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Summary In this essay, we review a presentation given by Professor Li-Cheng Tsai (University of Utah) de-
tailing his recent work on the Weak Noise Theory for the KPZ Equation on November 4, 2022 at the Pacific
Northwest Integrable Probability Conference at Oregon State University, Corvallis, OR. We begin with an
overview of the KPZ Equation, the Large Deviation Principle, the Most Probable Shape, and the Narrow
Wedge Initial Condition. Finally, we detail the main results of Professor Tsai’s most recent work in the field
and a brief overview of related, open problems.

Background, Motivation, & Definitions

KPZ Equation

The Kadar-Parisi-Zhang (KPZ) Equation is a stochastic PDE often
used to describe the stochastic evolution (random growth) of an
interface1. The equation takes the form 1 Examples of random growth of

interfaces include the growth frontier
of bacterial colonies in a petri dish and
ballistic deposition.

∂th = 1
2 ∂xxh + 1

2 (∂xh)2 + ξ (1)

where h is the space-time function representing the interface at
time t and spatial coordinate x, while ξ(x, t) is a random forcing
representing space-time white noise. The term 1

2 ∂xxh represents a smooth-
ing factor, while 1

2 (∂xh)2 is the slope
dependent growth velocity.

Freidlin-Wentzell LDP

The Freidlin-Wentzell Large Deviation Property is a result in Large
Deviation Theory, the subfield of probability theory which focuses
on the asymptotic behavior of probability distribution tails. With
regard to the KPZ Equation, this means introducing a small param-
eter ϵ to the equation and observing the atypical behavior as ϵ → 0.
This gives the form2 2 Equation 2 with (t, x) ∈ [0, 2] × R

can be transformed by change of
variable h(t, x) = hϵ(ϵ−2t, ϵ−1x) to
the same form as Equation 1 but with
(x, t) ∈ [0, 2ϵ2]× R

∂thϵ = 1
2 ∂xxhϵ +

1
2 (∂xhϵ)

2 +
√

ϵξ (2)

It has been shown that, with high probability, hϵ approximates h0.
However, there is a small probability that hϵ(2, 0) ≈ λ ̸= h0(2, 0).
This characterizes the atypical asymptotic behavior of the KPZ
Equation. This LDP can be further broken down into two subcat-
egories: the One-Point LDP, given in Equation 3, and the Process
Level LDP, given in Equation 4.

P[hϵ(2, 0) ≈ λ] ≈ exp
(
− ϵ−1 I(2,0)(λ)

)
(3)

This form is a short hand for the
notation:

lim
δ→0

lim
ϵ→0

ϵP[|hϵ(2, 0)−λ| ≤ δ] = −I(2,0)(λ)

P[hϵ ≈ g] ≈ exp
(
− ϵ−1 I(g)

)
(4)

Here I is the "rate function" and g is a generic function. ϵ−1 can be
seen as the "speed of deviation".
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Most Probable Shape

The Most Probable Shape is the function encoding the development
of the interface h after an atypical event. To borrow an analogy
from Professor Tsai’s presentation: the Most Probable Shape is not
about finding the probabality of winning the lottery, but about
finding what your life is likely to be after winning the lottery. The
Most Probable Shape is given by

h = arg min
g

{I(g) : g(2, 0) = λ}, (5)

conditioned on {hϵ(2, 0) ≈ λ > h0(2, 0)}. Finding the Most Proba-
ble Shape is the main concern of Weak Noise Theory (WNT) for the
KZP Equation. In particular, using the Process Level I, WNT seeks
to find the Most Probable Shape, as well as the One-Point I. This is
accomplished by first fixing the initial condition hϵ(·, 0) = fic and
conditioning on {hϵ(2, 0) ≈ λ}. Then the Most Probable Shape is
found by minimizing In the general case, we defined ρ to be

the generic function that satisfies

P[
√

ϵξ ≈ ρ] ≈ exp (−ϵ−1∥ρ∥2
2)

then

I(g) = inf{ 1
2 ∥ρ∥2

2 : H[ρ] = g}

and

∂t H = 1
2 ∂xx H + 1

2 (∂x H)2 + ρ,

H = H(ρ) = H(ρ)[t, x].

inf{I(g) : g(0, ·) = fic, g(2, 0) = λ)} (6)

= inf{ 1
2∥ρ∥2

2 : H[ρ](0, ·) = fic, H[ρ](2, 0) = λ)} (7)

This objective function leads to the obvious questions of existence
and uniqueness of a solution. This is addressed by Propositions 1

and 2, respectively.

Proposition 1. The minimizer (H[ρm], ρm]) exists.

Proposition 2. For some initial conditions3, the minimizer is not 3 Specifically, Professor Tsai mentions
Brownian inital conditions here.unique4.
4 This non-uniqueness is shown in the
physics literature by demonstrating
that symmetry breaking occurs. The
details of symmetry breaking are
outside the scope of this review.

Narrow Wedge Initial Condition

One particular initial condition of interest for the KPZ Equation is
the Narrow Wedge Initial Condition. Under this condition, we take
Zϵ(·, 0) = δ0 and let hϵ = log Zϵ. This gives Under this formulation, the original

KPZ Equation can be linearized using
the Hopf-Cole Transformation shown
below

∂tZϵ = 1
2 ∂xxZϵ +

√
ϵξZϵ.

This is known as the Stochastic Heat
Equation (SHE).

hϵ(t, x) = − x
2t

√
2πt

as t → 0. The main results of Professor Tsai’s presentation relate
to the Large Deviation Properties of the KPZ Eqauation under the
Narrow Wedge Initial Condition.

Main Results

λ → −∞ limits of the Most Probable Shape

Let hϵ start at the Narrow Wedge Initial Condition. Then Proposi-
tion 3 holds.

Proposition 3. ∀λ ∈ (−∞, λ0], the minimizer (h, w) = (H[ρm], ρm)

exists.
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where h is the Most Probable Shape. Futhermore, consider the
scaled Most Probable Shape hλ. Then, as proved by Professor Tsai, hλ := 1

|λ| h
(
t, x

|λ|1/2

)
Theorem 1 holds.

Theorem 1. hλ → h−∗ as λ → −∞ uniformly over compact subsets of
(0, 2]× R.

Importantly, h−∗ has an explicit form which was previously pre-
dicted in various works in physics. This form was derived by form-
ing an Euler-Langrian problem from the Hamilton equations of
Narrow Wedge Condition. While the details of this process are out-
side the scope of this review, it is important to note that the value
found by solving the Euler-Lagrangian, wλ can be considered as the
potential energy. With this, they form an "energy-entropy competi-
tion" equation of the form5 5 γ can be interpreted as the Most

Probable Shape of the path from (t, x)
backward to (0, 0).

h∗(t, x) = − inf
{ ∫ t

0

1
2 (γ

′)(t − s)︸ ︷︷ ︸
entropy

+ (wλ)(s, γ(t − s))︸ ︷︷ ︸
potential

ds
}

Proposition 4. ∀(t, x) ∈ (0, 2)× R, the infimum h∗(t, x) is acheived by
some γ∗, which we call a geodesic.

Figure 1: Geodesic of the Most Proba-
ble Shape of the KPZ Equation given
the Narrow Wedge Initial Condition as
λ → −∞. (Screen grab from Professor
Tsai’s presentation)

λ → ∞ limits of the Most Probable Shape

In addition to the asymptotic behavior of the KPZ Equation under
the Narrow Wedge Initial Condition as λ → −∞, Professor Tsai also
addresses the asymptotic behavior as λ → ∞. Similar to Theorem
1, Professor Tsai finds that, for the Narrow Wedge Initial Condition,
Theorem holds.

Theorem 2. hλ → h+∗ as λ → ∞ on compact subsets of (0, 2] × R

uniformly over minimizers.

Importantly though, there are differences between the −∞ and
+∞ cases. The main difference is related to the potential energy wλ:

λ → −∞ ⇒ wλ → w∗ (8)

λ → +∞ ⇒ wλ → 0. (9)

This implies that for the −∞ case, wλ spans the entire region of
space-time, while in the case of +∞, wλ concentrates around [0, 2]×
{x = 0}.75cm0 0 Expect in the case x = 0.

Figure 2: Geodesic of the Most Proba-
ble Shape of the KPZ Equation given
the Narrow Wedge Initial Condition as
λ → +∞. (Screen grab from Professor
Tsai’s presentation)

Open Problems

Professor Tsai concluded his presentation with three main open
problems in the field of WNT for the KPZ Equation:

1. Removing the uniqueness assumption

2. Extracting the λ → −∞ limit from the solution formula

3. Extension to other initial conditions
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