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Abstract

Bathymetric surveying is an important undertaking in the fields of oceanography,
coastal engineering, and marine ecology. However, due to the high costs and
safety risks associated with operating surveying ships in shallow waters, along
with the logistic difficulties of conducting surveys in remote locations, nearshore
gaps in global bathymetry datasets are common. For these reasons, there has been
significant interest in developing techniques and algorithms to extract accurate
bathymetric measurements from remotely sensed satellite data. In this paper, we
explore a new and novel approach to extracting Satellite Derived Bathymetry
(SDB) from hyperspectral imagery using a Generalized Bilinear Model (GBM) for
hyperspectral unmixing. The algorithm used to conduct this experiment is based
on the work of [1]. We evaluate the efficacy of this approach using data from a
bathymetric lidar survey.

1 Introduction

Bathymetric surveying (i.e. topographic mapping of the seafloor) is an important undertaking for
many scientific and engineering disciplines such as oceanography, coastal engineering, and marine
ecology. In particular, nearshore bathymetry datasets are often used for maritime navigation, flood
inundation modeling, benthic habitat modeling, and many other important endeavours. Additionally,
due to the effects of tides, currents, and storm surges, nearshore bathymetry is highly dynamic relative
to deeper water or dry land topography. Therefore, it is important to maintain updated bathymetric
maps of nearshore areas.

Currently, the most common method for conducting bathymetric surveys is through single or multi-
beam echo sounders (i.e. sonar) mounted on survey ships. These types of surveys are highly accurate
and reliable, however, due to the danger and high costs associated with operating a research vessel in
shallow waters, these surveys often avoid measuring nearshore areas. This has resulted in a noticeable
gap in global bathymetry datasets around the worlds coasts, known as the "white ribbon".

Recently, remote sensing has gained popularity as a method for filling the nearshore bathymetric data
gap. In particular, airborne bathymetric lidar has been shown to produce accurate, high resolution
measurements for nearshore areas. However, while these surveys are safe and highly accurate, they
are still costly and can be difficult to carry out in some remote locations. For this reason, there has
been significant interest in developing techniques and algorithms to extract bathymetric measurements
from extensive, regularly collected, and widely available datasets such as satellite imagery. Most of
these Satellite Derived Bathymetry (SDB) techniques, such as the popular Stumpf’s Ratio of Logs
algorithm [4], rely on principles of radiative transfer to infer depth by comparing the reflectance of
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light at different wavelengths in optically shallow water. While these techniques can be quite accurate
and are widely used in the literature, they are also prone to errors due to unaccounted for optical
properties such as water turbidity, suspended sediment, chlorophyll, or colored dissolved organic
matter (CDOM).

In this paper, we explore a new, novel approach for measuring SDB from hyperspectral imagery.
This technique, based on the work of [1], uses a generalized bilinear mixing model to estimate the
abundance of different materials throughout the scene. This bilinear model takes into account second
order photon interactions (i.e. photons that reflect off two endmembers before being detected by the
spectrometer). We attempt to extract relative bathymetry by estimating the strength of the second
order interactions between water and seafloor material. Finally, we evaluate the efficacy of this
technique by comparing our results with a bathymetric lidar survey.

2 Bilinear Unmixing

It is well established that seafloor reflectance is a function of both water depth and turbidity. In fact,
under mild conditions, the radiative transfer of downwelling irradiance can be effectively model via
the Beer-Lambert Law, which is shown in Equation 1.

E
(z)
λ = E

(0)
λ e−Kdλ

z (1)

Where E
(z)
λ is the downwelling irradiance of wavelength λ at depth z and Kdλ

is the diffuse
attenuation coefficient at wavelength λ, and apparent optical property (AOP) of water that represents
turbidity. The Beer-Lambert Law is of significance for this project because it shows the relationship
between depth, turbidity, and measured spectral intensity of the seafloor from a remote sensing
platform.

Spectral unmixing is an active area of research in remote sensing and optimization that seeks
to represent each pixel in a hyperspectral or multispectral image as a weighted combination of
endmember materials. This task is often accomplished using the linear mixing model (LMM),
where each pixel is considered to be a linear combination of endmembers, with each endmember’s
coefficient representing the abundance of that material in the pixel, plus some additive noise. The
LMM formulation is shown in Equation 2.

y =

N∑
i=1

aiei + n (2)

Where y ∈ RD is the observed spectra at a given pixel, ei ∈ RD is the spectrum of endmember i, ai
is the relative abundance of endmember i, and n ∈ RD is noise, with D representing the number of
spectral channels and N the number of endmembers.

This formulation can be extended to matrix notation as shown in Equation 3.

Y = EA+N (3)

Where Y ∈ RD×P is the matrix representation of the hyperspectral image, with P representing the
number of pixels, A ∈ RN×P is the matrix of pixel abundances for each endmember, E ∈ RD×N is
the spectral dictionary of endmembers, and N ∈ RD×P is the noise matrix.

While the LMM has received significant attention for its effectiveness and simplicity, it assumes that
solar photons reflect off a single material between being detected by the spectrometer. While this
assumption is valid in most scenarios, for regions with vertically layered surfaces such as sparse
forest canopy and some urban settings, photons will commonly interact with multiple materials before
being detected by the spectrometer. This is also the case for optically shallow water, where photons
reflecting off the seafloor will also interact with the watercolumn, as shown in Figure 1.
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Figure 1: Schematic of the bilinear interaction between water and seafloor.

In order to incorporate the second order photon interactions into the unmixing model, we used the
Generalized Bilinear Mixing Model (GBMM), which is shown in Equation 4.

y =

N∑
i=1

aiei +

N−1∑
i=1

N∑
j=i+1

bi,jei ⊙ ej + n (4)

Where bi,j represents the strength of the interaction between endmembers i and j, and ⊙ is the
Hadamard (i.e. element-wise) product. By letting bi,j = γi,jaiaj we can reformulate the GBMM as
shown in Equation 5.

Y = EA+ FB+N (5)

Where F = [e1 ⊙ e2, ..., eN−1 ⊙ eN ] ∈ RD×N(N−1)
2 and B = [γ1,2a1a2, ..., γN−1,NaN−1aN ] ∈

R
N(N−1)

2 ×P .

Solving the GBMM is equivalent to solving a convex optimization problem of the form shown in
Equation 6.

min
A,B
∥Y −EA− FB∥2F

subject to A ⪰ 0

0 ⪯ B ⪯ C

(6)

Where C(i,j),k = Ai,kAj,k for k = 1, ..., P and ∥ · ∥F is the Frobenius norm.

NU-BGBM Algorithm

In order to solve the optimization problem posed in Equation 6, [1] proposed the Nonlinear Unmixing
Bandwise General Bilinear Model (NU-BGBM) algorithm. This model differs from the traditional
GBM in that it considers the noise matrix N to be a combination of dense, additive, Gaussian noise,
represented by a diagonal matrix W ∈ RD×D, where Wi,i =

1
σ2
i

with σ2
i the variance of the noise

in spectral band i, as well as spatially sparse noise, often referred to as "artifacts", represented by
S ∈ RD×P . The new formulation is shown in Equation 7.

min
A,B,S

1

2
∥W(Y −EA− FB− S)∥2F + λ∥S∥1

subject to A ⪰ 0

0 ⪯ B ⪯ C

(7)

In order to apply the Alternating Direction Method of Multipliers (ADMM) algorithm, the problem
is further reformulated, as shown in Equation 8.

min
A,B,S,V1,V2,V3

1

2
∥W(Y −EA− FB−V1)∥2F + IR+

(V2) + IRC
(V3) + λ∥S∥1

subject to V1 = S

V2 = A

V3 = B

(8)

Where IR+
is the element-wise indicator function for the nonnegative orthant and IRC

is the element-
wise indicator for the interval [0,C].
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Finally, we can put the problem in its compact ADMM form, as shown by Equation 9.
min
V,G

g(V,G)

subject to
GQ+HV = Z

(9)

where g(V,G) = 1
2∥W(Y−EA−FB−V1)∥2F+IR+

(V2)+IRC
(V3)+λ∥S∥1, G =

[
I 0 0
0 I 0
0 0 I

]
,

Q =

[
S
A
B

]
, H =

[−I 0 0
0 −I 0
0 0 −I

]
, V =

[
V1

V2

V3

]
, Z =

[
0
0
0

]
.

Using this form, we can write the augmented Lagrangian, as shown in Equation 10, as well as the
primal and dual residuals, shown in Equations 11 and 12, respectively.

L(V,G,Λ) = g(V,G) +
µ

2
∥GQ+HV − Z− Λ∥2F (10)

rk+1 = GQk+1 +HVk+1 (11)

dk+1 = µGTH(Qk+1 −Qk) (12)

Where Xk is the value of X at iteration k of the ADMM algorithm.

The details of the update steps and stopping criteria for the ADMM algorithm are given in Algorithm
1,

Algorithm 1 NU-BGBM via ADMM
Input Y,E,F,W

while ∥rk+1∥F√
3(MD+P )

> ϵ and ∥dk+1∥F√
3(MD+P )

> ϵ do

A(k+1) ← [(WE)T (WE) + µI]−1[(WET)W(Y − FBk −Vk
1) + µ(V2 − Λk

2)];
B(k+1) ← [(WF)T (WF) + µI]−1[(WFT)W(Y −EAk −Vk

1) + µ(V3 − Λk
3)];

S(k+1) ← Sλ/µ(Vk
1 − Λk

1);
V

(k+1)
1 ← [(W)T (W) + µI]−1[WTW(Y −EAk+1 − FBk+1) + µ(Sk+1 − Λk

3)]

V
(k+1)
2 ← max(Ak+1 + Λk+1

2 ,0)

V
(k+1)
3 ← min(max(Bk+1 + Λk+1

3 ,0),C)

Λ
(k+1)
1 ← Λk

1 − (Vk+1
1 − Sk+1)

Λ
(k+1)
2 ← Λk

2 − (Vk+1
2 −Ak+1)

Λ
(k+1)
3 ← Λk

3 − (Vk+1
3 −Bk+1)

k = k + 1
end while

return Ak+1,Bk+1,Sk+1

where Sλ/µ(x) = sign(x)max(x− λ
µ , 0) is the element-wise soft shrinkage operator.

Data and Preprocessing

AVIRIS

In order to explore the use of the GBMM for extracting bathymetry, we acquired three hyperspectral
scenes collected by NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS
measures radiance at 224 contiguous spectral bands between 400 and 2500nm, with bandwidths of
approximately 10nm. The scenes were collected during the four day period of August 28th-31st,
2010 over southern Tampa Bay, Florida. We chose this region due to the presence of optically shallow
water and the availability of groundtruth bathymetric lidar data. Additionally, this region presents
complex bathymetric morphology due to the presence of barrier islands.
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Figure 2: (Left) Bathymetry grid derived from bathymetric lidar data collected by NOAA’s CHARTS
system in November, 2010. Data were resampled to align with AVIRIS pixels. (Right) True color
composite (bands: R=29,G=20,B=12) of median pixel values from 3 overlapping AVIRIS scenes
collected August 29th, 30th, and 31st of 2010.

CHARTS

In addition to the AVIRIS hyperspectral imagery, we also acquired bathymetric lidar data for the
same region. This data was collected by NOAA’s Compact Airborne Rapid Total Survey (CHARTS)
system, which integrates a 1 kHz, 532nm bathymetric lidar and a 9 kHz, 1064nm topographic lidar.
This survey was conducted in early November, 2010.

Preprocessing

In order to compare the AVIRIS hyperspectral and NOAA CHARTS bathymetric lidar datasets, we
conducted a few simple geospatial preprocessing steps using the open source QGIS software platform.
First, due to the differences in spatial extent, we clipped the larger AVIRIS scenes to the extent of the
smaller CHARTS survey. AVIRIS pixels outside the extent of the CHARTS survey were discarded
because they did not have corresponding validation data. This also had the benefit of reducing the
size of the AVIRIS datasets, which can be quite large due to the high number of spectral bands.

Next, in order to account for the difference in pixel size and centroid location between the CHARTS
and AVIRIS data, we aligned the pixels of the CHARTS data to the AVIRIS scenes using the nearest
neighbor resampling method. This allowed for a direct pixel-to-pixel comparison between the
CHARTS and AVIRIS datasets.

These simple steps resulted in three spatially aligned AVIRIS scenes and one bathymetry grid.
However, each of the three AVIRIS scenes contained significant cloud cover. In order to reduce this
cloud contamination, we took the pixel-wise median value of corresponding bands from the three
scenes in order to create a 224 band composite image. The pixel-wise median operation is a widely
used method for reducing cloud contamination in satellite imagery. The resulting bathymetry grid
and AVIRIS composite scene are shown in Figure 2.

USGS Spectral Library

In order to unmix the AVIRIS data, we assembled a spectral dictionary of independently measured
material spectra from the United States Geological Survey (USGS) Spectral Library. The USGS
Spectral Library contains thousands of spectral signatures from a wide range of material types,
including minerals, soils, coatings, liquids, organic compounds, man-made materials, and vegetation.
While future work may include added steps to algorithmically select the most appropriate spectra for
unmixing a scene, due to the time contraints of this project, we selected six spectra from the larger
library based on prior knowledge of the region of interest. The endmember materials selected were
Water+Sediment, Coastal Water with Chlorophyl, Open Ocean, Dry Sand, Wet Sand, and Marsh
Vegetation. The endmember spectra are shown in Figure 3.
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Figure 3: Endmember spectra acquired from USGS spectral library. Some spectra are an average of
several similar spectral samples, such as multiple samples of sand and marsh vegetation.

Experiment

Using the ADMM solution for the NU-BGBM, we calculate the linear and bilinear abundance maps
of the endmembers over the region of interest, as well as the sparse noise (artifact) maps. The input
observation matrix Y was constructed by reshaping the AVIRIS composite image, while the input
first and second order endmember dictionaries were constructed using the selected USGS spectra
endmembers. The bandwise noise variance diagonal matrix W was calculated using the HySime
algorithm. The details of this algorithm are outside the scope of this paper, however interested readers
may refer to [3] for details on this algorithm. For the hyperparameters of the NU-BGBM, we used
the suggested values µ = 0.01 and ϵ = 10−6, with a maximum number of iterations of 100. As
suggested by [1], we tested several values for λ, eventually selecting λ = 1 for the final model.

After calculating the abundance maps for the linear and nonlinear endmembers, we performed a
pixel-wise linear regression between the abundances maps and the CHARTS bathymetry, excluding
all missing values and values with elevations greater than 0 (i.e. dry land). This step was repeated
three times, once with only the bilinear endmember abundances, once with only the linear endmember
abundances, and once with both. Finally, we calculated the coefficients of determination (R2) for
the regressions and produced a map of the residuals between the predicted bathymetry and the true
bathymetry, using the combined endmember regression output.

As a final step, we also implemented the DANSER algorithm, developed by [2], using the linear
endmembers (E). DANSER implements an ADMM based linear unmixing model, making it an
appropriate comparison to NU-BGBM. We performed the same regression with the DANSER
endmembers and compared the resulting R2 with those from the NU-BGBM regressions.

3 Results

After running the NU-BGBM algorithm, which terminated after 25 iterations (by on the stopping
criteria), we visualized both the 6 linear abundance maps and the 15 bilinear abundance maps. For
brevity, we have included only the linear abundance maps in Figure 4, however the bilinear abundance
maps as well as the DANSER abundance maps can be found in the additional file submitted along
side this project.

Visual inspection of the abundance maps shows that highest abundances were found in the Open
Ocean, Coastal Water, and Water+Sediment maps, while the lowest abundances were found in the
Marsh Vegetation map. This makes sense given our prior knowledge of the region. However, there is
also a clear and concerning spatial pattern between the maps. The spatial distribution of abundances
appears to be very similar between all the maps, with the water endmembers dominating the entire
scene. This does not fit with out expectation, especially given that there are areas in the region which
should clearly be dominated by sand or marsh endmembers.

We also plotted the primal and dual residuals per algorithm iteration, which are shown in Figure 5.
This plot showed that, while the dual problem converges to an optimum after 25 iterations, the primal
problem appears to actually diverge. This may indicate an error with the algorithm implementation.
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Figure 4: Relative abundance maps for the endmembers from the USGS spectral library.

Figure 5: Primal and dual loss vs. algorithm iteration.

Finally, we performed a linear regression with the linear, bilinear, and combined abundance maps
versus the bathymetry map. We also performed a purely linear unmixing using the DANSER
algorithm and carried out the same type of regression. The coefficients of determination are shown in
Table 1.

While none of these regressions were particularly successful compared to current SDB standards,
the DANSER algorithm performed nearly 3 times better than the NU-BGBM with both endmember
types. Interestingly, the NU-BGBM regression with only the bilinear endmembers performed nearly

Table 1: Coefficients of Determination

Endmembers Algorithm R2

E NU-BGBM 0.0893
F NU-BGBM 0.1191
E and F NU-BGBM 0.1265
E DANSER 0.3659
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Figure 6: Linear Regression residuals for the E and F endmember regression. Values indicate
measured - predicted bathymetry.

as well as the combined endmember regression, indicating that the bilinear model may still have
potential to outperform the linear model for SDB regression.

Finally, we visualized the residuals between the combined endmember predicted bathymetry and the
true bathymetry. The results are shown in Figure 6.

This map shows that the positive residuals are clustered in areas of shallower bathymetry, while
the negative residuals cluster in deeper waters. This indicates that the variance of the predicted
bathymetry was much smaller than the true variance.

4 Conclusions

We performed a bilinear spectral unmixing of an optically shallow coastal area in Tampa, FL and
compared the results with groundtruth bathymetry via linear regression. While the results were
unsatisfactory, the bilinear endmembers did have strong predictive power compared to the linear
endmembers of the same model. However, the bilinear endmember significantly underperformed
the linear endmembers of the DANSER algorithm. Visualizing a map of the predicted bathymetry
indicated that the regression model dramatically under fit the measured data, producing a map with
much lower variance than the true bathymetric map.

It is important to note that there are several potential sources of error that could have contributed
to the unsatisfactory results. First, as noted in Figure 5, the primal loss diverges, indicating that
there may be an error in the implementation of the NU-BGBM algorithm. Additionally, despite
the preprocessing, there are still clear atmospheric effects and cloud contamination in the AVIRIS
composite data set. Finally, significant changes in the bathymetric morphology due to storm activity
during the one month period between the AVIRIS data collection and the CHARTS survey may have
introduced error in the final regression.

In the future, we hope to find and correct any errors in the NU-BGBM algorithm implementation as
well as test other nonlinear algorithms for spectral unmixing. After reconducting this experiment,
hopefully with better results, we hope to use this work as part of a proposal to acquire atmospherically
correct data from the DESIS sensor, a hyperspectral spectrometer currently operating on the Interna-
tional Space Station. Long term, we hope to perform a similar experiment using DESIS hyperspectral
data and bathymetry data measured by ICESat-2’s ATLAS spaceborne lidar. Additionally, we hope
to test the efficacy of nonlinear spectral unmixing for simultaneous predicting bathymetry and Kd by
comparing DESIS data with Kd measurements from NOAA’s VIIRS satellite sensor.
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