-
portunity for improvement, e.g., the better solution in Figure
1(b). The overlapping cap is a hard limit and should not be
violated. However, as long as this cap is met, it is actually
beneficial to approach this cap for as many neighboring node
pairs as possible. Doing this indicates more wires are being
utilized to connect nodes and reduce hop count.

2.2.2 Major Issues in Current State-of-the-Art
There are several major issues that must be addressed in

order to achieve effective routerless NoCs. We use IMR [28]
as an example to highlight these issues. IMR is a state-of-the-
art design that follows the above principle to deploy a set of
rings such that each ring joins a subset of cores. While IMR
has been shown to outperform other schemes with or without
the use of routers, the fundamental issues in IMR prevent
it from realizing the true potential of routerless NoCs. This
calls for substantial research on this topic to develop more
efficient routerless designs and implementations.
(1) Large overlapping. For example, IMR uses a large num-
ber of superpositioned rings (equivalent to the above-defined
overlapping cap of 16) without analyzing the actual availabil-
ity of wiring resources on-chip.
(2) Extremely slow search. A genetic algorithm is used in
IMR to search the design space. This general-purpose search
algorithm is very slow (taking several hours to generate re-
sults for 16×16, and is not able to produce good results in a
reasonable time for larger networks). Moreover, the design
generated by the algorithm is far from optimal with high hop
counts, as evaluated in Section 6. Thus, efforts are much
needed to utilize clever heuristics to speed up the process.
(3) High buffer requirement. Currently, the network inter-
face of IMR needs one packet-sized buffer per ring to avoid

deadlock. Given that up to 16 rings can pass through an IMR
interface, the total number of buffers at each interface is very
close to a conventional router.

The above issues are addressed in the next three sections.
Section 3 analyzes the main contributing factors that deter-
mine the wiring availability in practice, and estimates rea-
sonable overlapping caps using a contemporary many-core
processor. Section 4 proposes a layered progressive approach
to select a set of loops, which is able to generate highly
scalable routerless NoC designs in less than a second (up to
128×128). Section 5 presents our implementation of router-
less interface. This includes a technique that requires only
one flit-sized buffer per loop (as opposed to one packet-sized
buffer per loop). This technique alone can save buffer area
by multiple times.

3. ANALYSIS ON WIRING RESOURCES

3.1 Metal Layers
As technology scales to smaller dimensions, it provides a

higher level of integration. With this trend, each technology
comes with an increasing number of routing metal layers
to meet the growing demand for higher integration. For
example, Intel Xeon Phi (Knights Landing) [1] and KiloCore
[9] are fabricated in the process technology with 11 and 13
metal layers, respectively. Each metal layer has a pitch size
which defines the minimum wire width and the space between
two adjacent wires. The physical difference between metal
layers results in various electrical characteristics. This allows
designers to meet their design constraints such as delay on the
critical nets by switching between different layers. Typically,
lower metal layers have narrower width and are used for
local interconnects (e.g., within a circuit block); higher metal
layers have wider width and are used for global interconnects
(e.g., power supply, clock); middle metal layers are used
for semi-global interconnects (e.g., connecting neighboring
cores). Table 2 lists several key physical parameters of Xeon
Phi including the middle layers that can be used for on-chip
networks.

3.2 Wiring in NoC
To estimate the actual wiring resources that can used for



routing, several important issues should be considered when
placing wires on the metal layers.

Routing strategy: In general, two approaches can be con-
sidered for routing interconnects over cores in NoCs. In the
first approach, dedicated routing channels are used to route
wires in NoCs. This method of routing was widely used in
earlier technology nodes where only three metal layers were
typically provided [36], and it has around 20% area overhead.
In the second approach, wires are routed over the cores at
different metal layers [32]. In the modern technology nodes
with six to thirteen metal layers, this approach of routing over
logic becomes more common for higher integration. This can
be done in two ways: 1) several metal layers are dedicated
for routing wires, and 2) a fraction of each metal layer is
used to route the wires. The first way is preferable given
that many metal layers are available in advanced technology
nodes [32, 36].

Repeater: Wires have parasitic resistance and capacitance
which increase with the length of wires. To meet a specific
target frequency, a long wire needs to be split into several
segments, and repeaters (inverters) are inserted between the
segments, as shown in Figure 2. The size of repeaters should
be considered in estimating the available wiring resources.
For a long wire in the NoC, the size of each repeater (h times
of an inverter with minimum size) is usually not small, but
the number of repeaters (k) needed is small [27]. In fact, it
has been shown that increasing K has negligible improvement
in reducing the delay [27]. For a 2GHz operating frequency,
using only one repeater with the size of 40 times W/L of
the minimum sized inverter can support a wire length of
2mm [32], which is longer than the typical distance between
two cores in a many-core processor [35].

Coping with cross-talk: Cross-talk noises can occur ei-
ther between the wires on the same metal layer or between the
wires on different metal layers, both of which may affect the
number of wires that can be placed. The impact of cross-talk
noises on voltage can be calculated by Equation (1) as the
voltage changes on a floated victim wire [19].

∆Vvictim =
Cad j

Cvictim +Cad j
×∆Vaggressor (1)

where ∆Vvictim is the voltage variation on the victim wire,
∆Vaggressor is the voltage variation on the aggressor, Cvictim
is the total capacitance (including load capacitance) of the
victim wire, and Cad j is the coupling capacitance between the
aggressor and the victim. It can be observed from Equation
(1) that the impact of cross-talk on the victim wire depends on
the ratio of Cad j to Cvictim. Hence, the cross-talk on the same
layer has much larger impact on the power, performance, and
functionality of the NoC since the adjacent wires which run
in parallel on the same metal layer has larger coupling capaci-
tance (Cad j) [19]. There are two major techniques to mitigate
cross-talk noises, shielding and spacing. In the shielding
approach, crosstalk noises are largely avoided between two
adjacent wires by inserting another wire (which is usually
connected to the ground or supply voltage) between them.
In the spacing approach, adjacent wires are separated by a
certain distance that would keep the coupling noise below a
level tolerable by the target process and application. Com-
pared with spacing, shielding is much more effective as it can
almost remove crosstalk noises [5]. However, shielding also
incurs more area overhead as the distance used in the spacing
approach is usually smaller than that of inserting a wire.

Layer 4
Layer 3
Layer 2
Layer 1

Figure 3: Layers of an 8×8 grid.

3.3 Usable Wires for NoCs
To gain more insight on how many wiring resources are

usable for on-chip networks under current manufacturing
technologies, we estimated the number of usable wires by
taking into account the above factors. The estimation is based
on using two metal layers to route wires over the cores. The
area overhead of the repeater insertion including the via con-
tacts and the area occupation of the repeaters are considered
based on the layout design rules of each metal layer. We used
the conservative way of shielding to reduce crosstalk noises
(and the inserted wires are not counted towards usable wires),
although spacing may likely offer more usable wires. In addi-
tion, in practice, 20% to 30% of each dedicated metal layer
for routing wires over the cores is used for I/O signals, power,
and ground connections [32]. This overhead is also accounted
for. The maximum values of h and K are used for worst-case
estimation. As such, the above method gives a very conser-
vative estimation of the usable wires. Assuming that there
is a chip with similar physical configuration as Table 2, the
two metal layers M4 and M5 under 14nm technology can
provide 101,520 wires in the cross-section. This translates
into 793 unidirectional links of 128-bit, or 396 unidirectional
links of 256-bit, or 198 unidirectional links of 512-bit in the
cross-section. In contrast, a 6×6 mesh only uses 12 unidi-
rectional 256-bit links in the bisection, which is about 3% of
the usable wires. It is important to note that the conventional
router-based NoCs do not use very wide links for good rea-
sons. For instance, router complexity (e.g., the number of
crosspoints in switches, the size of buffers) increases rapidly
as the link width increases. Also, although wider links pro-
vide higher throughput, it is difficult to capitalize on wider
links for lower latency. The reduction in serialization latency
by using wider links quickly becomes insignificant as link
width approaches the packet size. This motivates the need
for designing routerless NoCs where wiring resources can be
used more efficiently.

The above estimation of the number of usable wires helps
to decide the overlapping cap mentioned previously. To avoid
taxing too much on the usable wiring resources and to have a
scalable design, we propose to use an overlapping cap of n
for n×n chips. In the above 6×6 case, this translates into
4.5% of the usable wires for 128-bit loop width, or 9.1% for
256-bit loop width. This parameterized overlapping cap helps
to provide the number of loops that is proportional to chip
size, so the quality of the routerless designs can be consistent
for larger chips.

4. DESIGNING ROUTERLESS NOCS

4.1 Basic Idea



Layer 1 = +
Figure 4: Loops in L1, and M2 = L1.

Our proposed routerless NoC design is based on what we
call layered progressive approach. The basic idea is to select
the loop set in a progressive way where the design of a large
routerless network is built on top of the design of smaller
networks. Each time the network size increments, the newly
selected loops are conceptually bundled as a layer that is
reused in the next network size.

Specifically, let Mk be the final set of selected loops for
k×k grid (2≤ k≤ n) that meets the connectivity, overlapping
and low hop count requirements. We construct Mk+2 by
combining Mk with a new set (i.e., layer) of smartly placed
loops. The new layer utilizes new wiring resources that are
available when expanding from k× k to (k+2)× (k+2).
The resulting Mk+2 can also meet all the requirements and
deliver superior performance. For example, as shown in
Figure 3, the grid is logically split into multiple layers with
increasing sizes. Let Lk be the set of loops selected for Layer
k. Firstly, suppose that we already find a good set of loops
for 2× 2 grid that connects all the nodes with a low hop
count and does not exceed an overlapping of 2 between any
neighboring nodes. That set of loops is M2, which is also L1
as this is the base case. Then we find another set of loops
L2, together with M2, can form a good set of loops for 4×4
grid (i.e., M4 = L2 ∪M2). The resulting M4 can connect
all the nodes with a low hop count and do not exceed an
overlapping of 4 between any neighboring nodes. And so on
so forth, until reaching the targeted n×n grid. In general, we
have Mn = Lbn/2c∪Mn−2 = Lbn/2c∪Lbn/2c−2∪Mn−4 = . . .=
Lbn/2c∪Lbn/2c−2∪Lbn/2c−4∪ . . .∪L1.

Apparently, the key step in the above progressive process
is how to select the set of loops in Layer k, which enables
the progression to the next sized grid with low hop count and
overlapping. In the next subsections, we walk through several
examples to illustrate how it is done to progress from 2×2
grid to 8×8 grid.

4.2 Examples

4.2.1 2×2 Grid
This is the base case with one layer. There are exactly two

possible loops, one in each direction, in a 2× 2 grid. Both
of them are included in M2 = L1, as shown in Figure 4. The
resulting M2 satisfies the requirement that every source and
destination pair is connected by at least one loop. The maxi-
mum number of loops overlapping between any neighboring
nodes is 2, which meets the overlapping cap. This set of
loops achieves a very low all-pair average hop count of 1.333,
which is as good as the Mesh.

4.2.2 4×4 Grid
M4 consists of loops from two layers. Based on our layered

progressive approach, L1 is from M2. We select 8 loops to
form L2, as illustrated in Figure 5. The 8 loops fall into four
groups (from this network size and forward, each new layer
is constructed using four groups with the similar heuristics as
discuss below). The first group, A4 (the subscript indicates the

size of the grid), has only one anti-clockwise loop. It provides
connectivity among the 12 new nodes when expanding from
Layer 1 to Layer 2. The loops in the second group, B4, have
the first column as the common edge of the loops, but the
opposite edge of the loops moves gradually towards the right
(this is more evident in group B6 in Figure 6). Similarly, the
third group, C4, uses the last column as the common edge
of the loops and gradually moves the opposite edge towards
the left. It can be verified that groups B4 and C4 provide
connectivity between the 12 new nodes in Layer 2 and the
4 nodes in Layer 1. Since the connectivity among the 4
inner nodes has already been provided by L1, the connectivity
requirement of 4× 4 grid is met by having L1, A4, B4 and
C4. The fourth group, D4, offers additional “shortcuts” in the
horizontal dimension.

A very nice feature of the selected M4 is that the wiring
resources are efficiently utilized, as the overlapping between
many neighboring node pairs is close to the overlapping cap
of 4. For example, for the first (or the last) column, each
group of loops has exactly one loops passing through that
column, totaling an overlapping of 4, which is the same as
the cap. Thus, no overlapping “ration” is under-utilized. For
the second column (or the third) column, groups A4 and D4
have no loop passing through, and groups B4 and C4 have two
loops passing through in total. However, note that the final
M4 also includes L1 which has two loops passing through the
second (or the third) column. Hence, the total overlapping
of the middle columns is also 4, exactly the same as the
cap. Simple counting can show that the overlapping on the
horizontal dimension is also 4 for each row. Owing to this
efficient use of wiring resource “ration”, the all-pair average
hop count is 3.93 for the selected set of loops in M4. The
final set is M4 = L2∪M2 = L2∪L1.

4.2.3 6×6 Grid
M6 consists of loops from three layers. L1 and L2 are from

M4, and L3 is formed in a similar fashion as 4×4 grid from
four groups, as illustrated in Figure 6. Again, connectivity is
provided by M4 and groups A to C. Together with group D,
the number of overlapping on each column and row is 6, thus
fully utilizing the allocated wiring resources.

Additionally, for the purpose of reducing hop count and
balancing horizontal and vertical wiring utilization, when
we combine M4 and L3 to form M6, every loop in M4 is
reversed and then rotated for 90◦ clockwise1. If this slightly
changed M4 is denoted as M′4, the final set can be expressed
as M6 = L3∪M′4 = L3∪ (L2∪L1)

′, with an all-pair average
hop count of 6.07.

4.2.4 8×8 Grid
Similar to earlier examples, L4 consists of loops shown

in Figure 7. The final set M8 is M8 = L4∪M′6 = L4∪
(
L3∪

(L2∪L1)
′)′ with an all-pair average hop count of 8.32.

4.3 Formal Procedure
For an n×n grid, the loops for a routerless NoC design can

be recursively found by the procedure shown in Algorithm
1. The procedure is recursive and denoted as RLrec. The
procedure begins by generating loops for the outer layer, say
layer i, and then it recursively generates loops for layer i−1
1In 4×4 grid, reversal and rotation of M2 is not necessary because
M2 and M′2 have the same effect on L1.



Layer 2 = + + + + + + +

D4C4B4
A4

Figure 5: Loops in L2. M4 = L2 ∪L1.

A6 B6

C6 D6
Figure 6: Loops in L3. M6 = L3 ∪L2 ∪L1.

A8
B8

C8 D8
Figure 7: Loops in L4. M8 = L4 ∪L3 ∪L2 ∪L1.

Algorithm 1: RLrec
Input :NL, NH ; the low and high numbers

1 begin
2 if NL = NH then
3 return {}
4 Let M = {}
5 if NH −NL = 1 then
6 M = M ∪ G(NL,NH ,NL,NH , clockwise)
7 M = M ∪ G(NL,NH ,NL,NH , anticlockwise)
8 return M
9 M = M ∪ G(NL,NH ,NL,NH , anticlockwise) // Group A

10 for i = NL +1→ NH −1 do
11 M = M ∪ G(NL,NH ,NL, i, clockwise) // Group B
12 M = M ∪ G(NL,NH , i,NH , clockwise) // Group C
13 for i = L→ H−1 do
14 M = M ∪ G(i, i+1,NL,NH , clockwise) // Group D

15 M′ = RLrec(NL+1, NH -1)
16 Reverse and rotate for 90◦ every loop in M′

17 return M∪M′

and so on until the base case is reached or the layer has a
single node or empty. Procedure G(r1,r2,c1,c2,d) is a simple
function that generates a rectangular shape loop with corners
(r1,c1), (r1,c2), (r2,c1) and (r2,c2) and direction d. When
processing each layer in this algorithm, procedure G is called
repeatedly to generate four groups of loops. Additionally,
the generated loops rotate 90 degrees and reverse directions
after processing each layer to balance wiring utilization and
reduce hop count, respectively. The final loops generated by
the RLrec algorithm have an overlapping of at most n.

While it would be ideal if an analytical expression can be
derived to calculate the average hop count for this heuristic

Injection  
Link

Ejection 
Links

Loop 1

Loop m

Routing  
 Table

A
 p

oo
l o

f E
X

B
s

Link Selector  
 & arbitrator

Output 1

Output m

Single flit 
buffer

Single flit 
buffer EXB 1

EXB k

Figure 8: Routerless interface components.

approach, this seems to be very challenging at the moment.
However, it is possible to calculate the average hop count
numerically. This result is presented in the evaluation, which
shows that our proposed design is highly scalable.

5. IMPLEMENTATION DETAILS
After addressing the key issue of finding a good set of

loops, the next important task is to efficiently implement the
routerless NoC design in hardware. Because of the routerless
nature, no complex switching or virtual channel (VC) struc-
ture is needed at each hop, so the hardware between nodes
and loops has a small area footprint in general. However, due
to various potential network abnormalities such as deadlock,
livelock, and starvation, a certain number of resources are
required to guarantee correctness. If not addressed appropri-
ately, this may cause substantial overhead that is comparable
to router-based NoCs. In this section, we propose a few



𝐴"

Clock cycle i

Injection Q
ZX Y

Clock cycle i+1

Injection Q
ZX Y

Clock cycle i+2

Injection Q
ZX Y

Clock cycle i+3

Injection Q
ZX Y

𝐵"𝐵$ 𝐵%

𝐴" 𝐴% 𝐴&

𝐵$

𝐴% 𝐴$𝐶" 𝐵"

𝐵% 𝐵$

𝐴%𝐵% 𝐵$𝐴" 𝐴$ 𝐴"

Figure 9: Injecting a long packet requires a packet-sized buffer per loop at each hop in prior implementation (X, Y and Z are interfaces).

effective techniques to minimize those overhead.
In a routerless NoC, each node uses an interface (RL inter-

face) to interact with one or multiple loops that pass through
this node. Figure 8 shows the main components of a RL
interface. While details are explained in the following subsec-
tions, the essential function of the interface includes injecting
packets into a matching loop based on connectivity and avail-
ability, forwarding packets to the next hop on the same loop,
and ejecting packets at the destination node. Notice that pack-
ets cannot switch loops once injected. All the loops have the
same width (e.g., 128-bit wires).

5.1 Injection Process

5.1.1 Extension Buffer Technique
A loop is basically a bundle of wires connected with flip-

flops at each hop (Figure 8). At clock cycle i, a flit arriving
at the flip-flop of loop l must be consumed immediately by
either being ejected at this node or forwarded to the next hop
on loop l through output l. If no flit arrives at loop l (thus
not using output l), the RL interface can inject a new flit
on loop l through output l. However, it is possible that an
injecting packet consists of multiple flits and requires several
cycles to finish the injection, during which other flits on loop
l may arrive at this RL interface. Therefore, addition buffer
resources are needed to hold the incoming flits temporarily.

If routerless NoC uses the scheme proposed in prior ring-
based work (e.g., IMR [28]), a full packet-sized buffer per
loop at each hop would be needed to ensure correctness,
which is very inefficient. As illustrated in Figure 9, a long
packet B with multiple flits is waiting for injection (there is
no issue if it is a short single-flit packet). At clock cycle i, the
injection is allowed because packet B sees that no other flit in
Interface Y is competing with B for the output to Interface Z.
From cycle i+1 to i+3, the flits of B are injected sequentially.
However, while packet B is being injected during these cycles,
another long packet A may arrive at Interface Y . Because RL
interfaces do not employ flow control to stop the upstream
node, Interface Y needs to provide a packet-sized buffer to
temporarily store the entire packet A. A serious inefficiency
lies in the fact that, if there are m loops passing through a RL
interface, the interface needs to have m packet-sized buffers,
one for each loop.

To address this inefficiency, we notice that an interface
injects packets one at a time, so not all the loops are affected
simultaneously. Based on this observation, we propose the
extension buffer technique to share the packet-sized buffer
among loops. As shown in Figure 8, each loop has only
a flit-sized buffer, but the interface has a pool of extension
buffers (EXBs). The size of each EXB is the size of a long
packet, so when a loop is “extended” with an EXB, it would
be large enough to store a long packet. Minimally, only
one EXB is needed in the pool, but having multiple EXBs
may have slight performance improvement. This is because
another injection might occur while the previous EXB is not

entirely released (drained) due to a previous injection (e.g.,
clock cycle i+ 3 in Figure 9). However, as shown later in
the evaluation, the performance difference is negligible. As a
result, our proposed technique of using one shared EXB can
essentially achieve the same objective of ensuring correctness
as IMR but reduces the buffer requirement by m times. This
is equivalent to an 8X saving in buffer resources in 8× 8
networks and 16X saving in 16×16 networks.

5.1.2 Injection Process
The injection process with the use of EXBs is straight-

forward. To inject a packet p of n f flits, the first step is to
look up a small routing table to see which loop can reach
p’s destination. The routing table is pre-computed since all
the loops are pre-determined. The packet p then waits for
the loops to become available (i.e., having sufficient buffer
space). Assume l is a loop that has the shortest distance to the
destination among all the available loops. When the injection
starts, the interface holds the output port of l for n f cycles
to inject p, and assigns a free EXB to l if n f > 1 and l is not
already connected to another EXB. During those n f cycles,
any incoming flit through the input port of l is enqueued
in the extension buffer. The EXB is released later when its
buffer slots are drained.

5.2 Ejection Process
The ejection process starts as soon as the head flit of a

packet p reaches the RL interface of its destination node.
The interface ejects p, one flit per cycle. Once p is ejected,
the interface will wait for another packet to eject. There is,
however, a potential issue with the ejection process. While
unlikely, a RL interface with m loops may receive up to m
head flits simultaneously in a given cycle that are all des-
tined to this node. Because any incoming packets need to
be consumed immediately and the packets are already at the
destination, the interface needs to have m ejection links in
order to eject all the packets in that cycle. As each eject
link has the same width as the loop (i.e., 128-bit), this incurs
substantial hardware overhead.

To reduce this overhead, we utilize the fact that the actual
probability of having k packets (1 < k ≤ m) arriving at the
same destination in the same cycle is low, and this probability
decreases drastically as k increases. Based on this observa-
tion, we propose to optimize for the common case where only
e ejection links are provided (e� m). If more than e packets
arrive at the same cycle, (k− e) packets are forwarded to the
next hop. Those deflected packets will continue on their re-
spective loops and will circle back to the destination later. As
shown in the evaluation, having two ejection links can reduce
the percentage of circling packets to be below 1% on average
(1.6% max) across the benchmarks. This demonstrates that
this is a viable and effective technique to reduce overhead.

5.3 Avoiding Network Abnormalities
As network abnormalities are theoretically possible but



practically unlikely scenarios, our design philosophy is to
place very relaxed conditions to trigger the handling proce-
dures, so as to minimize performance impact while guaran-
teeing correctness.

5.3.1 Livelock Avoidance
A livelock may occur if a packet circles indefinitely and

never gets a chance to eject. We address this issue by having
a byte-long circling counter at each head flit with an initial
value of zero. Every time a packet reaches its destination
interface and is forced to be deflected, the counter is incre-
mented by 1. If the circling counter of a packet p reaches
254 but none of the ejection link is available, the interface
marks one of its ejection links as reserved and then deflects p
for the last time. The marked ejection link will not eject any
more packets after finishing the current one, until p circles
back to the ejection link (by then the marked ejection link
will be available; otherwise there is a possible protocol-level
deadlock, discussed shortly). Once p is ejected, the interface
will unmark the ejection link for it to function normally. Due
to the extremely low circling percentage (maximum 3 times
of circling for any packet in our simulations), this livelock
avoidance scheme has minimal performance impact.

5.3.2 Deadlock Avoidance
With no protocol-level dependence at injection/ejection

endpoints, routing-induced deadlock is not possible in router-
less NoCs as packets arriving at each hop are either ejected or
forwarded immediately. Hence, a packet can always reach its
destination interface without being blocked by other packets.
The above livelock avoidance ensures that the packet can be
ejected within a limited number of circlings.

With more than one dependent packet types, the marked
ejection link in the above livelock avoidance scheme may
not able to eject the current packet (say a request packet) in
the ejection queue, because the associated cache controller
cannot accept new packets from the ejection queue (i.e., input
of the controller). This may happen when the controller itself
is waiting for packets (say a reply packet) in the injection
queue (i.e., output of the controller) to be injected into the
network. A potential protocol-level deadlock may occur if
that reply packet cannot be injected, such as the loop is full
of request packets that are waiting to be ejected.

To avoid such protocol-level deadlock, the conventional
approach is to have a separate physical or virtual network for
each dependent packet type. While similar approach can be
used for routerless NoCs, here we propose a less resource
demanding solution. which is made possible by the circling
property of loops. This solution only needs an extra reserved
EXB, as well as a separate injection and ejection queue for
each dependent packet type. The separate injection/ejection
queues can come from duplicating original queues or from
splitting the original queues to multiple queues. In either case,
the loops and wiring resources are not duplicated, which is
important to keep the cost low. Following the above livelock
avoidance scheme, when a packet p on loop l completes
the final circling (counter value of 255) and finds that the
marked ejection link is still not available, p is temporarily
buffered in the reserved EXB instead of forwarding to output
l. Meanwhile, we allow the head packet q in the injection
queue of the terminating packet type (e.g., a reply packet
in the request-reply example) to inject into loop l through
output l. Once q is injected, the cache controller is able to put

another reply packet in its output (i.e., the injection queue)
which, in turn, allows the controller to accept a new request
from its input (i.e., the ejection queue). This creates space
in the ejection queue to accept packet p that is previously
stored in the reserved EXB. Once p moves to the ejection
queue, the EXB is freed. Essentially, the reserved EXB
acts as a temporary exchanging space while the separate
injection/ejection queues avoid blocking of different packet
types at the endpoints.

5.3.3 Starvation Avoidance
The last corner case we address is starvation. With the

previous livelock and deadlock handling, if a packet is con-
sumed at its destination RL interface, the interface can use
the free output to inject a new packet. However, it is possible
that a particular interface X is not the destination of any pack-
ets and there is always a flit passing through X every single
cycle. This never occurred in any of our experiments as it
is practically impossible that a cache bank is not accessed
by any other cores. However, it is theoretically possible and,
when occurred, prevents X from injecting new packets. We
propose the following technique to avoid starvation for the
completeness of the routerless NoC design. If X cannot inject
a packet after a certain number of clock cycles (a very long
period, e.g., hundreds of thousand cycles or long enough to
have negligible impact on performance), X piggybacks the
next passing head flit f with the ID of X. When f is ejected at
its destination interface Y, instead of injecting a new packet, Y
injects a single-flit no-payload dummy packet that is destined
to X. When the dummy packet arrives at X, X can now inject
a new packet by using the free slot created by the dummy
packet. This breaks the starvation configuration.

5.4 Interface Hardware Implementation
Figure 8 depicts the main components of a RL interface.

We have explained the extension buffers (EXBs), single-flit
buffers, routing table, and multiple ejection links in the pre-
vious subsections. The arbitrator receives flits from input
buffers and selects up to e input loops for ejection based on
the oldest first policy. The arbitrator contains a small register
that holds the arbitration results. The link status selector is a
simple state machine associated with the loops. It monitors
the input loops and arbitration results, and changes the state
of the loops (e.g., ejection, stall in extension buffers, etc.) in
the state machine. There are several other minor logic blocks
that are not shown in Figure 8 for better clarity. Note that
the RL interface does not use the information of neighboring
nodes, which differs from most conventional router-based
NoCs that need credits or on/off signals for handshaking.

To ensure the correctness of the proposed interface hard-
ware, we implement the design in RTL Verilog that includes
all the detailed components. The Verilog implementation is
verified in Modelsim, synthesized in Synopsys Design Com-
piler, and placed and routed using Cadence Encounter tool.
We use the latest 15nm process NanoGate FreePDK 15 Cell
Library [29] for more accurate evaluation. As a key result,
the RL interface is able to operate at up to 4.3GHz frequency
while keeping the packet forwarding process in one clock
cycle. This is fast enough to match up with most commercial
many-core processors. Injecting packets may take an addi-
tional cycle for table look-up. In the main evaluation below,
both the interfaces and cores are operating at 2GHz.



0
0.05
0.1
0.15
0.2
0.25
0.3

(1 ,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3 ,1) (3,2) (3,3) (16,16)Th
ro
ug
hp
ut
	(
fli
t/
no
de
/c
yc
le
)

(Number	of	ejectors,	Number	of	EXBs)

Uniform Transpose Hotspot Bit	reverse

Figure 10: Throughput of routerless NoC under different number of ejection
links and extension buffers (EXBs).

6. EVALUATION METHODOLOGY
We evaluate the proposed routerless NoC (RL) extensively

against Mesh, EVC, and IMR in Booksim [24]. For synthetic
traffic workloads, we use uniform, transpose, bit reverse,
and hotspot (with 8 hotspots nodes). BookSim is warmed
up for 10,000 clock cycles and then collects performance
statistics for another 100,000 cycles at various injection rates.
The injection rate starts at 0.005 flit/node/cycle and is in-
cremented by 0.005 flit/node/cycle until the throughput is
reached. Moreover, we integrate Booksim with Synfull [6]
for performance study of PARSEC [11] and SPLASH-2 [39]
benchmarks. Power and area studies are based on Verilog
post-synthesis simulations, as described in Section 5.4.

In the synthetic study, each router in Mesh is configured
with relatively small buffer resources, having 2 VCs per link
and 3 flits per VC. The link width is set to 256-bit. Also, the
router is optimized with lookahead routing and speculative
switch allocation to reduce pipeline stages to 2 cycles per
router and 1 cycle per link. EVC has the same configuration
as Mesh except for one extra VC that is required to enable
express channels. For IMR, the ring set is generated by the
evolutionary approach described in [28]. To allow a fair com-
parison with RL, the maximum number of overlapping cap,
for both RL and IMR, is set to n for n×n NoC. We also fol-
low the original paper to faithfully implement IMR’s network
interface. Each input link in an IMR’s interface is attached
with a buffer of 5 flits and the link width is set to 128-bit
(the same as the original paper). In RL, loops are generated
by RLrec algorithm and accordingly the routing table for
each node is calculated. Each interface is configured with
two ejection links and each input link has a flit-size buffer.
Also, an EXB of 5 flits is implemented in each interface. The
link width is 128-bit (the same as IMR). In all the designs,
packets are categorized into data and control packets where
each control packet has 8 bytes and each data packet has 72
bytes. Accordingly, data packets in Mesh, EVC, IMR, and
RL are of 3, 3, 5 and 5 flits, respectively, and the control
packets are of a single flit.

For benchmark performance study, we also add 2D Mesh
with various configurations as well as a 3D Cube design
into the comparison. RL has the same configuration as the
synthetic study. For 2D Mesh, we use 9 configurations, each
having the configuration M(x,y) where x ∈ {1,2,3} is the
router delay and y ∈ {1,2,3} is the buffer size, i.e., routers
with 1-cycle, 2-cycle and 3-cycle delay, and with 1-flit, 2-flit
and 3-flit buffer size. 3D Cube is configured with 2 VCs per
link, 3 flits per VC, and 2-cycle per hop latency.

7. RESULTS AND ANALYSIS

7.1 Ejection Links and Extension Buffers

The proposed RL scheme is flexible to use any number of
ejection links and EXBs. On the ejection side, the advantages
of having more ejection links are higher chance for packet
ejection and lower chance for packet circling in a loop. How-
ever, adding more ejection links complicates the design of
the interface and leads to additional power and area overhead
in the interface and the receiving node. On the injection
side, EXBs have a direct effect on the injection latency of
long packets. Recall that, a loop must be already attached
with an EXB or a free EXB is available to be able to inject
a long packet. Similar to ejection links, having more EXBs
can lower injection latency but incur larger area and power
overhead.

We studied the throughput of RL with different configura-
tions of ejection links and EXBs on various synthetic traffic
patterns. The NoC size for this study is 8× 8. The results
are shown in Figure 10. In the figure, each configuration
is denoted by (x,y) where x is the number of ejection links
and y is the number of EXBs. The basic and best in terms
of area and power overhead is (1,1) configuration but it has
the worst performance. By adding up to three EXBs with a
single ejection link, the throughput is only slightly changed
(less than 5%). This indicates that the number of EXBs is not
very critical to performance, and it is possible to use only one
EXB for injecting long packets while saving buffer space.

For (2,1) configuration, it doubles the chance for packet
ejection when compared to (1,x) configurations. The through-
put is notably improved by an average of 38% for all the pat-
terns when compared to (1,1) configurations. For instance,
hotspot traffic pattern has 0.125 throughput in (2,1) configu-
ration but only 0.065 in (1,1), a 92.5% improvement). How-
ever, on top of (2,1) configuration, adding up-to three EXBs
(i.e., (2,3)) improves throughput only by 5% on average.

Given all the results, we choose the (2,1) configuration as
the best trade-off point, and use it for the remainder of this
section. We also plot the (16,16) configuration which is the
ideal case (no blocking in injection or ejection may happen).
As can be seen, (2,1) is very close to the ideal case. Section
7.3 provides a detailed study for the number of times packet
circling in loops for the (2,1) configuration.

7.2 Synthetic Workloads
Figure 11 plots the performance results of four synthetic

traffic patterns for an 8×8 NoC. RL has the lowest zero-load
packet latency in all four traffic patterns. For example, in uni-
form random, the zero-load packet latency is 21.2, 14.9, 10.5,
and 8.3 cycles for Mesh, EVC, IMR, and RL, respectively.
When averaged over the four patterns, RL has an improve-
ment of 1.59x, 1.43x, and 1.25x over Mesh, EVC, and IMR,
respectively. RL achieves this due to low per hop latency
(one cycle) and low hop count.

In terms of throughput, the proposed RL also has advantage
over other schemes. For example, the throughput for hotspot
is 0.08, 0.05, 0.06, and 0.125 (per flit/node/cycle) for Mesh,
EVC, IMR, and RL, respectively. In fact, RL has the highest
throughput for all the traffic patterns. When averaged over
the four patterns, RL improves throughput by 1.73x, 2.70x,
and 1.61x over Mesh, EVC, and IMR, respectively. This is
mainly owing to the better utilization of wiring resources in
RL. Note that, EVC has a lower throughput than Mesh as
EVC is essentially a scheme that trades off throughput for
lower latency at low traffic load.

7.3 PARSEC and SPLASH-2 Workloads



Mesh EVC IMR RL

5

15

25

35

45

0.005 0.06 0.115

Av
er

ag
e 

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Hotspot5

15

25

35

45

0.005 0.06 0.115 0.17 0.225

Av
er

ag
e 

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Bit reverse
5

15

25

35

45

0.005 0.06 0.115 0.17 0.225

Av
er

ag
e 

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Transpose5

15

25

35

45

0.005 0.06 0.115 0.17 0.225

Av
er

ag
e 

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Uniform

Figure 11: Performance comparison for synthetic traffic patterns.

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

Figure 12: PARSEC and SPLASH-2 benchmark performance results (y-axis represents average pack latency in cycles.) RL is compared with different Mesh
configurations, EVC, and IMR in (a), (b) and (c). In (d), RL is also compared with a 3D Cube.

0% 

20% 

40% 

60% 

80% 

100% 

120% 

140% 

160% 

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

water_spatialwater_nsquare barnes blackscholes bodytrack cholesky facesim fft fluidanimate lu_cb lu_ncb radiosity radix raytrace swaptions volrend AVG

Br
ea
kd
ow

n	
of
	N
oC

Po
w
er
	(n
or
m
al
ize

d	
to
	M

es
h)

Dynamic Power Static Power

Figure 13: Breakdown of power consumption for different PARSEC and SPLASH-2 workloads (normalized to Mesh).

We utilize Synfull and Booksim to study the performance
of RL, 2D Mesh with different configurations, EVC, IMR,
and a 3D Cube under 16 PARSEC and SPLASH-2 bench-
marks. The NoC sizes under evaluation are 4×4, 8×8 and
16×16 for RL, 2D Mesh, EVC and IMR, and 4×4×4 for
3D cube. Figure 12 shows the results.

In Figure 12(a)-(c), RL is compared against 2D Mesh, EVC
and IMR. From the figures, the best configuration for Mesh is
M(1,5) (i.e. per hop latency of 1 and buffer size of 5) and the
worst is M(3,1). Lowering per hop latency in Mesh helps to
improve overall latency, and reducing buffer sizes may cause
packets to wait longer for credits and available buffers. The
average packet latency of RL in 4×4, 8×8, and 16×16 are
4.3, 8.9 and 20.1 cycles, respectively. This translates into
an average latency reduction of RL over M(1,5) by 57.8%,
38.4% and 22.2% in 4× 4, 8× 8 and 16× 16, respectively.
The IMR rings in 16×16 are very long and seriously affects
its latency. RL reduces the average latency by 23.3% over
EVC and 41.2% over IMR.

In Figure 12(d), the performance of 3D cube is clearly
better than all the Mesh configurations in (b) mainly due to
lower hop count and larger bisection bandwidth. Despite this,
RL still offers better performance than 3D cube. The average
latency of RL is 8.9 cycles, which is 41% lower than the 15.2
cycles of 3D cube.

7.4 Power
Figure 13 compares the power consumption of Mesh (i.e.

M(2,3)), EVC, IMR and RL for different benchmarks, nor-
malized to the Mesh. All the power consumption shown in
this Figure are reported after P&R in NanGate FreePDK 15
Cell Library [29] by Cadence Encounter. The activity factors
for the power measurement are obtained from Booksim, and
the power consumption includes that of all the wires.

The average dynamic power consumption for RL is only
0.26mW, and for Mesh, EVC and IMR the average is 2.88mW,
4.27mW and 2.91mW, respectively. Because RL has no cross-
bar, it requires only 9%, 6.1% and 8.9% of the dynamic power
consumed by Mesh, EVC and IMR, respectively. Meanwhile,



45281 µm2

IMR

6286 µm2

RL

Mesh

20930 µm228516 µm2

Bufferless

Figure 14: Area comparison under 15nm technology.

static power is mostly consumed by buffers. Unlike Mesh,
EVC and IMR, RL has a much lower buffer requirement.
As a result, RL consumes very low static power of 0.18mW
on average, while Mesh, EVC and IMR consume 1.39mW,
1.64mW and 0.58mW, respectively. Adding dynamic and
static power together, on average, RL reduces the total NoC
power consumption by 9.48X, 13.1X and 7.75X over Mesh,
EVC and IMR, respectively.

7.5 Area
Figure 14 compares the router or interface area of the

different schemes we are studying. The results are obtained
from Cadence Encounter after P&R2. We also add a bufferless
design to the comparison. The largest area is 60731µm2

for EVC (not shown in the figure) followed by 45281µm2,
28516µm2, 20930µm2 and 6286µm2 for Mesh, Bufferless,
IMR and RL, respectively. The EXB and ejection link sharing
techniques as well as the simplicity of the RL interface are
the main contributors for the significant reduction of area
overhead. Overall, RL has an area saving of 89.6%, 86.1%,
77.9% and 69.9% compared with EVC, Mesh, Bufferless3

and IMR, respectively.
The wiring area is not included as wires are spread through-

out the metal layers and cannot be compared directly. We do
acknowledge that IMR and RL use more wiring resources
than other designs. RL uses a small percentage of middle
metal layers for wires and, as a result, more repeaters are
needed. The total area for all the link repeaters is 0.127mm2

which is 4.3% of the mesh router area. However, as middle
layers are above the logic area, RL is unlikely to increase the
chip size.

0

10

20

30

40

4x4 8x8 16x16Av
er

ag
e 

Ho
p 

co
un

t

Bit reverse

0

10

20

30

40

4x4 8x8 16x16Av
er

ag
e 

Ho
p 

co
un

t

Transpose

0

10

20

30

40

4x4 8x8 16x16Av
er

ag
e 

Ho
p 

co
un

t

Uniform 

0

50

100

150

200

4x4 8x8 16x16Av
er

ag
e 

Ho
p 

co
un

t 

Hotspot

RLIMROptimal Mesh

31
1.

4
12

8.
7

12
5.

8
13

2.
9

Figure 15: Average hop count for synthetic workloads.

8. DISCUSSION

8.1 Scalability and Regularity
2Our CAD tools limit P&R for processing cores.
3In addition to area reduction, RL also has 2.8X higher throughput
(under UR) and 64.3% lower latency than bufferless NoC.

Table 3: Average overlapping and loops/rings in RL/IMR

Network Overlap 
cap

Avg overlap(%) 
of links

Max loops/
rings in node

Avg loops/
rings(%) in node

Longest 
loop/ring

RL 4x4 4 3.33 (83.3%) 6 5 (62%) 12

IMR 4x4 4 2.33 (58.3%) 4 3.5 (43%) 14

RL 8x8 8 6 (75%) 14 10.5 (65%) 28

IMR 8x8 8 4.71 (58.9%) 10 8.2 (54%) 48

RL 16x16 16 11.33 (70.8%) 30 21.2 (66%) 60

IMR 16x16 16 8.13 (50.8%) 18 15.2 (47%) 240

�1

Figures 11 and 12 already showed the advantage of RL in
terms of latency and throughput for large networks. Figure 15
further compares the average hop count (zero-load hop count)
of RL, IMR, and optimal Mesh. As can be seen, IMR has
very high average hop count because of its lengthy rings. In
contrast, the average hop count of RL is only slightly higher
than optimal Mesh. Note that RL achieves this low hop count
without having the switch capability of conventional routers.

Routerless NoC is not as irregular as it appears in the fig-
ures. In our actual design and evaluation, all the RL interfaces
use the same design (some ports are left unused if no loops
are connected), so the main irregularity is the way that links
form loops. One way to quantify the degree of link irregular-
ity is how many different possible lengths of links, which is
n−1 for n×n NoC. This degree is similar to that of Flattened
Butterfly [25] and MECS [18].

8.2 Average Overlapping
We discussed before that as long as the overlapping cap is

met, it is beneficial to approach this cap for as many neigh-
boring node pairs as possible to increase resource utilization
and improve performance. Table 3 presents this statistics
for RL and IMR. It can be seen that the average overlapping
between adjacent nodes in RL is at least 20% more than that
of IMR. Also, the longest loop in RL is always shorter than
the longest ring in IMR, and the difference increases as the
NoC gets bigger. Shorter loops reduce average hop count and
offer a lower latency. For example, in 16× 16 the longest
loop in RL is of 60 nodes while in IMR it is of 240 nodes.

8.3 Impact on Latency distribution

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39Pe
rc
en

ta
ge
	o
f		p

ac
ke
ts

Average	latency	(cycles)

%

%

%

%

%

%

Figure 16: Latency distribution of benchmarks for RL 8×8 NoC.

The extension buffer technique and the reduced ejection
link technique save buffer resources at the risk of increas-
ing packet latency. Figure 16 shows distribution of average
packet latency, averaged over different benchmarks. The RL
interface is configured the same as previous sections with one
EXB and two ejectors. The take away message from the fig-
ure is that the two techniques has minimal impact on latency
under tight resource allocation. For example, the average
packet latency is only 8.3 cycles for RL, and only 0.71% of
the packets having latency larger than 20 cycles, with the



largest being 39 cycles. The tail in the latency distribution is
thin and short.

8.4 RL for n x m Chip
The RL design can be easily extended to any n×m network

sizes. The RL interface design and functionalities remain un-
changed. The RLrec algorithm needs to be modified slightly.
With rectangular shapes instead of squares, NL and NH are
not sufficient to denote the four corners of a layer. Two more
variables are needed to specify the corners of a layer correctly.
For Instance, NLr and NHr for low and high rows, and NLc
and NHc for low and high columns. Once a layer is correctly
specified, the four groups of loops can be generated in similar
fashion. The rotation step is skipped as this is not possible for
rectangular networks, but the reversing direction step remains.
The overlapping calculation needs to reflect the orientation
of the rectangular loops as well.

9. CONCLUSION
Current and future many-core processors demand highly

efficient on-chip networks to connect hundreds or even thou-
sands of processing cores. In this paper, we analyze on-chip
wiring resources in detail, and propose a novel routerless
NoC design to remove the costly routers in conventional
NoCs while still achieving scalable performance. We also
propose an efficient interface hardware implementation, and
evaluate the proposed scheme extensively. Simulation re-
sults show that the proposed routerless NoC design offers
significant advantage in latency, throughput, power and area,
compared with other designs. These results demonstrate the
viability and potential benefits of the routerless approach, and
also call for future works that continue to improve various
aspects of routerless NoCs such as performance, reliability,
and power efficiency.

Acknowledgments
We sincerely thank the anonymous reviewers for their helpful
comments and suggestions. We appreciate the authors of
IMR [28] for sharing the source code of generating IMR.
We also thank Timothy M. Pinkston for providing valuable
feedback to the work. This research was supported, in part,
by the National Science Foundation (NSF) grants #1619456,
#1566637, #1423656, #1619472 and #1321131.

10. REFERENCES
[1] http://ark.intel.com/products/95830/intel-xeon-phi-processor-7290-

16gb-1_50-ghz-72-core/.
[2] https://oeis.org/A140517.
[3] http://wccftech.com/intel-sc15-knights-landing-14nm-wafer-

specification/.
[4] T. W. Ainsworth and T. M. Pinkston, “On characterizing performance

of the cell broadband engine element interconnect bus,” in
International Symposium on Networks-on-Chip (NOCS), 2007.

[5] R. Arunachalam, E. Acar, and S. R. Nassif, “Optimal
shielding/spacing metrics for low power design,” in IEEE Annual
Symposium on VLSI, 2003.

[6] M. Badr and N. E. Jerger, “Synfull: synthetic traffic models capturing
cache coherent behaviour,” in ISCA, 2014.

[7] L. A. Barroso and M. Dubois, “The performance of cache-coherent
ring-based multiprocessors,” in ISCA, 1993.

[8] ——, “Cache coherence on a slotted ring.” in ICPP, 1991.
[9] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu,

A. Tran, E. Adeagbo, and B. Baas, “A 5.8 pj/op 115 billion ops/sec, to
1.78 trillion ops/sec 32nm 1000-processor array,” in Symposium on
VLSI Circuits, 2016.

[10] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for
effective power-gating of on-chip routers,” in MICRO, 2012.

[11] B. Christian, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, January 2011.

[12] I. Cutress, “Supercomputing 15: Intel’s knights landing xeon phi
silicon on display,” November 2015.

[13] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in DAC, 2001.

[14] G. S. Delp, D. J. Farber, R. G. Minnich, J. M. Smith, and M. C. Tam,
“Memory as a network abstraction,” IEEE Network, vol. 5, no. 4, 1991.

[15] C. Fallin, C. Craik, and O. Mutlu, “Chipper: A low-complexity
bufferless deflection router,” in HPCA, 2011.

[16] C. Fallin, X. Yu, G. Nazario, and O. Mutlu, “A high-performance
hierarchical ring on-chip interconnect with low-cost routers,” 2011.

[17] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger,
“Implementation and evaluation of on-chip network architectures,” in
International Conference on Computer Design. IEEE, 2006.

[18] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express cube
topologies for on-chip interconnects,” in HPCA, 2009.

[19] D. Harris and N. Weste, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson/Addison-Wesley, 2005.

[20] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, 2007.

[21] J. Howard, S. Dighe, Y. Hoskote, S. Vangal et al., “A 48-core ia-32
processor in 45 nm cmos using on-die message-passing and dvfs for
performance and power scaling,” IEEE Journal of Solid-State Circuits,
2011.

[22] C.-H. Jan, U. Bhattacharya, R. Brain, S.-J. Choi, G. Curello, G. Gupta,
W. Hafez, M. Jang, M. Kang, K. Komeyli et al., “A 22nm soc platform
technology featuring 3-d tri-gate and high-k/metal gate, optimized for
ultra low power, high performance and high density soc applications,”
in Electron Devices Meeting (IEDM). IEEE, 2012.

[23] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree
multicasting: A case for on-chip hardware multicast support,” in ISCA,
2008.

[24] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally,
G. Michelogiannakis, and J. Kim, “A detailed and flexible
cycle-accurate network-on-chip simulator,” in ISPASS. IEEE, 2013.

[25] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient
topology for high-radix networks,” in ISCA, 2007.

[26] A. K. Kodi, A. Sarathy, and A. Louri, “ideal: Inter-router
dual-function energy and area-efficient links for network-on-chip (noc)
architectures,” in ISCA, 2008.

[27] J. Liu, L. R. Zheng, D. Pamunuwa, and H. Tenhunen, “A global wire
planning scheme for network-on-chip,” in International Symposium on
Circuits and Systems (ISCAS), 2003.

[28] S. Liu, T. Chen, L. Li, X. Feng, Z. Xu, H. Chen, F. Chong, and
Y. Chen, “Imr: High-performance low-cost multi-ring nocs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 6, 2016.

[29] NanGate, Inc. Nangate freePDK15 open cell library. [Online].
Available: http://www.nangate.com

[30] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder,
V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu et al., “A
14nm logic technology featuring 2 nd-generation finfet, air-gapped
interconnects, self-aligned double patterning and a 0.0588 µm 2 sram
cell size,” in IEEE International Electron Devices Meeting, 2014.

[31] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das, “Vichar: A dynamic virtual channel regulator for
network-on-chip routers,” in MICRO, 2006.

[32] D. Pamunuwa, J. Oberg, L. R. Zheng, M. Millberg, A. Jantsch, and
H. Tenhunen, “Layout, performance and power trade-offs in
mesh-based network-on-chip architectures,” in International
Conference on Very Large Scale Integration, 2003.

[33] M. K. Papamichael and J. C. Hoe, “The connect network-on-chip
generator,” Computer, vol. 48, no. 12, 2015.

[34] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards
scalable, energy-efficient, bus-based on-chip networks,” in HPCA,
2010.

[35] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob et al., “An 80-tile 1.28 tflops
network-on-chip in 65nm cmos,” in ISSCC, 2007.

[36] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Eds., Electronic Design
Automation: Synthesis, Verification, and Test. Morgan Kaufmann
Publishers Inc., 2009.

[37] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, 2007.

[38] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,
“The potential of the cell processor for scientific computing,” in
Computing frontiers. ACM, 2006.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological
considerations,” in ISCA, 1995.

http://www.nangate.com

