
Tolerating Soft Errors in Deep Learning Accelerators

with Reliable On-Chip Memory Designs

Arash Azizimazreah*, Yongbin Gu*, Xiang Gu, Lizhong Chen
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, USA
{azizimaa, guyo, guxi, chenliz}@oregonstate.edu

Abstract—Deep learning neural network (DNN) accelerators
have been increasingly deployed in many fields recently, in-
cluding safety-critical applications such as autonomous vehicles
and unmanned aircrafts. Meanwhile, the vulnerability of DNN
accelerators to soft errors (e.g., caused by high-energy particle
strikes) rapidly increases as manufacturing technology continues
to scale down. A failure in the operation of DNN accelerators
may lead to catastrophic consequences. Among the existing
reliability techniques that can be applied to DNN accelerators,
fully-hardened SRAM cells are more attractive due to their low
overhead in terms of area, power and delay. However, current
fully-hardened SRAM cells can only tolerate soft errors produced
by single-node-upsets (SNUs), and cannot fully resist the soft
errors caused by multiple-node-upsets (MNUs). In this paper,
a Zero-Biased MNU-Aware SRAM Cell (ZBMA) is proposed
for DNN accelerators based on two observations: first, the data
(feature maps, weights) in DNNs has a strong bias towards zero;
second, data flipping from zero to one is more likely to cause a
failure of DNN outputs. The proposed memory cell provides a
robust immunity against node upsets, and reduces the leakage
current dramatically when zero is stored in the cell. Evaluation
results show that when the proposed memory cell is integrated
in a DNN accelerator, the total static power of the accelerator is
reduced by 2.6X and 1.79X compared with the one based on the
conventional and on state-of-the-art full-hardened memory cells,
respectively. In terms of reliability, the DNN accelerator based
on the proposed memory cell can reduce 99.99% of false outputs
caused by soft errors across different DNNs.

I. INTRODUCTION

Deep learning neural networks (DNNs) are popular in many
fields such as speech recognition, autonomous vehicles, and
data centers as they can achieve unprecedented accuracy. To
overcome the computation bottleneck of traditional platforms,
researchers proposed specialized DNN accelerators consisting
of up to thousands of processing elements to accelerate the
inference process, such as Google Tensor processing units
(TPUs) [1] and Eyeriss [2].

While DNNs have been increasingly used in many appli-
cations, their reliability is rarely investigated. The primary
unreliable factor in modern systems mainly comes from the
soft errors typically resulted from high-energy particle strikes.
These soft errors can change the stored data (e.g. bit flips),
which may further cause large deviation of standard system
outputs. As silicon devices are scaled down to smaller di-
mensions for a denser integration, the soft error rate (SER)
increases drastically, and has become a major challenge in the
reliability of silicon chips at the terrestrial level [3]–[5]. For

* These authors contributed equally.

instance, suppose that a stream of data from cameras goes
to a DNN accelerator for object detection and classification
in autonomous vehicles [6]. If the autonomous vehicle mis-
classifies a truck or a pedestrian as a flying object due to
soft errors, the vehicle may not execute the brake operation to
avoid the collision [6]. Therefore, the reliability investigation
becomes imperative especially in some safety-critical fields, as
any failure in output may lead to catastrophic consequences.

The power efficiency of the DNN accelerators has also
drawn a wide attention when they are deployed in many power-
constraint environments, like IoTs [7]. As silicon fabrication
technologies are scaled down to smaller dimensions, the static
power caused by leakage current accounts for a major part of
the total chip power [8]–[10]. Among modern DNN acceler-
ators, a significant part of the chip (e.g. 75%) is used for on-
chip buffers. These on-chip buffers are typically implemented
by static random access memories (SRAMs). Hence, a large
amount of power is consumed by the leakage current of
SRAMs. The situation becomes even worst since there is an
increasing trend to use compact data representations in DNNs
to improve the efficiency, as more chip area will be used to
deploy SRAMs. [11]. This trend results in memory-orientated
DNN accelerators as computational units of accelerators is
simplified due to compact data representations, however, larger
on-chip buffer is used to store more data on-chip in order to
reduce the off-chip traffic [12]. Thus, beyond considering the
reliability of the DNN accelerators, static power of the on-chip
memory is also a non-negligible issue when designing power
efficient DNN accelerators.

There are several methods (Error Correction Codes, TMR,
Fully-hardened SRAM cells) that can be used to tolerate
soft errors in DNN accelerators [6]. In terms of area, power
and delay, the fully-hardened SRAM cell techniques become
a promising way to improve the system reliability [13].
However, existing hardened SRAM cells only have limited
capability to tolerate soft errors caused by Multiple-Node-
Upsets (MNUs) while the probability of MNUs in SRAM
cells increases as the fabrication technologies scale down
[3]–[5]. Worse still, compared with a low-leakage SRAM
cell, the existing fully-hardened SRAM cells consume quite
amount of leakage current in a nano-scaled technology which
leads to significant power consumption. In response to these
drawbacks, our objective is to design a memory cell for DNN
accelerators that can eliminate both singe-node-upsets (SNUs)
and MNUs. In the meantime, the proposed cell should have
smaller leakage current compared with other fully-hardened

978-1-5386-8367-5/18/$31.00 ©2018 IEEE

SRAM cells. The main obstacle in achieving the immunity
against MNUs is the positive feedback between storage nodes
within the circuitry of memory cells. This positive feedback is
used to store the data in the cell, however, it is also the main
reason of bit upsets at MNU occurrence in existing memory
cells, even if they are fully-hardened against SNU.

Previous researches [2] [14] [15] have revealed that the data
(feature maps, weights) in DNNs has a strong bias towards
zero. Statistics show that feature maps can have up to 75%
zeros [2] [14], while weights can reach 96% [15]. In addition,
a recent study [6] and our experiment both have observed that
bit flips from zero to one more likely lead to DNN output
failures compared with bit flips from one to zero. Based on
these observations, a novel low-power fully-hardened memory
cell with capability of tolerating MNUs for zero (ZBMA) is
proposed for the DNN accelerators. Our simulation results
show that a DNN accelerator based on our proposed memory
cell can achieve 99.99% protection against soft errors across
different DNNs while the static power is reduced by 1.79X
compared with current state-of-the-art. The main contributions
of this paper are the following:

• Augmenting a light-weight deep learning framework,
Tiny-DNN [16], to enable random fault injection in
different positions for various networks.

• Analyzing fault propagation of three popular networks
(AlexNet, CaffeNet, VGG16) under data path fault injec-
tion and data buffer fault injection.

• Proposing a novel low-power fully-hardened SRAM cell
for DNN accelerators to tolerate soft errors caused by
SNUs and MNUs.

• Developing an integrated evaluation platform to assess
the effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section II pro-
vides the background on DNNs and DNN accelerators. Section
III discusses the motivation for this work. In Section IV, we
describe the proposed approach. Then, section V discusses
evaluation methodology, implementation details, results and
analysis. Finally, Section VI concludes this paper.

II. BACKGROUND

A. Deep Learning Neural Networks
Deep Learning neural networks (DNNs) are widely de-

ployed in many fields [17]–[20] due to the achieved high ac-
curacy. Among DNNs, convolutional neural networks (CNNs)
show outstanding accuracy when performing tasks like clas-
sifications. A CNN is a directed acyclic graph by stacking
multiple computational layers [21]. A higher abstraction of
the input data, called feature maps (fmaps), is extracted to
preserve fundamental and unique information.

Convolutional layers: The essential computation of a CNN
mainly comes from convolutional (CONV) layers, which per-
form multi-dimensional convolutional operations. The modern
CNNs can consist of three to hundreds of CONV layers [22]–
[25]. In each CONV layer, multi-dimensional filters (also
called kernels or weights) are applied on input feature maps
(IFMs) to extract visual features to generate output feature
maps (OFMs). Typically, generated results are being processed
by an activation (ACT) function (e.g. ReLU) before becoming
the input of the next layers.

PE
Cell

PE
Cell

inter PE
network

PSUMs
/OFMs

Off Chip
Memory

PE
Cell

PE
Cell

OFM
Buffer

PSUMs

IFM
Buffer

Weight
Buffer

Control
Engine

(a) DNN Accelerator

X

+

s

s

s
s

S: Scratchpad

(b) PE cell

Fig. 1: DNN accelerator architecture.

Fully-Connected layers: A small number (e.g. 1-3) of
fully-connected (FC) layers are usually stacked after the
CONV layers to conduct the final classification tasks.

Pooling & Normalization layers: Between CONV layers
and FC layers, optional layers, such as pooling (POOL),
normalization (NORM), can be added. A POOL layer can
reduce the size of feature maps by locally selecting the
maximum input data and discarding the rest. The NORM layer
averages its input data based on the surrounding input data.

The deployment procedure of CNNs is performed in two
steps. First, the network is trained with a dataset for a
specific application to achieve the expected accuracy. The
training process is usually conducted off-line once as the huge
amount of computation is very time-consuming. Second, the
network is deployed into a platform performing inferences.
The continuous flow of the input data is fed to the well-trained
network to perform the real-time inference on each input data
after deployment.

B. DNN Accelerator Architecture
In many deep neural network applications, inference oper-

ations should be performed within a fraction of second due to
the maximum latency requirement (e.g. autonomous vehicles,
IoT status monitoring) . However, DNNs are very computation
and memory intensive [26], which makes general purpose
platforms prone to be the bottleneck in processing DNNs [26].
Consequently, DNN accelerators are much needed to meet
latency constraints in many applications. Current state-of-the-
art DNN accelerators evaluate the network sequentially in a
layer-by-layer fashion. A typical DNN accelerator has an array
of processing elements (PEs) and various on-chip buffers. As
shown in Fig. 1, the processing element (PE) arrays fetch input
feature maps (IFMs) pixels (Tn pixels) from the input buffer,
weights from the weight buffer, partial sums (PSUMs) from
the output buffer, and then calculates PSUMs or output feature
maps (OFMs) pixels (Tm pixels) that are stored in the output
buffer.

Since the feature maps and weights of DNNs are very large,
they cannot be fully stored on-chip. Consequently, they are
held in the off-chip memory during each inference operation.
However, due to the spatial and temporal localities which
exist in feature maps and weights, data can be cached on-
chip to be reused during each inference operation. Thus, large
on-chip buffers are used to cache feature maps and weights
on-chip in order to reduce the costly off-chip traffic between
the accelerator and off-chip memory (e.g. Google’s TPU has
28MB on-chip memory [1]). SRAMs are used to realize
various on-chip buffers in DNN accelerators. Each PE cell

2

consists of a simple multiplier-and-adder and I/O scratchpads.
The multiplier-adder performs multiplyaccumulate (MAC) op-
erations during inference execution, and the I/O scratchpads
store input pixels, weights and the partial sums during each
MAC execution. The scratchpads are realized by small SRAM
modules. PE cells communicate with each other through an
inter-PE network.

III. MOTIVATIONS

A. High Static Power in DNN Accelerators

As the downscaling technology has resulted in increasing
leakage current in CMOS circuitry [8], [9], the impact on
SRAM cells is especially remarkable due to the high transistor
density in SRAM modules [8]. The leakage current can trans-
late into temperature increase which further boosts the leakage
current [8]. As explained above, DNN accelerators employ
large SRAMs to realize on-chip buffers. In addition to on-
chip buffers, a considerable part of the PE cell is dedicated to
the scratchpads [2]. Therefore, by considering on-chip buffers
and scratchpads, a significant part of the DNN accelerator is
dedicated to the on-chip memory (e.g. near 75% of the Eyeriss
DNN accelerator [2]). Besides, there is an increasing trend of
using compact data representations in DNNs to improve the
efficiency of computation and storage [11]. An example of
this trend is binary neural networks (BNNs) [27]. Only two
possible values (-1 or +1) are used for the pixels and weights
in BBNs but they can still achieve an acceptable accuracy for
many applications. In this kind of DNNs, the computational
operations only need bit-wise XNORs for multiplication and a
population counter for addition. This trend leads to memory-
oriented DNN accelerators since the computational part of
the accelerators is very simple and occupies less chip area
[12]. Thus, SRAM modules are a predominant component
in the current and future DNN accelerators, and contribute
to a considerable amount of power consumption. The power
consumption of the SRAM modules becomes more dominant
when DNN accelerators employ compact data types.

B. Impact of Multiple-Node-Upset in DNN Accelerators

As modern Deep Learning Accelerators employ large on-
chip buffers (i.e. SRAM modules) [1], [2] as well as some
scratchpads inside the PE array, the accelerators are poten-
tially vulnerable when soft errors occur in the SRAM cells.
Traditionally, a major threat to the reliability of SRAM cells
is the SNU caused by a particle strike. However, such a single
particle strike has started to show an increasing probability of
causing multiple-node-upsets in recent SRAM cells [3]–[5].
The reason behind this is that as the transistor dimensions and
the distance between transistors shrink, the energy released
by an incident ion remains constant. Thus, a cloud of charge
from a particle may be shared across multiple nodes during
a single event, potentially causing multi-node-upsets. This
charge sharing phenomenon is more prominent in a SRAM
module, as it has high density of transistors and its layout
tends to use common or shared connections [4].

Depending on whether a multi-node upset occurs in multiple
nodes of the same cell or in different cells, single-bit upsets
(SBUs) or multi-bit upsets (MBUs) may occur in the on-chip
memory of DNN accelerators, leading to soft errors. In our

experiments of fault injection in DNN accelerators, we found
that soft errors can lead to many mis-classification cases. These
erroneous results may result in catastrophic consequences,
especially in critical applications such as autonomous vehicles
[6], unmanned aircrafts, and on-line status monitoring of
nuclear power plants. Worse still, different from transient soft
errors in many other systems, soft errors in DNN accelerator
buffers may have a more persistent effect as they can be reused
many times.

C. Limitation of Existing Reliability Techniques

There is a large body of research dedicated to improving
the reliability of SRAMs. However, in general, the reliability
techniques which can be applied to DNN accelerators can
be categorized into three main topics: Error Correction Code
(ECC) techniques, spatial redundancy techniques, and hard-
ened SRAM cells.

ECC Techniques in DNN Accelerators: ECC has a limited
number of MBU detection capability, while the probability
of MBU increases as CMOS technologies move to smaller
sizes for a denser integration [28]. Thus, this technique cannot
provide highly reliable infrastructure for SRAMs in nano-
scaled CMOS technologies. Furthermore, ECC techniques
have performance penalty since additional circuits should be
added to perform bit-checking and correction during write and
read operations of the buffers and the scratchpads [29].

Spatial Redundancy Techniques: In this class of tech-
niques, DNN accelerators are implemented using spatial re-
dundant methods, such as triple modular redundancy (TMR)
or N-MR (N-modular redundancy), to tolerate soft errors. The
spatial redundancy techniques can be applied to DNN acceler-
ators at the software level or hardware level [6]. Although spa-
tial redundancy techniques can increase the reliability of DNN
accelerators, these techniques are very expensive in terms of
area, power and speed due to the extra resources required for
implementing the redundancy. Another main drawback of the
spatial redundancy of techniques is the limited capability of
tolerating MBU, which may not be sufficient for contemporary
and future DNN accelerators that are manufactured in nano-
scaled technologies. For example, TMR can mask only one
fault, and the majority voter may fail in determining the correct
output in the presence of MBU [30]. Additionally, spatial
redundancy techniques usually have slower timing due to the
delay of the voter at the output stage [31].

Fully-Hardened SRAM Cells: Because of the abovemen-
tioned drawbacks, fully-hardened SRAM cells become more
attractive to be used as the memory cells in DNN acceler-
ators compared with other soft error mitigation techniques.
In general, using hardened SRAM cells to tolerate bit upsets
is an approach with less area, power, and delay [13]. Fully-
hardened SRAM cells can tolerate SNU when either one or
zero is stored in the memory cell. They provide full protection
against SNU. However, none of the existing fully-hardened
SRAM cells can tolerate MNU which is a serious challenge in
nano-scaled CMOS technologies. Furthermore, although fully-
hardened SRAM cells provides a power efficient approach to
address the soft errors, most of the existing fully-hardened
SRAM cells still consume considerable leakage current (more
details in the evaluation section).

3

D. Zero-Biased Data in DNNs

Prior studies show that there is a strong bias towards zero
both in feature maps [2] [14] and weights [15] across different
networks. For example, about 40% of feature maps in the
second CNN layer of the AlexNet are zeros [2]. This number
increases rapidly as the accelerator moves to deeper layers:
for instance, on average 75% of the feature maps are zeros
in the fifth CNN layer of AlexNet [2]. This high percentage
of zeros in feature maps is resulted from the adoption of
ReLU function: this function filters out all the pixels with
a negative value in feature maps to zeros. Similar behavior is
observed for weights in prior work. That is, the majority of the
weights that are proved to be not important in the CNN layers
can be filtered out to zeros without losing accuracy [15]. For
instance, a recent work reports that for some layers of AlexNet
and VGGNet-D, the sparsity can reach up to 91% and 96%,
respectively [15].

In addition to the high percentage of zeros in feature maps
and weights, a recent study [6] as well as our experiments
show that bit-upsets from zero to one are more likely to lead
to false outputs in comparison with the bit-upsets from ones to
zeros. Therefore, there is an opportunity that takes advantage
of the above two bias types in order to reduce the static power
consumption and soft error rate of the on-chip memory in
DNN accelerators.

IV. PROPOSED APPROACH

In this work, we focus on designing an SRAM cell cus-
tomized for DNN accelerators, as fully-hardened SRAM cells
in DNN accelerators are more attractive than other reliability
techniques due to the lower overhead in area, power and delay.
The proposed SRAM cell is designed based on the observation
that there is a strong bias towards zero in feature maps
and weights. A novel Zero-Biased MNU-Aware SRAM cell
(ZBMA) architecture is proposed, which can tolerate MNU
for zeros, and SNU for both zeros and ones. In the meantime,
the proposed cell has a reduced leakage current compared with
the conventional (CV) SRAM cell and state-of-the-art fully-
hardened SRAM cells. The proposed SRAM cell can be used
both in buffers and scratchpads of DNN accelerators.

Fig. 2 shows an overview of using the proposed SRAM cell
in the on-chip memories of DNN accelerators. As shown in
Fig. 2a for the OFM buffer and the scratchpads of a PE cell,
the SRAMs in DNN accelerators should be partitioned into
smaller memory banks (represented as horizontal dark boxes in
the Fig. 2a) in order to avoid long word-lines and bit-lines [32].
Long word-lines and bit-lines have high capacitance which
causes long delay and high energy consumption [32]. This is
especially important in DNN accelerators as during network
processing a large number of on-chip memory accesses are
generated by the PE cells [2]. Fig. 2b show the architecture of
an SRAM bank. Generally, each SRAM bank consists of an
array of memory cells, row & column decoders, and column
& bit-line pre-charge circuitries. Each cell in the array stores
one bit, and it is realized by the proposed SRAM cell as
shown in Fig. 2c. The N-bit address is decoded by the row
and column decoders to select m cells during read and write
operations. The pre-charge circuitries are used to pre-charge
bit-lines during read operations. The column circuitries contain

amplifiers and write-buffers to sense or send the data from or
to selected cells during read and write operations (more details
on read and write operations are provided later in this section).

A. Novel Memory Cell for DNN Accelerators

To address the MNU and high static power issues in DNN
accelerators, our objective is to develop a low-power SRAM
cell that allows SNUs and MNUs to be tolerated directly
within the memory array (Fig. 2b) instead of relying on higher
levels of abstraction. The challenge of achieving this SRAM
cell is in the positive feedback between the nodes in a SRAM
cell when there are upsets at more than one node. This positive
feedback is used to store the data in the SRAM cell. However,
it is the main reason of bit upset at MNU-occurrences in
existing SRAM cells, even if they are fully hardened against
SNUs. The Zero-Biased MNU-Aware SRAM cell is shown in
Fig. 2c. The proposed SRAM cell consists of two storage cores
including an upper core and a lower core (the cores are labeled
in Fig. 2c). This redundancy in cell circuit is needed to recover
any corrupted nodes by the unaffected nodes. Similar to a CV
SRAM cell, there are two complementary storage nodes in
each core, and the stored bit can be written into the cell by
the access transistors (M20 and M21 in Fig. 2c). In order to
tolerate SNU (for zeros and ones) and MNU (for zeros), each
core is designed based on the following rationales.

First, to eliminate the propagation of node upsets from an
affected node to its complement in the same core, nodes in
one core are driving the driver transistors of nodes in the
opposite core. For example, nodes ST and STB drive the driver
transistors (M10 and M11) of node A. In this way, a node upset
(e.g., at node A) will not affect its complement (node B).

Second, when a particle hits the drain/source of an ’OFF’
transistor, it creates the unwanted SNU or MNU at a node or
nodes of the circuit. The polarity of the SNU and the MNU
(positive or negative) depends on the type of the transistor
(PMOS or NMOS). Thus, two cases are possible: (1) if a
particle strikes an ’OFF’ PMOS transistor, a positive (0 →
1) SNU or MNU is injected to a node or nodes; (2) if a
particle strikes an ’OFF’ NMOS transistor, a negative SNU or
MNU (1 → 0) is injected to a node or nodes. In each core of
the proposed memory cell, we use NMOS transistors to drive
the storage nodes (i.e., A and B in the lower core, and ST
and STB in the upper core). With this design, positive upsets
cannot happen at any node of cores. For example, when zero is
stored in the cell, the only possible MNU is from simultaneous
negative upsets at both STB and B. In addition, since NMOS
transistors are used to drive the storage nodes, a negative upset
at a node cannot turn ON any NMOS driver transistors at the
storage nodes to change the voltage of the nodes. For instance,
when zero is stored in the cell, a negative upset at B cannot
turn ON any NMOS driver transistors at the storage nodes.
It only turns OFF transistors M3 and M6, and nodes ST and
STB will be floated temporarily. Thus, the voltages of nodes
ST and STB stay steady.

Third, besides using NMOS transistors at sensitive nodes to
tolerate MNU when zero is stored in the cell, node STB is used
to drive the pull-up network of node ST in the unidirectional
way using an inverter (M17, M18, and M19). Furthermore, the
output of the inverter that drives the gate of transistor (M2) in

4

VDD

VDD

Bi
t
Li
ne

Word Line

ST

A

VDD

VDD

Word Line

STB

VDD

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20
Bit

LineM21

B

Row
Decoder

Column
Decoder

Cell

Cell

Pre Charge
Circuitry

Column
Circuitry

Address
N bit

K bit

Bit Lines

Word Line

M bit Data I/O Port(b)Memory Bank

PE
Cell

OFM BufferIFM
Buffer

Weight
Buffer

X +

(a) DNN Accelerator

Cell

Cell

Pre Charge
Circuitry

Column
Circuitry

(c) Circuit schematic of proposed memory cell (ZBMA)

Upper Core

Lower Core

Fig. 2: On-chip memories in DNN accelerators based on the proposed memory cell.

the pull-up network is driven by the PMOS transistors. In other
words, the output of the inverter that generates the control
signal of pull-up network is ’1’ hardened (i.e., negative upset
cannot happen at output). The resulting SRAM cell is a fully-
hardened SRAM cell which can tolerate MNU when zero is
stored in the cell.

B. Node Upsets in Memory Cell
When a particle hits a cell in the memory array, it creates an

unwanted SNU at a node in the struck memory cell. However,
as discussed in the motivation section, a particle hit may
lead to MNU which affects multiple nodes of the cell due to
charge sharing. Generally, four possible cases can occur when
a particle strikes a node in the proposed cell as following:
1)-Zero is stored in the cell and a negative SNU is injected
at the node STB or the node B. 2)-One is stored in the cell
and a negative SNU is injected at the node ST or the node A.
3)-Zero is stored in the cell and a MNU is injected at the node
STB and the node B. 4)-One is stored in the cell and a MNU
is injected at the node ST and A. Fig. 3 shows the HSPICE
simulated waveforms for case 1, 2 and 3. The simulations
are performed using 16nm PTM High-Performance CMOS
technology [33] at the supply voltage of 0.7V. As can be seen
from the simulated waveforms, the proposed SRAM cell can
eliminate SNU when zero or one is stored in the cell. Also, it
can eliminate the MNU when zero is store in the cell. However,
when one is stored in the cell and a MNU occurs, the cell flips
to zero.

C. Static Power Reduction
In order to maintain the performance of transistors when

employing the low-supply voltage in downscaled technologies,
the threshold voltage (VT) of transistors should be scaled
down correspondingly. However, the sub-threshold leakage
current exponentially increases as the threshold voltage de-
creases. Consequently, a large amount of power (static power)

is dissipated due to sub-threshold leakage current. In the
proposed SRAM cell, high-VT PMOS transistors (M1, M5,
M9, and M13 in Fig. 2c, called as cut-off transistors) are
inserted between VDD and pull-up networks to cut off the
VDD when the nodes connected to the pull-up networks are
in zero state. Similarly, high-VT NMOS transistors (M4, M8,
M12, and M16 in Fig. 2c) are inserted between GND and
pull-down networks to cut off the GND when nodes connected
to pull-down networks are in one state. In addition to these
high-VT cut-off transistors, wires between nodes and gates
of the transistor are smartly connected in order to turn off
the transistor in the pull-up network when the pull-down
network is conducting and vise versa. For example, when
zero is stored at node A, VDD is disconnected by the cut-
off PMOS transistor M9, and the M10 located in the pull-up
network of node A is also turned off. In this way, a stack of
’OFF’ transistors are created between the power supply and
the nodes of the cell. A stack of ’OFF’ transistors reduce the
sub-threshold leakage current significantly [34]. Fig. 4 shows
all stacks of ’OFF’ transistors in the core of the proposed
SRAM cell when zero is stored (highlighted by green color).
The combination of stacks of ’OFF’ transistors and high-VT

cut-off transistors greatly reduce the leakage current in the
proposed SRAM cell (as shown later in the evaluation).

D. Transistor Sizing and Scalability of Memory Cell
The flow of read and write operations in the proposed

SRAM cell is similar to the CV SRAM cell. That is, for a
write operation, the data and its compliment are driven (by
the column circuitry in Fig. 2b) on the bit-line and bit-line-
bar, respectively. Then, the word-line is asserted to VDD in
order to write the data into the cell. For a read operation,
both the bit-line and bit-line-bar are pre-charged to VDD
(by the pre-charge circuitry in Fig. 2b). Then, the word-
line is asserted to VDD in order to connect the bit-lines to
the cell. Right before the word-line assertion, the bit-lines

5

(a) Case 1: SNU on node STB or node B (b) Case 2: SNU on node ST or node A

MNU-Occurrence

(c) Case 3: MNU due to charge sharing on node
STB or node B

Fig. 3: Node upsets in the proposed memory cell.

Fig. 4: Stacks of OFF transistors when zero is stored.

are left floated. Thus, depending on the stored value in the
cell, one of the bit-lines is discharged to a lower voltage.
Then, the voltage difference between bit-lines is sensed by a
differential sense amplifier which is located inside the column
circuitry. To achieve correct read and write operations in the

CV SRAM cell, a constraint on transistor sizes should be
followed [32]. However, the correct read and write operations
in the proposed SRAM cell can be achieved using minimum
transistor sizes. In the meantime, the immunity of the proposed
SRAM cell against SNUs and MNUs does not depend on the
size of the transistors. Therefore, for scaling from a given
technology to a smaller technology, the minimum possible size
can be considered for the transistors in the cell. The minimum
possible size is used for transistors among all the particle strike
simulations in Fig. 3. The results show that the proposed cell
can provide the full protection for SNUs (both zero and one)
and MNUs (for zero) with the correct read and write operations
when the minimum size is used for all the transistors.

V. EVALUATION

We evaluate the effectiveness of the proposed approach us-
ing a combination of CAD tools as well as in-house developed
tools. Fig. 5, shows the connection between different tools
used in this work. First, the layouts of memory cells are
designed in Cadence Virtuoso. Then, based on the layouts,
the required netlists are extracted. Significant effort is spent
on developing a tool that can inject single or multiple simulta-
neous upsets into one or multiple nodes in the netlist, so as to
mimic particle strikes and charge-sharing. The power, delay,
and immunity against SNUs and MNUs are measured through
HSPICE simulations.

An optimization program is developed to generate optimized
parameters (Tn and Tm) for the accelerators. After inputing
CNN layer descriptions, chip die area requirement, target
frequency, data type format, maximum memory bandwidth,
and memory cell characteristics (obtained from the Cadence

6

HSPICE
Simulation

Designing Layout of
SRAM Cells Cadence

Virtuoso Layout Editor

Netlist Extraction

SN and MNU Injections
In-house CAD tool

Tiny-DNN

Optimization Program

16n PTM Device
Technology Library

Power, Area
Speed,

Reliability

DNN Models, Chip area, BW,
Frequency, Data Type

Synopsys Design
Compiler

Accelerator’s RTL Verilog

16n PTM Standard Cell
Library

Fig. 5: Simulation environment for evaluation.

TABLE I: Evaluated DNNs

Network Topology Dataset label No. Data Type
CaffeNet 5 CONV + 3 FC ImageNet 1000 FLOAT32
AlexNet 5 CONV + 3 FC ImageNet 1000 FLOAT32
VGG16 13 CONV + 3 FC ImageNet 1000 FLOAT32

Virtuoso and the HSPICE simulations), the program auto-
matically calculates the expected execution cycles, memory
bandwidth, number of PE cells and required on-chip memory.
For DNN reliability evaluation, the tool maps each line in
the Tiny-DNN [16], a DNN framework, to the corresponding
hardware components of DNN accelerators. The Tiny-DNN is
modified to enable the fault injections in different components
of DNN accelerators.

The parametrized DNN accelerator is implemented in RTL
Verilog, whose architecture is based on the paper [35]. Pa-
rameters are obtained from the optimization program based on
different network configurations. Synopsys Design Compiler
is used to synthesize the RTL implementation with 16nm
PTM cell library [36]. The library is updated to reflect the
characteristics of different memory cells.

A. Error Propagation Analysis of DNN Accelerators

1) Experiment Setup: We use Silent Data Corruption (SDC)
probability to evaluate the reliability of DNN accelerators.
The SDC probability is defined as the probability of SDC
that affect the visible state of the program under given soft
errors. The definition is in line with the one in other papers
[6], [37]. A SDC is considered to happen if the top ranked
element that is predicted by the accelerator with soft errors
is different from the one that is predicted in the fault-free
accelerator, as the first predicted element is usually used for
the subsequent operations in the systems. The networks with
different topologies but covering common features of modern
DNNs should be tested. The Table I lists DNNs evaluated
in this paper. The parameters of these networks are publicly
available online.

Consistent with the paper [6], we consider two types of
fault injection: data path (i.e. scratchpads inside PE cells) and

0

4

8

12

16

20

AlexNet CaffeNet VGG16

SD
C

 P
ro

ba
bi

lit
y(

%
)

S_E_1
S_E_2
S_E_6
M_2_E_1
M_2_E_2

Fig. 6: The SDC probability of data path soft error injection.

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SD
C

 P
ro

ba
bi

lit
y(

%
)

AlexNet CaffeNet VGG16

Fig. 7: The SDC probability of each layer (S E 1).

buffers. Combinational logics and control logics are not con-
sidered as they are not sensitive to soft errors compared with
storage units [38]. As analyzed above, the particle strike can
result in multiple-bit-upsets in current downscaled technology,
so we test multiple error situations: single-node upset, two-
node upsets, and six-node upsets are evaluated for a given
layer; and for two layers, only single-node upsets and two-
node upsets per layer are tested, as it is very unlikely to have
six errors across different layers in one inference processing.
Each situation of fault injection is run for 3000 times, and the
fault injection is in accordance with related research [6], [37].

2) Fault Injection in Datapath: Since scratchpads in PE
cells are frequently read and written, the occurrences of soft
errors have only transient impact on the calculation process.
Fig. 6 shows the results of different injection types in the
accelerator data path. S represents single layer, while M stands
for multiple layers. E is the numbers of error injection. For
instance, M 2 E 2 means that two layers are selected to have
fault injections, and each layer is injected with two errors. In
general, the increase of soft error injection leads to higher SDC
probability among all tested DNNs. The SDC probability can
reach 16.20% when six errors occur in only one layer. The
most likely explanation is that the increased number of errors
are more likely to cause large deviations of the key features,
which further affects the final classification. From the figure,
we can also observe that as the network going deeper, the
impact brought by soft errors is mitigated, as deeper DNNs
are more immune to the errors [6]. However, the adopted
DNNs in IoT or other real-time recognition devices are often

7

0

20

40

60

AlexNet CaffeNet VGG16

SD
C

 P
ro

ba
bi

lit
y

(%
) S_E_1

S_E_2
S_E_6
M_2_E_1
M_2_E_2

Fig. 8: The SDC probability of soft error injection in data

buffers.

TABLE II: Comparison of fully-hardened SRAM cells

SRAM
Cells

Refresh
Signal

Full protection
against SNU

Zero Full
protection

against MNU
Year

DICE [39] No Yes No 1996
RSC-1 [40] Yes Yes No 2011
RSC-2 [41] Yes Yes No 2012
RSC-3 [42] Yes Yes No 2014
RHM-1 [13] No Yes No 2014
RHM-2 [43] No Yes No 2015
RHD-1 [44] Yes Yes No 2015
RHD-2 [45] No Yes No 2016
RHBD [46] No Yes No 2017

ZBMA No Yes Yes 2018

shallow due to computation limitation and power constraints.
Hence, developing more reliable accelerators especially for
online safety-critical applications is crucial. Fig. 7 plots the
SDC probability of each layer under the S E 1 condition.
Since AlexNet and CaffeNet employ NORM Layers after their
first two CONV layers separately, the SDC probabilities of first
two layers are much lower than other layers. This is because
the NORM layer normalizes the output of the first and second
layer, which mitigates the effect of large deviations in outputs.
Due to the lack of the NORM layers in VGG16, the SDC
probability of each layer is close to each other, and its line
seems flatter than other two networks.

3) Fault Injection in Data Buffers: Modern deep learning
accelerators employs large on-chip buffers to reduce off-chip
memory accesses. The IFMs and weights are partially loaded
into the buffers and reused for several times. Fig. 8 illustrates
the SDC probability of the soft injection in data buffers. The
IFMs, weights, OFMs are randomly selected to be injected
with errors. We can observe that the SDC probability is much
higher than the one under data path injection, as the soft errors
occurring in the buffer are reused for several times, and can
spread to different locations within a short time, leading to
more opportunities to generate the false output. Furthermore,
the deeper network in this test does not show higher abil-
ity of error tolerance, since the buffer-reuse technique also
propagates the errors to multiple channels, which is likely to
cause large deviation to the key features. Therefore, though
buffer-reuse greatly reduces off-chip traffic, it also increases
the vulnerability of DNN accelerators to soft errors.

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

C
V

C
el

l
LA

 C
el

l
D

IC
E

R
SC

-1
R

SC
-2

R
SC

-3
R

H
M

-1
R

H
M

-2
R

H
D

-1
R

H
D

-2
R

H
BD

ZB
M

ANo
rm

al
iz

ed
 L

ea
ka

ge
 C

ur
re

nt

Fig. 9: Normalized leakage current of different fully-hardened

SRAM cells (to the CV SRAM cell).

0
0.5

1
1.5

2
2.5

3
3.5

4

N
or

m
al

iz
ed

 A
re

a

Fig. 10: Normalized area of different fully-hardened SRAM

cells (to the CV SRAM cell).

B. Memory Cell Characteristics in DNN Accelerators

In the past two decades, many partially and fully-hardened
SRAM cells are proposed which can be used as the memory
cell in the DNN accelerators. Partially hardened SRAM cells
such as [47], [48] can only tolerate SNUs for single logical
value (zero or one). However, fully-hardened SRAM cells
provide full protection against SNUs. Therefore, for reliable
applications, fully-hardened SRAM cells are more attractive
than other types of hardened SRAM cells because of their
full immunity against SNUs. Table II compares different well-
known fully-hardened SRAM cells which have been proposed
in the past two decades. In some fully-hardened SRAM cells
[40]–[42], loop cutting technique is used to cut off the positive
feedback loop in the holding mode. In this way, a transient
glitch (upset) cannot be propagated along feedback loop to
its starting point in order to change the content of the cell
[40]. This type of fully-hardened SRAM cells use a refresh
signal to provide guarantee for maintaining the correct data
[49]. Refresh signal must be applied and routed to all memory
cells in the accelerator. Thus, some extra peripheral circuitry
is also needed to generate the refresh signal [49]. Each refresh
cycle includes charging and discharging the load capacitance
of the refresh line. As the refresh line is routed for all memory

8

0

0.4

0.8

1.2

CV RHBD ZBMA

N
or

m
al

iz
ed

 S
ta

tic
 P

ow
er

(a) Normalized static power

0

0.8

1.6

2.4

3.2

CV RHBD ZBMA

N
or

m
al

iz
ed

 A
re

a
(b) Normalized Area

Fig. 11: Static power and area of the DNN accelerators

based of the different SRAM cells (Normalized to the DNN

accelerator based on the CV SRAM cell).

cells, the load capacitance on the refresh line is typically very
large, and a significant amount of power may be dissipated in
the refresh cycle [34]. As exhibited in Table II, none of the
existing fully-hardened SRAM cells can tolerate MNU when
zero is stored in the cell. However, the proposed SRAM cell
(ZBMA) can provide full protection against SNUs and tolerate
MNUs for logic zero without using any refresh signal.

Fig. 9 shows the normalized average leakage current of
different fully-hardened SRAM cells as well as the proposed
SRAM cell. As it is shown in Fig. 9, most of existing
fully-hardened SRAM cells consume quite amount of leakage
current in comparison with the proposed SRAM cell. The
proposed SRAM cell has the lowest leakage current among all
fully-hardened SRAM cells. In addition to leakage current of
existing fully-hardened SRAM cells, Fig. 9 shows the average
leakage current for a low-leakage asymmetric SRAM cell
(LA cell) [50]. This SRAM cell is an optimized version of
CV SRAM cell which reduces the leakage current for zero
logic using high-VT transistors. While this cell has the lowest
leakage current, it does not provide any protection against the
SNUs and the MNUs. The proposed SRAM cell is able to
reduce leakage current by 2.84X over the CV SRAM cell,
4.92X over DICE [39], 2.8X over RSC-1 [40], 2.26X over
RSC-2 [41], 3.23X over RSC-3 [42], 2.19X over RHM-1 [13],
1.39X over RHM-2 [43], 1.47X over RHD-1 [44], 2.58X over
RHD-2 [45], and 1.88X over RHBD [46]. The leakage currents
in Fig. 9 are obtained from HSPICE simulations using the
minimum possible transistor sizes.

Fig. 10 compares the area overhead of different fully-
hardened SRAM cells and the proposed SRAM cell under
the same design rules. All the area are normalized to the CV
SRAM cell. The area overhead in the Fig. 10 is obtained from
Cadence Virtuoso as well as other related work [42], [44]–[46].

C. DNN Accelerators Comparison

We also examine the impact of different SRAM cells (CV
cell, state-of-the-art fully-hardened cell, and proposed cell)
on different metrics of DNN accelerators by targeting the
acceleration of AlexNet in 32-bit floating-point at 150MHz.
The optimized parameters for accelerators are generated by
the optimization program tool mentioned in earlier. The ac-

celerators have three different buffers including the weights
buffer, the IFMs buffer, and the OFMs buffer. All the buffers
in the accelerators use standard double buffering techniques to
hide off-chip communication latency with computation. The
generated parameters are used by the RTL Verilog implemen-
tation of each accelerator. The RTL Verilog implementations
are synthesized under Synopsys Design Compiler to report
different metrics. For a fair comparison, all the accelerators
are optimized to have a same performance (141.66 GOPS)
and off-chip traffic (1.87 GB/s). Fig. 11 shows the normalized
static power and area of DNN accelerators based on different
SRAM cells. As can be seen, using the proposed SRAM cell
(ZBMA), the static power of DNN accelerator can be reduced
by 2.6X and 1.79X compared with the CV cell and the state-
of-the-art hardened cell (RHBD), respectively.

The accelerator based on RHBD cannot tolerate MNUs
while the accelerator based on ZNMA can tolerate MNUs
when zero is stored. Using RHBD, we observe that the SDC
of MNUs due to in-buffer MNUs of the AlexNet accelerator
can reach up to 28.88%. However, when ZBMA is used, this
percentage is reduced to 0.01%, which is a huge improvement
in the immunity of the AlexNet accelerator against the MBUs.

VI. CONCLUSION

DNNs have been successfully deployed in many fields
and domains, including safety-critical applications such as
autonomous vehicles and unmanned aircrafts. In this paper,
we analyze the impact of soft errors on the reliability of DNN
accelerators through three popular DNNs, and propose a novel
SRAM cell design to eliminate soft errors while achieving
a low power consumption. The proposed SRAM cell takes
into consideration the bias towards zero in feature maps and
weights of DNNs to reduce the leakage current and achieve a
highly reliable inference process. A simulation platform is de-
veloped to study the impact of memory cells on the reliability
and power consumption of the DNN accelerators. Simulation
results show that the DNN accelerator based on the proposed
approach offers significant advantage in reliability and power-
efficiency, compared with other SRAM cell designs.

VII. ACKNOWLEDGEMENT

We sincerely thank the reviewers for their helpful comments
and suggestions. This research was supported, in part, by
the National Science Foundation (NSF) grants #1566637,
#1619456 and #1750047.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in International
Symposium on Computer Architecture (ISCA’17). ACM, 2017.

[2] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, 2017.

[3] N. M. Atkinson, J. R. Ahlbin, A. F. Witulski, N. J. Gaspard, W. T.
Holman, B. L. Bhuva, E. X. Zhang, L. Chen, and L. W. Massengill,
“Effect of transistor density and charge sharing on single-event transients
in 90-nm bulk cmos,” IEEE Transactions on Nuclear Science, 2011.

[4] J. D. Black, P. E. Dodd, and K. M. Warren, “Physics of multiple-node
charge collection and impacts on single-event characterization and soft
error rate prediction,” IEEE Transactions on Nuclear Science, 2013.

9

[5] T. Loveless, S. Jagannathan, T. Reece, J. Chetia, B. Bhuva, M. McCurdy,
L. Massengill, S.-J. Wen, R. Wong, and D. Rennie, “Neutron-and proton-
induced single event upsets for d-and dice-flip/flop designs at a 40 nm
technology node,” IEEE Transactions on Nuclear Science, 2011.

[6] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2017.

[7] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar,
“An early resource characterization of deep learning on wearables,
smartphones and internet-of-things devices,” in International Workshop
on Internet of Things towards Applications. ACM, 2015.

[8] A. Calimera, A. Macii, E. Macii, and M. Poncino, “Design techniques
and architectures for low-leakage srams,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2012.

[9] A. Islam and M. Hasan, “Leakage characterization of 10t sram cell,”
IEEE transactions on electron devices, 2012.

[10] A. Agarwal, C. H. Kim, S. Mukhopadhyay, and K. Roy, “Leakage
in nano-scale technologies: mechanisms, impact and design consider-
ations,” in Proceedings of Design Automation Conference (DAC’04).
ACM, 2004.

[11] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra
et al., “Can fpgas beat gpus in accelerating next-generation deep neural
networks?” in International Symposium on Field-Programmable Gate
Arrays (FPGA’17). ACM, 2017.

[12] S. Takamaeda-Yamazaki, K. Ueyoshi, K. Ando, R. Uematsu, K. Hirose,
M. Ikebe, T. Asai, and M. Motomura, “Accelerating deep learning by
binarized hardware,” in Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC’17), 2017.

[13] J. Guo, L. Xiao, and Z. Mao, “Novel low-power and highly reliable
radiation hardened memory cell for 65 nm cmos technology,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2014.

[14] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ACM SIGARCH Computer Architecture News, 2016.

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[16] “Tiny-dnn,” https://github.com/tiny-dnn/tiny-dnn, 2016.
[17] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning

affordance for direct perception in autonomous driving,” in International
Conference on Computer Vision (ICCV’15). IEEE, 2015.

[18] M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and
T. Li, “In-situ ai: Towards autonomous and incremental deep learning
for iot systems,” in International Symposium on High Performance
Computer Architecture (HPCA’18). IEEE, 2018.

[19] B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, “Deep convolutional
neural networks and learning ecg features for screening paroxysmal
atrial fibrillation patients,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2017.

[20] M. G. Fernandez, A. Tokuhiro, K. Welter, and Q. Wu, “Nuclear energy
systems behavior and decision making using machine learning,” Nuclear
Engineering and Design, 2017.

[21] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision.”

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012.

[23] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolu-
tional neural networks,” in Advances in Neural Information Processing
Systems, 2015.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich et al., “Going deeper with convolutions.”
CVPR, 2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision, 2016.

[26] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” in International Symposium
on Computer Architecture (ISCA’17). ACM, 2017.

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016.

[28] S. M. Jahinuzzaman, D. J. Rennie, and M. Sachdev, “A soft error tolerant
10t sram bit-cell with differential read capability,” IEEE Transactions on
Nuclear Science, 2009.

[29] M. Nicolaidis, “Design for soft error mitigation,” IEEE Transactions on
Device and Materials Reliability, 2005.

[30] J. Tarrillo, F. L. Kastensmidt, P. Rech, C. Frost, and C. Valderrama,
“Neutron cross-section of n-modular redundancy technique in sram-
based fpgas,” IEEE Transactions on Nuclear Science, 2014.

[31] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A
comparison of tmr with alternative fault-tolerant design techniques for
fpgas,” IEEE transactions on nuclear science, 2007.

[32] N. H. Weste and y. Harris, David’, CMOS VLSI design: a circuits and
systems perspective.

[33] Predictive Technology Model, http://ptm.asu.edu/.
[34] A. A. Mazreah and M. T. M. Shalmani, “Low-leakage soft error tolerant

port-less configuration memory cells for fpgas,” INTEGRATION, the
VLSI journal, 2013.

[35] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015.

[36] http://sportlab.usc.edu/downloads/packages/.
[37] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the

accuracy of high-level fault injection techniques for hardware faults,”
in International Conference on Dependable Systems and Networks
(DSN’14). IEEE, 2014.

[38] B. Gill, N. Seifert, and V. Zia, “Comparison of alpha-particle and
neutron-induced combinational and sequential logic error rates at the
32nm technology node,” in Reliability Physics Symposium, 2009 IEEE
International. IEEE, 2009.

[39] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design
for submicron cmos technology,” IEEE Transactions on Nuclear Science,
1996.

[40] S. Lin, Y.-B. Kim, and F. Lombardi, “A 11-transistor nanoscale cmos
memory cell for hardening to soft errors,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2011.

[41] S. Lin, Y. B. Kim, and F. Lombardi, “Analysis and design of nanoscale
cmos storage elements for single-event hardening with multiple-node
upset,” IEEE Transactions on Device and Materials Reliability, 2012.

[42] H.-B. Wang, J.-S. Bi, M.-L. Li, L. Chen, R. Liu, Y.-Q. Li, A.-L. He, and
G. Guo, “An area efficient seu-tolerant latch design,” IEEE Transactions
on Nuclear Science, 2014.

[43] J. Guo, L. Xiao, T. Wang, S. Liu, X. Wang, and Z. Mao, “Soft error
hardened memory design for nanoscale complementary metal oxide
semiconductor technology,” IEEE Transactions on Reliability, 2015.

[44] R. Rajaei, B. Asgari, M. Tabandeh, and M. Fazeli, “Design of robust
sram cells against single-event multiple effects for nanometer technolo-
gies,” IEEE Transactions on Device and Materials Reliability, 2015.

[45] C. Qi, L. Xiao, T. Wang, J. Li, and L. Li, “A highly reliable memory
cell design combined with layout-level approach to tolerant single-event
upsets,” IEEE Transactions on Device and Materials Reliability, 2016.

[46] J. Guo, L. Zhu, W. Liu, H. Huang, S. Liu, T. Wang, L. Xiao, and
Z. Mao, “Novel radiation-hardened-by-design (rhbd) 12t memory cell
for aerospace applications in nanoscale cmos technology,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 2017.

[47] B. S. Gill, C. Papachristou, and F. G. Wolff, “Interactive presentation:
A new asymmetric sram cell to reduce soft errors and leakage power
in fpga,” in Conference on Design, automation and test in Europe
(DATE’07). EDA Consortium, 2007.

[48] S. Miao, P. Ou, X. Zhou, and L. Wang, “Zero-hardened sram cells to
improve soft error tolerance in fpga,” in International Symposium on
Intelligent Information Technology Application (IITA’08). IEEE, 2008.

[49] J. Guo, L. Xiao, and Z. Mao, “Novel low-power and highly reliable
radiation hardened memory cell for 65 nm cmos technology,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2014.

[50] N. Azizi, F. N. Najm, and A. Moshovos, “Low-leakage asymmetric-
cell sram,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2003.

10

