
1 

 

 

 

Agate User’s Guide 

 

 

System Technology and Architecture Research (STAR) Lab 

Oregon State University, OR 

 

SMART Interconnects Group 

University of Southern California, CA 

 

System Power Optimization and Regulation Technology (SPORT) Lab 

University of Southern California, CA 

 

July 2016 

  



2 

 

Table of Contents 

 

1. Introduction 3 

2. Getting Started 3 

2.1 Download and Unpack 3 

2.2 Install Dependent Tools 4 

2.2.1 The gem5 simulator 4 

2.2.2 DSENT 4 

2.3 Running Simulation 5 

2.3.1 Network test 5 

2.3.2 Full system simulation 5 

2.4 Simulation Output 6 

3. Configuration and Functionality 6 

3.1 Power gating options 6 

3.2 Simulation options introduced by Agate 6 

4. Instrumentation 7 

4.1 Timing 7 

4.2 Power and Energy 7 

5. Extensions 8 

5.1 Basic Components 8 

5.2 Power Gating Strategies 8 

5.3 Compatibility with more recent versions of the gem5 simulator 9 

5.4 A list of new or changed files to implement Agate in gem5 9 

6. Contributors and Contact Infomation 11 

7. Acknowledgment 11 

References 11 

 

  



3 

1. Introduction 

Agate is a simulator tool that meets the key requirements for simulating NoC power-gating techniques. 

To enable full-system simulation, Agate is implemented as a closed-loop, cycle-accurate module in the 

widely used gem5 simulator [3] and the included Garnet [1]. In addition to behavioral modeling of power-

gating, Agate is able to use inputs from other simulators that provide detailed power/energy modeling of 

NoC components, allowing flexibility at different modeling levels and accuracies. Various statistics relating 

to power-gating are collected by Agate, such as the number of cycles each NoC router is power-gated, the 

distribution of the length of router idle intervals, the total number of stalls and the total length of stalls of 

packets due to power-gating, and many others.  

If you use Agate in your research that leads to publications, we would appreciate a citation to our paper 

"Simulation of NoC Power-Gating: Requirements, Optimizations, and the Agate Simulator" in Journal of 

Parallel and Distributed Computing (JPDC) [4]. It is highly recommended to read that paper before (or at 

least in addition to) this manual in order to understand and utilize Agate better. This manual also assumes 

that the readers are familiar with the basic usage of Linux. There are many good tutorials about Linux avail-

able online. 

 

2. Getting Started 

2.1 Download and Unpack 

The official releases of Agate are available at the STAR Lab’s website under the “Software” section (the 

current link is http://web.engr.oregonstate.edu/~chenliz/software.html) or the SPORT Lab’s website under 

the “Downloads -> Packages” tab (http://sportlab.usc.edu/downloads/packages/). Agate is developed under 

a specific version of gem5 and DSENT. To facilitate setup and installation process, the released package has 

already included the compatible version of the gem5 simulator and DSENT. Details on how to integrate 

Agate on newer versions of gem5 is discussed in Section 5.3. 

After downloading Agate from the above website, unpack it in your selected working directory. The 

remaining of this manual assumes that the current directory is the working directory after unpacking 

the Agate package. You can see the following files and directories in the current directory: 

 

http://web.engr.oregonstate.edu/~chenliz/software.html
http://sportlab.usc.edu/downloads/packages/


4 

2.2 Install Dependent Tools 

Agate does not add new requirements for software dependency, and the released package includes gem5 

and DSENT. However, additional tools and libraries may be needed on your machine to run gem5 and 

DSENT themselves. 

2.2.1 The gem5 simulator 

Agate is built based on the gem5 simulator version 2.0. To build gem5 2.0, you will need the following 

software: 

 g++ version 4.3 or newer. 

 Python, version 2.4 - 2.7 (Python 3.X is not supported). gem5 links in the Python interpreter, so 

you need the Python header files and shared library (e.g., /usr/lib/libpython2.4.so) in addition to 

the interpreter executable. These may or may not be installed by default. For example, on 

Debian/Ubuntu, you need the "python-dev" package in addition to the "python" package. If you 

need a newer or different Python installation but can't or don't want to upgrade the default Python 

on your system, see http://www.gem5.org/Using_a_non-default_Python_installation 

 SCons, version 0.98.1 or newer. SCons is a powerful replacement for make. If you don't have 

administrator privileges on your machine, you can use the "scons-local" package to install scons 

in your m5 directory, or install SCons in your home directory using the '--prefix=' option. 

 SWIG, version 1.3.34 or newer 

 zlib, any recent version. For Debian/Ubuntu, you will need the "zlib-dev" or 

 "zlib1g-dev" package to get the zlib.h header file as well as the library itself. 

 m4, the macro processor. 

For detailed information about building the gem5 simulator and getting started please refer to 

http://www.gem5.org . 

2.2.2 DSENT 

The current version of Agate integrates the electrical component of the DSENT NoC power model [5]. 

No additional library is needed in our tests, but if there is any further issues, please check out the publications 

and manuals on the DSENT website at https://sites.google.com/site/mitdsent/. The power statistics in the 

Agate simulation results are also partly based on the DSENT model. Users can adopt their own models to 

get different power statistics. 

http://www.gem5.org/
https://sites.google.com/site/mitdsent/


5 

2.3 Running Simulation 

Before running the simulation, make sure of no compilation error after compiling the gem5 simulator. 

For example, if you are using network test, run the following compilation command: 

scons build/ALPHA_Network_test/gem5.opt 

If you are running Alpha with two-level MESI, run the following compilation command: 

scons build/ALPHA_MESI_Two_Level/gem5.opt 

 

2.3.1 Network test 

Here is an example of running a network test for an 8x8 mesh NoC with 0.01 injection rate, under uniform 

random traffic (--synthetic=0), for 10,000 cycles. Make sure to include --garnet-network=fixed 

to simulate the NoC with power gating functions. 

./build/ALPHA_Network_test/gem5.opt configs/example/ruby_network_test.py --

num-cpus=64 --num-dirs=64 --topology=Mesh --mesh-rows=8 --garnet-network=fixed 

--synthetic=0 --sim-cycles=10000 --injectionrate=0.01 

2.3.2 Full system simulation 

As an example to run full-system simulation, we use the PARSEC benchmarks [2] augmented by the 

University of Texas at Austin, which can be found at http://www.cs.utexas.edu/~cart/parsec_m5/ with in-

stallation instructions. 

After the installation of PARSEC benchmarks, we create checkpoints for the gem5 simulator in order to 

focus on the region of interest (ROI). Details on how to create and restore checkpoints can be found at 

http://www.m5sim.org/Checkpoints. An example command is as follows 

./build/ALPHA_MESI_Two_Level/gem5.opt configs/example/fs.py --num-cpus=64 -

-cpu-type=atomic --mem-size=1GB --checkpoint-dir=<CHECKPOPINT_DIR> --

script=./scripts/blackscholes_64c_simsmall_ckpts.rcS 

In the full system simulation, be sure to include –ruby and --garnet-network=fixed options to 

activate the ruby memory system (http://www.m5sim.org/Ruby) and the fixed pipeline of routers. An exam-

ple of execution command to restore checkpoint is as follows, where <CHECKPOPINT_DIR> is the path to 

the checkpoint directory. 

./build/ALPHA_MESI_Two_Level/gem5.opt configs/example/fs.py --num-cpus=64 -

-restore-with-cpu=timing --ruby --l1i_size=32kB --l1d_size=32kB --l2_size=16MB 

http://www.cs.utexas.edu/~cart/parsec_m5/
http://www.m5sim.org/Checkpoints
http://www.m5sim.org/Ruby


6 

--l2_assoc=16 --num-l2caches=64 --num-dirs=4 --mem-size=1GB --garnet-net-

work=fixed --topology=MeshDirCorners --mesh-rows=8 --checkpoint-

dir=<CHECKPOPINT_DIR> --checkpoint-restore=1 

2.4 Simulation Output 

The output of Agate are integrated into the standard output of the gem5 simulator. The output directory 

and files can be directed using the following options (provided by the gem5 simulator). 

--outdir=<OUTPUT_DIR> 

--stats-file=<STATS_FILE> 

--stdout-file=<STDOUT_FILE> 

3. Configuration and Functionality 

3.1 Power gating options 

TABLE I lists some parameters that can be changed directly in Agate.  

TABLE I. PARAMETERS IN AGATE. 

Term Defined in 
Default 

value 
Meaning 

TIMEOUT PGController_d.hh 4 
After becoming idle, the waiting time before sleep. Must be 

greater than SLEEP_MARGIN 

SLEEP_MARGIN PGController_d.hh 4 

Minimum waiting time before sleep after sending sleep noti-

fication S_SLEEP_NTF to ensure delivery of in-flight flits, 

or the maximum time that can send active notification 

S_ACTIVE_NTF in advance before this router becoming 

fully active 

WAKEUP_LAT PGController_d.hh 8 Router wakeup latency 

TBE PGController_d.hh 10 
Break-even time, the number of cycles the router needs to 

sleep in order to compensate the wakeup energy overhead 

 

The TIMEOUT must be greater than or equal to SLEEP_MARGIN to ensure correct behaviors of power-

gating, as explained in details in [4]. Note that SLEEP_MARGIN is actually both the minimum waiting time 

before sleep and the maximum time that can send active notification in advance, because they both include 

the number of router cycles that a flit cannot be stalled (three cycles SA, ST, LT in a five-stage pipeline), 

and one cycle spent on the router link, as elaborated in [4]. 

3.2 Simulation options introduced by Agate 

1) Display debug information. To activate the debugging, add the following option in the command line 

--pg-debug 

If the option pg-debug is enabled (discussed in Section 3.1), it is strongly recommended to also include 

the redirecting option --stdout-file=<STDOUT_FILE>, so that the debugging output is redirected to 



7 

STDOUT_FILE. To add or modify the debugging outputs, use codes started by PG_PRINT in the source code. 

Example:  

PG_PRINT("Router %02d [%05d]: Router put to sleep.\n", get_id(), int(curCy-

cle())); 

Output in STDOUT_FILE: 

Router 03 [00041]: Router put to sleep. 

2) Two new synthetic traffic patterns added in network test: 

--synthetic=3  

Bit Reverse traffic pattern 

--synthetic=4  

Transpose traffic pattern. 

4. Instrumentation 

Table II shows the new statistical data introduced by Agate. 

4.1 Timing 

Agate simulates power-gating in a cycle-accurate manner and changes the timing of NoC router compo-

nents accordingly in Garnet to enable closed-loop simulation. The final packet latency and execution time 

metrics are reported through the gem5 simulator, which are in the STATS_FILE. 

4.2 Power and Energy 

As mentioned above, for the ease of Agate users, we have integrated the latest DSENT [5] NoC power 

model in providing the aforesaid energy metrics. We modified the source codes of the DSENT statistics 

in ./src/mem/ruby/network/dsent in the following way: Reported static power with power gating 𝑃𝑅
𝑠 

TABLE II. NEW STATISTICAL DATA INTRODUCED BY AGATE. 

Name Meaning 

system.ruby.network.routers00.pg_percentage Power gating percentage in the number of cycles for each router 

system.ruby.network.router_dynamic_power Overall router dynamic power 

system.ruby.network.router_static_power Overall router static power 

system.ruby.network.pg_wakeup_overhead Overall router wakeup overhead amortized to power 

system.ruby.network.pg_times Average number of times a router gets power gated  

system.ruby.network.pg_percentage Average power gating percentage 

system.ruby.network.pg_stuck_times Total number of times a packet is stuck due to power gating 

system.ruby.network.waiting_for_pg_cycles Total number of cycles a packet is waiting for sleep router 



8 

(system.ruby.network.router_static_power) is equal to the static power without considering power 

gating 𝑃𝑅,𝑜𝑟𝑖𝑔
𝑠  multiplied by the percentage of router active time, i.e.,. 

𝑃𝑅
𝑠 = 𝑃𝑅,𝑜𝑟𝑖𝑔

𝑠 ∙ (1 − 𝑝𝑃𝐺). (1)  

where 𝑝𝑃𝐺  is system.ruby.network.pg_percentage. 

Currently we consider zero static power consumption when a router is power gated, but users can modify 

the code at ./src/mem/ruby/network/dsent if they consider non-zero static power in power gating. 

If users want to integrate other models than DSENT, they can remove the DSENT folders in the gem5 sim-

ulator and use provided stats data listed Table II to calculate the new static power. 

Note that the wake-up overhead 𝑃𝑅
𝑤𝑘 is reported separately in the stats report (system.ruby.net-

work.pg_wakeup_overhead), not included in the dynamic power 𝑃𝑅
𝑑  and static power 𝑃𝑅

𝑠 . The overall 

wakeup energy overhead is amortized into each cycle and reported as the wakeup power overhead to provide 

a direct comparison with in the dynamic power 𝑃𝑅
𝑑 and static power 𝑃𝑅

𝑠. 𝑃𝑅
𝑤𝑘 is calculated by 

𝑃𝑅
𝑤𝑘 = 𝑁𝑃𝐺 ∙

(𝑒𝑅
𝑠 ∙ 𝑡𝐵𝐸)

𝑇
 (2)  

where 𝑇  is the overall runtime, 𝑁𝑃𝐺  is the total number of times the router gets power-gated (sys-

tem.ruby.network.routers00.pg_times). 𝑒𝑅
𝑠  denotes the NoC router static energy per cycle and 𝑡𝐵𝐸  is 

the break-even time, i.e., the number of cycles the router needs to sleep in order to compensate the wakeup 

energy overhead. The breakeven time 𝑡𝐵𝐸  can vary a lot for different router designs. Its default value is set 

to 10 cycles in Agate which is derived from post-synthesis simulation of a Verilog implementation of a NoC 

router. However, users can change this value through the parameter TBE as shown in TABLE I.  

5. Extensions 

One of the key features of Agate is its extensibility. A new power gating scheme can be easily imple-

mented by modifying the logic in the PG controller. This includes defining events that trigger the PG con-

troller to make decisions and adding new signals between PG controllers if needed.  

5.1 Basic Components  

Fig. 1 shows the main components in Agate and how Agate is interfaced with Garnet. There are two main 

components in Agate, namely PG link (including the “PG inward” link and “PG outward” link in the figure) 

and PG controller. Detailed descriptions can be found in [4]. 

5.2 Power Gating Strategies 

The key control logic of a power-gating scheme is extracted and placed in the power gating controller 

logic defined by PGController_d.hh and PGController_d.cc where state transition rules are defined.  



9 

The PG controller of each NoC router is a decision block for controlling the power-gating of that router. 

It monitors the status of router components and various signals, and takes power-gating actions when certain 

events occur. While one can modify the processing logic in the controller, the essential functions of a PG 

controller must include the following:  

 Update the power-gating state of neighboring routers (which is stored locally) upon receiving the 

sleep/active notifications from PG links; 

 Make power gating decisions based on the status of the associated router and neighboring routers, 

as well as the signals from neighbor routers; and 

 Send wakeup requests or sleep/active notifications through PG links to neighboring PG controllers. 

5.3 Compatibility with more recent versions of the gem5 simulator 

Agate is based on the version of the gem5 simulator which has a canonical 4-stage pipelined router. In 

more recent gem5 simulator versions, a two-stage speculative router is implemented (as of April 2016), along 

with some other non-NoC features. We might make Agate be compatible with (or integrate with) more recent 

gem5 in a future version. Before then, users who would like to use Agate in newer versions of gem5 can do 

so with the help of the list of new or changed files in Section 5.4 and the Agate component description in [4]. 

5.4 A list of new or changed files to implement Agate in gem5 

Below is a list of new or changed files to implement Agate in gem5. We try to be as complete as we can 

so as to help implementing Agate in newer versions of gem5 by incorporating these changes. However, we 

have no control on how gem5 might evolve in the future. Thus, additional efforts may be needed if the 

targeted version of gem5 is much newer than the version which Agate is initially developed on. 

#1

#N

PG Inward

Input port #1

X
Switch

Output port #1

Output port #NInput port #N

Switch allocator

… …

Routing 

Compute

Flit In

Flit In

Flit Out

Flit Out

VC allocator 

Control Logic

…… #1
PG Outward

#N

PG Controller

#1

…#N

#1

…#N
PG InwardPG Outward

M
o

n
it
o

r/
C

tr
l M

o
n

ito
r/C

trl

 

Fig. 1. Agate components and interface with Garnet router. 



10 

1) Changed files in the fixed-pipeline folder (This folder contains the new source codes to support power 

gating in on-chip network):  

./src/mem/ruby/network/garnet/fixed-pipeline/flit_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/InputUnit_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/NetworkInterface_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/NetworkLink_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/OutputUnit_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/Router_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/SWallocator_d.cc 

./src/mem/ruby/network/garnet/fixed-pipeline/Switch_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/VCallocator_d.cc 

2) New files in the fixed-pipeline folder: 

./src/mem/ruby/network/garnet/fixed-pipeline/flitPG_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/PGController_d.* 

./src/mem/ruby/network/garnet/fixed-pipeline/PGLink_d.* 

3) Changed file: 

./src/mem/ruby/network/garnet/NetworkHeader.hh 

4) Changed file: 

./configs/example/ruby_network_test.py 

New codes are added to this python script to support the debugging output option. 

5) Add the following two folders for DSENT: 

./src/mem/ruby/network/dsent/ 

./DSENT/ 

These two directories are added to integrate the DSENT power model. 

6) Changed files: 

./src/cpu/testers/networktest/networktest.cc 

./src/cpu/testers/networktest/networktest.hh 

./src/cpu/testers/networktest/NetworkTest.py 

New codes are added to this python script to support the debugging output option and new synthetic 

traffic patterns. 

 



11 

6. Contributors and Contact Infomation 

Prof. Lizhong Chen (chenliz@oregonstate.edu) from the STAR Lab at the Oregon State University and 

Dr. Di Zhu (dizhu@usc.edu) from the SPORT Lab at the University of Southern California (USC) contrib-

uted significantly to the development of the Agate simulator. This work is also supported, in part, by USC 

SPORT Lab led by Prof. Massoud Pedram and USC SMART Interconnects Group led by Prof. Timothy M. 

Pinkston.  

If you have questions regarding this simulator, please send us emails with the tag “[Agate]” in the email 

title (including the brackets). Note that general questions on gem5, Garnet or DSENT should be directed to 

the corresponding developers, manuals and online forums of these simulators rather than to us. 

7. Acknowledgment 

This work is supported, in part, by the National Science Foundation (NSF) grants CCF-1619456 and 

CCF-1321131, and the Software and Hardware Foundation of NSF. 

 

References 

[1] N. Agarwal, T. Krishna, L. Peh, N. K. Jha, "Garnet: A detailed on-chip network model inside a full-system simulator," 

International Symposium on Performance Analysis of Systems and Software (ISPASS), 2009. 

[2] C. Bienia and K. Li, "Parsec 2.0: A new benchmark suite for chipmultiprocessors," in 5th Annual Workshop on 

Modeling, Benchmarking and Simulation, 2009. 

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basil, J. Hestness, D. R. Hower, T. Krishna, S. 

Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, "The gem5 Simulator," Computer 

Architecture News, vol. 39, pp. 1-7, 2011. 

[4] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, "Simulation of NoC Power-Gating: Requirements, Optimizations, 

and the Agate Simulator", in Journal of Parallel and Distributed Computing (JPDC), 2016. 

[5] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and V. Stojanovic, "DSENT - A Tool 

Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling," In International 

Symposium on Networks-on-Chip, 2012. 

 

mailto:chenliz@oregonstate.edu
mailto:dizhu@usc.edu

	1. Introduction
	2. Getting Started
	2.1 Download and Unpack
	2.2 Install Dependent Tools
	2.2.1 The gem5 simulator
	2.2.2 DSENT

	2.3 Running Simulation
	2.3.1 Network test
	2.3.2 Full system simulation

	2.4 Simulation Output

	3. Configuration and Functionality
	3.1 Power gating options
	3.2 Simulation options introduced by Agate

	4. Instrumentation
	4.1 Timing
	4.2 Power and Energy

	5. Extensions
	5.1 Basic Components
	5.2 Power Gating Strategies
	5.3 Compatibility with more recent versions of the gem5 simulator
	5.4 A list of new or changed files to implement Agate in gem5

	6. Contributors and Contact Infomation
	7. Acknowledgment
	References

