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Chapter 1 MTH 664

1.1 Probability and Measure Spaces

1.1.1 Probability Spaces

Definition 1.1 Probability Space
A probability space is a triplet (Ω,F ,P) where

✿ Ω is the outcome space

✿ F ⊂ 2Ω is the σ-algebra of events

✿ P : F → [0,1] is a probability function satisifying the following properties:

1. P(∅) = 0

2. P(Ω) = 1

3. P(
∞
⋃

n=1
An) =

∞
∑

n=1

P(An) where {An : An ∈ F}∞n=1 are all pairwise disjoint

Example 1.1

Suppose Ω = {1,2, ..., N}, F = {A ⊂ Ω} := 2Ω, and P(A) =
|A|

|Ω|
Is (Ω,F ,P) a probability space?

Proof.

P(∅) =
|∅|

|Ω|
= 0

P(Ω) =
|Ω|

|Ω|
= 1

P(
∞
⋃

n=1
An) =

|
⋃∞

n=1 An|

|Ω|
=
|
∑∞

n=1 An|

|Ω|

Yes, (Ω,F ,P) a probability space ■

Definition 1.2 σ-algebra
Let F be a collection of subsets in Ω. F is a σ-algebra on Ω if and only if

✿ An ∈ F ⇒ Ac
n
∈ F

✿ An ∈ F ⇒
∞
⋃

n=1
An ∈ F

✿ ∅ ∈ F

Probability Theory: 664, 665 2 Oregon State University
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☞ Remark

∀A ∈ F , P(Ac) = 1 − P(A)

Proof. First note that, by the definition of σ-algebra, A ∈ F ⇒ Ac ∈ F . Now observe that

A ∩ Ac = ∅, A ∪ Ac = Ω

⇒ P(A ∪ Ac) = P(A) + P(Ac) = 1

⇒ P(Ac) = 1 − P(A)

■

☞ Remark

P(B ∩ Ac) = P(B) − P(B ∪ A)

Definition 1.3 Countable Subadditivity
Let (Ω,F ,P) be a probability space and A be a collection of events in F which are not necessarily
disjoint. Then

P(
∞
⋃

n=1
An) ≤

∞
∑

n=1

P(An)

Theorem 1.1 Continuity from Below
Let (Ω,F ,P) be a probability space and A be a collection of increasing events in F , that is ∀n ≥ 1

An ⊆ An+1

We define lim
n
An =
⋃

n
An. So, by countable subadditivity,

P(lim
n
An) = lim

n
P(An)

Proof. First note that since An ⊆ An+1,P(An) ≤ P(An+1). Additionally, since An ⊆ Ω andP(Ω) =
1, P(An) ≤ 1. Then by Monotone Convergence Theorem, lim

n→∞
P(An) exists.

Now, set A = lim
n→∞

An =
∞
⋃

n=1
An and define the sequence of events {Bn}∞n=1 such that for each

n ∈ N,

B1 = A1

B2 = A2 \ A1
Bn = An \ An−1

So, by this construction, the Bns are disjoint and
∞
⋃

n=1
Bn =

∞
⋃

n=1
An. Additionally, P(Bn) = P(An)−

P(An−1). Then we have

P(A) = P(
∞
⋃

n=1
Bn) =

∞
∑

n=1

P(Bn)

Probability Theory: 664, 665 3 Oregon State University
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=
�

∞
∑

n=1

P(An) − P(An−1)
�

+ P(A1)

= lim
n→∞

�

∞
∑

n=1

(P(An) − P(An−1)) + ... + (P(A2) − P(A1))
�

+ P(A1)

= lim
n→∞

P(An)

■

☞ Remark
We can also show that Continuity from Above, i.e.

An ⊇ An+1 ⇒ P(lim
n
An) = lim

n
P(An)

holds. To show this, set Bc
n
= An. By DeMorgan’s Law

�
∞
⋂

n=1
Bn
�c
=

∞
⋃

n=1
Bc
n
=

∞
⋃

n=1
An

and the proof follows as above.

1.1.2 Random Variables

Definition 1.4 Random Variables
Let (Ω,F ,P) be a probability space. A random variable is a function X : Ω → R such that
X−1([, b]) ∈ F .

Definition 1.5 Distribution Function
A distribution function is a function

FX() = P
�

X−1
�

(−∞, ]
�

�

= P(X ≤ )

We say a distribution function is absolutely continuous if

FX() =
∫ 

−∞
g()d (1.1)

for some g : R→ R

☞ Remark

In general,
d

dX
FX = g() (except for some non-differentiable points).

Probability Theory: 664, 665 4 Oregon State University



CONTENTS CHAPTER 1. MTH 664

Convergence

Definition 1.6 Convergence in Probability

Consider a sequence on random variables {X}∞
n=1 on a probability space (Ω,F ,P). We say

{X}∞
n=1 converges in probability to X if, ∀ε > 0

lim
n→∞

P(|Xn − X| > ε) = 0

Definition 1.7 Almost Sure Convergence

Now consider a sequence on random variables {X}∞
n=1 on a probability space (Ω,F ,P). We say

{X}∞
n=1 converges almost surely to X if ∀ω ∈ Ω,

P({ω ∈ Ω : Xn(ω) ̸→ X(ω)}) = 0

Theorem 1.2
A sequence of random variables (Xn)∞n=1 converges to X in probability if and only if every subse-
quence has a further subsequence that converges almost surely to X.

1.2 Expectation

Definition 1.8 Simple Function
A random variable X is called a simple or discrete random variable if it can be written as

X(ω) =
n
∑

j=1

j1Aj

where j ∈ R and Aj ∩ A = ∅ for all 1 ≤ , j ≤ n. Note the function 1A is defined as

1A(ω) =

(

1, ω ∈ A

0, otherwise

Definition 1.9 Expectation of Simple Function
The expectation of a discrete random variable X is given by

E[X] =
∫

Ω
XdP =

n
∑

j=1

jP(Aj)

Theorem 1.3
If X is a non-negative random variable, we can write

E[X] = sp{E[Y] : 0 ≤ Y ≤ X, Y simple}

Theorem 1.4
Given that any function may be approximated arbitrarily closely by a sequence of non-decreasing

Probability Theory: 664, 665 5 Oregon State University
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simple functions (Xn)∞n=1, we may define the expectation of any function X = lim
n→∞

Xn by

E[X] = lim
n→∞

� n2n−1
∑

j=0

j

2n
P(j2−n ≤ X < (j + 1)−n) + nP(X ≥ n)

�

Theorem 1.5
More generally, we write

E[X] =
∫

Ω
XdP = E[X+] − E[X−]

Theorem 1.6
The following properties of the expect value are true:

1. z ≤ ⇒ E[z] ≤ E[]

2. A ⊂ B⇒ E[X1A] ≤ E[X1B]

3. A =
∞
⋃

n=1
An, An ⊆ An+1 ⇒ lim

n→∞
E[X1An] = E[X1A]

Theorem 1.7 Change of Variable

Let X : Ω→ R be a random variable and h : R+ → R+ be a continuous function. Then

E[h ◦ X] =
∫

Ω
(h ◦ X)P(dω) =

∫

R

h(X)FX(dX)

Definition 1.10 Moments
Given a random variable X on a probability space (Ω,F ,P) with a distribution function FX , we can
define the p-th order moment of X to be

E[Xp] =
∫

Ω
Xp(ω)P(dω) =

∫

R

pFX(d)

Furthermore, moments of absolute values (|X|) are refered to as absolute moments and are given
by

E[ |X|p] = p

∫ ∞

0
p−1P(|X| > )d

1.2.1 Convexity

Theorem 1.8
The spaces Lp(Ω,F ,P) with norms given by

∥X∥p =
�

∫

Ω
|X|pdP
�1/p

=
�

E[ |X|]p
�1/p

are Banach Spaces.

Probability Theory: 664, 665 6 Oregon State University
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Moreover, the space L2(Ω,F ,P) is a Hilbert Space with an inner product given by

〈X, Y〉 = E[XY] =
∫

Ω
XYdP

So we have ∥X∥2 = 〈X,X〉1/2

Definition 1.11
A function ϕ is convex on an interval J if for all , b ∈ J and 0 ≤ t ≤ 1,

ϕ(t + (1 − t)b) ≤ tϕ() + (1 − t)ϕ(b)

Theorem 1.9 Line of Support
Suppose ϕ is a convex function on an interval J. Then the following are true:

I. If J is open:

i. The left-hand and right-hand derivatives of ϕ (ϕ− and ϕ+ respectively) exists and are finite
as well as non-decreasing on J with ϕ− ≤ ϕ+

ii. For each 0 ∈ J, there exists a constantm such that ϕ() ≥ ϕ(0) +m( − 0), ∀ ∈ J.

II. If J if half open and the derivative of the open side is finite, the properties of  apply to the closed
side with endpoint 0.

Theorem 1.10
Let X, Y be random variables on (Ω,F ,P). Then the following inequalities hold:

a. (Jensen’s Inequality) If ϕ is a convex function on the interval J and P(X ∈ J) = 1, then

ϕ(E[X]) ≤ E[ϕ(X)]

Moreover, if ϕ is strictly convex, the above inequality holds iff X is almost surely constant.

b. (Lyapounov Inequality) If 0 < r < s, then

(E[ |X|r])1/ r ≤ (E[ |X|s])1/s

c. (Holder’s Inequality) Let p ≥ 1. If X ∈ Lp, Y ∈ Lq,
1

p
+
1

q
= 1, then XY ∈ L1 and

E[ |XY |] ≤ (E[ |X|p])1/p(E[ |Y |q])1/q

d. (Cauchy-Schwartz Inequality) If X, Y ∈ L2, then XY ∈ L1 so we have

|E[XY] | ≤
q

E[X2]
q

E[Y2]

e. (Minkowski’s Inequality) Let p ≥ 1. if , Y ∈ Lp then

∥X − Y∥p ≤ ∥X∥p + ∥Y∥p

Probability Theory: 664, 665 7 Oregon State University
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f. (Markov/Chebyshev Inequalities) Let p ≥ 1. If X ∈ Lp then for λ > 0

P(|X| ≥ λ) ≤
E[ |X|p]1[ |X|≥λ]

λp
≤
E[ |X|p]

λp

More generally, if h is a non-negative increasing function on an interval containing the range of
X, then

P(X ≥ λ) ≤
E[h(X)1[X≥λ]]

h(λ)

1.2.2 Lp Spaces

Definition 1.12 Lp Probability Space
Let (Ω,F ,P) be a probability space and p ≥ 1. Then we define Lp(Ω,F ,P) to be

Lp(Ω,F ,P) = {X : Ω→ R : E[ |X|p] <∞}

☞ Remark
For random variables X, Y ∈ Lp,

X = Y ⇐⇒ E[ |X − Y |p] = 0 ⇐⇒ E[ |X|p] = E[ |Y |p]

Theorem 1.11
A sequence of random variables Xn converges to X in Lp if:

lim
n→∞

E[Xn − X|p] = 0

Theorem 1.12
Lp(Ω,F ,P) is complete

Definition 1.13 Uniform Integrability
A sequence of random variables Xn is said to be uniformly integrable if

lim
λ→∞

sp
n
E[{|Xn|1[ |Xn|≥λ]}] = 0

Theorem 1.13 Fatou’s Lemma
Let Xn : Ω→ [0,∞] be a sequence of non-negative random variables. Then

E[ lim
n→∞

infXn(ω)] ≤ lim
n→∞

infE[Xn(ω)]

We can also show that the reverse Fatou’s Lemma holds. If ∃Y : Ω→ [0,∞] such that Xn ≤ Y for
all n and E[Y] <∞, then

lim
n→∞

spE[Xn(ω)] ≤ E[ lim
n→∞

spXn(ω)]

Probability Theory: 664, 665 8 Oregon State University



CONTENTS CHAPTER 1. MTH 664

Theorem 1.14
Consider {Xn}∞n=1. Then

E[ |Xn − X|] → 0 ⇐⇒

(

Xn
P−→ X

{Xn}∞n=1 is uniformly integrable

1.2.3 Generating σ-algebras

Definition 1.14 Generating σ-algebras
Let (Ω,F ,P) be a probability space and X : Ω→ S , where S is a σ-algebra on S. Then σ(X) is the
generating σ-algebra generated by X which is the smallest σ-algebra such that X is a measurable
map

☞ Remark
Recall: X : (X,F)→ (S,S) is measurable if X−1(A) ∈ F for all A ∈ S.

Definition 1.15 Product σ-algebra
Let (S,S) be a finite collection of measurable spaces. S1⊗ S2⊗ ...⊗ Sn is the product σ-algebra
which is defined as the smallest σ-algebra on S1 × S2 × ... × Sn such that all projection maps,

Tk : S1 × S2 × ... × Sn → Sk

are measurable.

Definition 1.16 Product Measure
Let (S,S, μ) be a measure space. The product measure μ1× μ2× ...× μn on S1⊗ S2⊗ ...⊗ Sn
is defined as

μ1 × μ2 × ... × μn(B1 × B2 × ... × Bn) = μ1(B1)μ2(B2)...μn(Bn)

Definition 1.17 Absolutely Continuous
Let (X,S, μ) be a measure space. Consider the measure ν. ν is absolutely continuous with re-
spect to μ if

μ(A) = 0→ ν(A) = 0

∀A ∈ S. We denote this relationship by ν≪ μ.

Definition 1.18 Singular Measure
Let (X,S, μ) be a measure space. Consider the measure ν. ν is singular with respect to μ if
∃A ∈ S with μ(A) = 0 and ν(Ac) = 0. We denote this relationship ν ⊥ μ.

Theorem 1.15 Lebesgue Decomposition
Let (X,S, μ) be a measure space. Given ν : S → [0,∞), where ν is σ finite, there exist two unique
measures, νc, νs : S → [0,∞) such that,

ν = νc + νs

Probability Theory: 664, 665 9 Oregon State University
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and νc ≪ μ and νs ⊥ μ.

Theorem 1.16 Radon-Nikodym
Let (X,S, μ) be a measure space. Given ν : S → [0,∞), there exists h : X→ [0,∞) such that

νc(A) =
∫

A

hdμ

∀A ∈ S. h is called a density function.

1.3 Independence

Definition 1.19 Independence
A collection of random variables X : (Ω,F ,P)→ (S,S) are independent if the distribution func-
tion, Q, defined as

Q(B) = P ◦ (X1, X2, ..., Xn)−1(B)

where B ∈ S1 × ... × Sn, equals the product measure Q1 × Q2 × ... × Qn, where

Q(B) = P ◦ X−1 (B)

Theorem 1.17
If X1, X2, ..., Xn are independent random variables on (Ω,F ,P) such that E[ |Xj|] <∞ for all 1 ≤
j ≤ n, then

E[X1X2...Xn] = E[X1]E[X2]...E[Xn]

Theorem 1.18
If X1, X2 are independent random variables with distributions Q1, Q2, respectively, then the distri-
bution of X1 + X2 is given by the convolution

Q1 ∗Q2(B) =
∫

R

Q1(B − y)Q2(dy)

Where B is an event and B − y = {b − y : b ∈ B}

Definition 1.20 i.i.d.
A sequence of independent random variablesX1, X2, ... is independent and identically distributed
(i.i.d.) if the distribution of Xn does not depend on n. That is, the distrubition is the same for all n.

1.3.1 Covariance & Variance
Definition 1.21 Covariance

Given two random variables X and Y in L2(Ω,F ,P), the covariance of X and Y is given by

Cov(X, Y) = E[(X − E[X])(Y − E[Y])]

= E[XY] − E[X]E[Y]

Probability Theory: 664, 665 10 Oregon State University
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X and Y are said to be uncorrelated if Cov(X, Y) = 0.

☞ Remark
Independent random variables are uncorrelated, however, uncorrelated random variables are not
necessarily independent.

Definition 1.22 Variance
The variance of a random variable X is given by

Var(X) = Cov(X,X)

= E[X − E[X]]2

= E[X2] − E[X]2

☞ Remark
The covariance term arises naturally in the variance of a sum of random variables:

Var
�

n
∑

j=1

Xj
�

=
n
∑

j=1

Var(Xj) + 2
∑

1≤<j≤n
Cov(X, Xj)

Theorem 1.19

If X1, X2, ..., Xn are independent random variables in L2((Ω,F ,P)), then

Var(X1 + X2 + ... + Xn) = Var(X1) + Var(X2) + ... + Var(Xn)

Theorem 1.20 Borel-Cantelli

Let {An}∞n=1 be a sequence of independent events. If
∞
∑

n=1

P(An) = 1, then P(An i.o.) = 1, where

P(An i.o.) is the probability that An occurs "infintely often".

Moreover,
∞
∑

n=1

P(An) <∞ then P(An i.o.) = 0.

1.3.2 Independent Random Maps

Definition 1.23
A family of randommaps {Xt : t ∈ Λ} is independent if and only if∀ disjoint pairs of finite subsets
Λ1,Λ2, any V1 ∈ L2(σ({Xt : t ∈ Λ1}), V2 ∈ L2(σ({Xt : t ∈ Λ2}) are uncorrelated.

Theorem 1.21
Let Y1, Y2, ..., Yn be random variables of (Ω,F ,P) and Z : Ω→ R. Z is σ(Y1, Y2, ..., Yn) measur-
able if and only if ∃g : Rn → R such that Z = g(Y1, Y2, ..., Yn).

Probability Theory: 664, 665 11 Oregon State University
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Corollary 1.1
Suppose X1, X2 are independent random maps with values (S1,S1) and (S2,S2). Then for Borel
measurable g : S → R, Z1 = g1(X1) and Z2 = g2(X2) are independent.

Definition 1.24 Independent Events
A collection, C, of events A ∈ F are independent events if the collection of indicator functions

{1A : A ∈ C}

is a family of independent random maps.

☞ Remark
We denote an event An which occurs eventually for all n by

[Ac
n
i.o.]c

i.e. An occurs for all but finitely many n.

1.4 Conditional Expectation

Definition 1.25 Conditional Expectation (L2)
Let X ∈ L2(Ω,F ,P) and G be a sub-σ-algebra of F . Then the conditional expectation of X given
G , denoted E(X|G) is the G-measurable orthogonal projection of X onto L2(G).

Definition 1.26 Conditional Expectation (L1)
Let X ∈ L1(Ω,F ,P) and G be a sub-σ-algebra of F . Then a random variable Z is the conditional
expectation of X given G , Z = E(X|G) if

Z =
∫

G

XdP =
∫

G

E(X|G)dP

∀G ∈ G. Or, equivalently,
E(XZ) = E(E(X|G)Z)

∀A ∈ , where G = {1G : G ∈ G}

Theorem 1.22 Properties of Conditional Expectation

Let X, Y ∈ L1(Ω,F ,P) and G,D sub-σ-algebras of F . Then the following hold (a.s.)

1. E(X|{Ω,∅}) = E(X)

2. E(E(X|G)) = E(X)

3. E(cX + dY |G) = cE(X|G) + dE(Y |G) where c, d ∈ R

4. X ≤ Y ⇒ E(X|G) ≤ E(Y |G)

5. D ⊂ G ⇒ E(E(X|G)|D) = E(X|D)

6. XY ∈ L1 and X is G-measurable, then E(XY |G) = XE(Y |G)

7. σ(X) independent of G , then E(X|G) = E(X)

Probability Theory: 664, 665 12 Oregon State University
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8. Let ϕ be convex on a non-open interval J with finite left or right hand derivative at an end point of
J. If P(X ∈ J) = 1 and ϕ(X) ∈ L1, then

ϕ(E(X|G)) ≤ E(ϕ(X)|G)

9. X ∈ Lp(Ω,F ,P), p ≥ 1, then ∥E(X|G)∥p ≤ ∥X∥p

10. a. Xn
Lp−→ X⇒ E(Xn|G)

Lp−→ E(X|G)

b. 0 ≤ Xn ↑ X a.s. Xn, X ∈ L1, then E(Xn|G) ↑ E(X|G) and E(Xn|G)
L1−→ E(X|G)

c. If Xn → X a.s. and |Xn| ≤ Y ∈ L1, then E(Xn|G)→ E(X|G) a.s.

11. Let U,V : (Ω,F ,P) → (S1,S1), (S2,S2) respectively. Let ϕ : (S1 × S2,S1 ⊗ S2) → R be
measurable. If U is G-measurable, σ(V) and G are independent, and E(|ϕ(U,V)|) <∞, then

E(ϕ(U,V)|G) = h(U)

where h(U) = E(ϕ(,V))

12. E(X|σ(Y,Z)) = E(X|σ(Y)) if (X, Y) and Z are independent.

1.4.1 Conditional Probability

Definition 1.27
Given A ∈ F , the conditional probability of A given G is

P(A|G) = E(1A|G)

So, by orthogonality,

P(A ∩G) =
∫

G

P(A|G)P(dω)

∀G ∈ G.
Moreover, 0 ≤ P(A|G) ≤ 1, P(∅|G) = 0, P(Ω|G) = 1, and, given countable {An}∞n=1,

P(
∞
⋃

n=1
An|G) =

∞
∑

n=1

P(An|G)

Definition 1.28
Let Y : (Ω,F ,P) → (S,S) be a random map and G be a sub σ-algebra on F . The regular condi-
tional distribution of Y given G is a function

(ω,C) 7→ QG

where QG(ω,C) = PG([Y ∈ C])(ω) on Ω × S such that

1. ∀C ∈ S , QG(·, C) = P([Y ∈ C] |G) a.s.

2. ∀ω ∈ Ω, C 7→ QG is a probability measure on Ω × S.

Probability Theory: 664, 665 13 Oregon State University
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Definition 1.29
A topological space whose topology is induced by a metric is called metrizable. If a metrizable
space is complete and seperable, it is called a Polish Space.

Theorem 1.23 Disintegration Formula

Given ƒ : (S,S)→ R with ƒ ∈ L1,

E[ƒ (Y)|G] =
∫

Ω

∫

ƒ (y)QG(ω,dy)P(dω)

Definition 1.30
Given {Bn}n∈N ⊆ F , Bn is a partition of F if Bn is disjoint, countable, and

⋃

n∈N
Bn = Ω

Theorem 1.24
Let {Bn}n∈N be a paritition of F such that P(Bn) > 0 for all n = 1,2, ... Let G = σ({Bn}n∈N).
Then ∀A ∈ F ,

P(A|G)(ω) =
P(A ∩ Bn)

P(Bn)

if ω ∈ Bn

Example 1.2 Canonical Probability Space
Let Ω = S1 × S2, F = S1 ⊗ S2 and P be absolutely continuous with respect to μ = μ1 × μ2 and
density ƒ . We can view P as a joint coordinate distribution (X, Y) where X(ω) =  ,Y(ω) = y (i.e.
ω = (, y) ∈ S1 × S2). If we take the σ-algebra generated by the first coordinate, that is

G = {B × S2 : B ∈ S1}

Then the regular conditional distribution of Y , given σ(X) and C ∈ S2, is

P([Y ∈ C] |G)(ω) =

∫

C ƒ (, y)μ2(dy)
∫

S2
ƒ (, y)μ2(dy′)

where A = S1 × C.

Definition 1.31
The conditional pdf of Y given X = , denoted ƒ (y|) is the joint density section y 7→
ƒ (, y) normalized to a probability density function by dividing by the marginal pdf ƒX() =
∫

S2

ƒ (, y)μ2(dy). This is given in general form by

ƒ (y|) =
ƒ (, y)
∫

S2
ƒ (, y)μ2(dy)

Probability Theory: 664, 665 14 Oregon State University
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1.4.2 Random Walks

Definition 1.32 Random Walks
Let Z1, Z2, ..., Zn be a sequence of i.i.d. random variables. Then we can define a random walk
from X by

Sk,X = X +
n
∑

=1

Z

where X ∈ R and S0,X = X.

Theorem 1.25 Markov Property
Given i.i.d. random variables Z1, Z2, ..., Zn and random walk Sk,X ,

E[Sn,X|σ(Sn−1,X, Sn−2,X, ..., S0,X)] = E[Sn,X|σ(Sn−1,X)]

Furthermore, note that
E[Sn,X|σ(Sn−1,X)] = Sn,X + E[Sn−1,X]

Definition 1.33 Stochastic Processes
A family of random maps {Xt : t ∈ Λ} such that for each t ∈ Λ, Xt : Ω → St is known as a
stochastic process.
If the index set Λ is 1,2,3, ..., then {Xt : t ∈ Λ} is refered to as a discrete-parameter stochastic
process. If Λ = [0,∞), then {Xt : t ∈ Λ} is known as a continuous-parameter stochastic
process.

1.5 Martingales

Definition 1.34 Filtration
Let {Ft : t ∈ T} be a collection of σ-algebras such that T is a linearly ordered set and

Fs ⊆ Ft

for s ≤ t. Then {Ft : t ∈ T} is called a filtration.
Furthermore, we say a collection of random variables {Xt} is adapted to {Ft : t ∈ T} if Xt is Ft

measurable for each t ∈ T

Definition 1.35 (Super/Sub) Martingales
Let {Xt} be adapted to {Ft : t ∈ T}. Then {Xt} is a:

✿ martingale ⇐⇒ Xs = E[Xt |Fs] where (s ≤ t)

✿ supermartingale ⇐⇒ Xs ≥ E[Xt |Fs] where (s ≤ t)

✿ submartingale ⇐⇒ Xs ≤ E[Xt |Fs] where (s ≤ t)

Probability Theory: 664, 665 15 Oregon State University
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Exercise 1.1
Let {Xt}t∈N be a sequence of iid random variables on a probability space (Ω,F ,P). Additionally,
let {St}t∈N be a sequence of random variables defined by

S0 = X1

St = St+1 + Xt

Take the filtration Ft = σ(X1, X2, ..., Xt) and note that St is Ft adapted.
Is St a martingale, supermartingale, or submartingale? What is E[St + 1|Ft]?

Solution

By properties of conditional expectation we can get that

E[St+1|Ft] = St + E[Xt+1]

So we can say that:

if E[Xt + 1] = 0⇒ St = E[St + 1|Ft] (martingale)

if E[Xt + 1] > 0⇒ St < E[St + 1|Ft] (submartingale)

if E[Xt + 1] < 0⇒ St > E[St + 1|Ft] (supermartingale)

Definition 1.36
Let {Xn : n ≥ 1} be a martingale. Its martingale difference sequence is given by {Zn}, where

Z1 = X1

Zk+1 = Xk+1 − Xk

☞ Remark
If Xn ∈ L2(Ω,F ,P), ∀n ≥ 1, {Zn} are uncorrelated. Moreover, if Xn ∈ L1(Ω,F ,P) and ƒ is a
bounded, Fn measurable function, then

E[Zn+1ƒ (X1, X2, ..., Xn)] = E[E[Zn+1ƒ (X1, X2, ..., Xn)|Fn]]

= E[ƒ (X1, X2, ..., Xn)E(Zn+1|Fn)] = 0

Theorem 1.26
(a) If {Xn : n ≥ 1} is a martingale and ϕ(Xn) is a convex, integrable function, then {ϕ(Xn) : n ≥

1} is a submartingale.

(b) If {Xn} is a submartingale and ϕ(Xn) is convex, non-decreasing, and integrable, then {ϕ(Xn) :
n ≥ 1} is a submartingale.

Probability Theory: 664, 665 16 Oregon State University



CONTENTS CHAPTER 1. MTH 664

Theorem 1.27 Doob’s Maximal Inequality

Let p ≥ 1 and {Xn} be an {Fn : 1 ≤ k ≤ n} adaptedmartingale (or a non-negative submartingale)
such that E[ |Xn|p] <∞. Then for λ > 0 andMn :=mx{|Xn|} satisfies the following:

P(Mn ≥ λ) ≤
1

λp

∫

[Mn>λ]
|Xn|pdP ≤

1

λp
E[ |Xn|p]

Corollary 1.2 Kolmogorov’s Inequality
Let {Xn} be a martingale with E[Xk] = 0 and Var(Xk) < ∞ for all k = 1,2, ..., n. Then for
Mn =mx{Xn}, λ > 0,

P(Mn > λ) ≤
1

λ2
Var(Sn) =

1

λ2

n
∑

k=1

Var(Xk) =
1

λ2

n
∑

k=1

E[ |Xn|2]

Theorem 1.28 Doobs Maximal Ineq. for Moments

(a) E[Mn] ≤ e
e−1(1 + E[ |Xn|] log(|Xn|))

(b) For p > 1, E[Mp
n
] ≤ qpE[ |Xn|p] where 1

p +
1
q = 1

1.5.1 Stopping Times

Definition 1.37
Let {Ft} be a filtration on (Ω,F ,P). A random variable τ : Ω→ T ∪ {∞} is a stopping time if

{τ ≤ t} = {ω ∈ Ω : τ(ω) ≤ t}

. Furthermore, τ is an optional stopping time if

{τ < t} = {ω ∈ Ω : τ(ω) < t} ∈ Ft

∀t ∈ T.

Exercise 1.2

Let T = N and (S,S,P) be a series of Bernoulli probability spaces, where S = {±1}, S = 2S ,
and P(ω = +1) = 1 − P(ω = −1) = p. Consider the probability space (Ω,F ,P) defined as
follows:

Ω = {ω = (ω)∈N : ω = ±1} = S1 × S2 × ... =
∞
∏

=1

S

F =
∞
⊗

=1
S

P =
∞
∏

=1

P

Finally, define a set of random variables X : (ω)→ ω (i.e. X is the value of ω (±1) at iteration .
What are |σ(1)|? |σ(X1, X2)|? |F |?
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Solution

σ(X1) = {X−11 (+1), X
−1
1 (−1), X

−1
1 (∅), X

−1
1 (±1)}⇒ |σ(X1)| = 4

|σ(X1, X2)| = 16

|F | =∞

Definition 1.38 Pre-τ σ-algebra
Suppose {Ft : t ∈ T} is a filtration on (Ω,F ,P) and τ is anFt stopping time. ThePre-τ σ-algebra
Fτ is defined as

Fτ = {A ∈ F : A ∩ [τ ≤ t] ∈ Ft, ∀t ∈ T}

☞ Remark
If τ1 ≤ τ2 are stopping times, then Fτ1 ⊆ Fτ2

Definition 1.39 stopped process
The stochastic process {Xτ ∧ t : t ≥ 0} is referred to as the stopped process, where

∧ b =min{, b}

Definition 1.40 progressively measurable
Let T = [0,∞) or T = [0, t0]. A stochastic process {Xt : t ∈ T} on (S,S) is progressively
measurable with respect to {Ft} is (s,ω) 7→ s(ω) from [0, t0] × Ω to S is measurable with
respect to B[0, t0] ⊗ Ft and S ∀t ∈ T.

Theorem 1.29
Suppose {Xt : t ∈ T} is progressively measurable and τ is a stopping time. Then Xτ is Fτ mea-
surable. That is,

([Xτ ∈ B] ∩ [τ ≤ t]) ∈ Fτ ∀B ∈ S, ∀t ∈ T

Theorem 1.30

Let Yn be an Fn martingale such that Yn → Y ∈ L1. Then Yn = E(Y |Fn)

Theorem 1.31
Let T = N. Assume τ1 ≤ τ2. Then

E(Xτ2 |Fτ1) = Xτ1

Corollary 1.3
Let T = N, fix n ∈ N and assumeXt is anFτ measurablemartingale. For any stopping time τ1 ≤ τ2,

E(Xτ2∧n|Fτ∧n) = Xτ1∧n
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Theorem 1.32 Optional Stopping Time Theorem
Let Xt be an Ft martingale with t ∈ T = N. Suppose τ1 ≤ τ2 are stopping times such that:

1. P(τ2 <∞) = 1

2. Xτ2∧n is uniformly integrable

Then E(Xτ2 |Fτ1) = Xτ1

Definition 1.41 Upcrossings
Let Zn be Fn submartingale with n ∈ N,

E(Zn|Fm) ≥ Zm

Fix  ≤ b and define ζ1 = 1 and
(

ζ2k = inf{n ≥ 2k − 1|Zn ≥ b}

ζ2k+1 = inf{n ≥ 2k|Zn ≤ }
, k = 1,2, ...

Now define Xn =mx{Zn− ,0} and note thatmx is a convex function, so Xn is a submartin-
gale by Jensen’s Inequality. Also,

(

Xζ2k =mx{Zζ2k − ,0} ≥ b − 

Xζ2k+1 =mx{Zζ2k+1 − ,0} = 0

The number of Upcrossings by time N is then given by UN = sp{k|ζ2k ≤ N}.

Theorem 1.33 Doob’s Upcrossing Inequality

E(UN) ≤
E(XN) − E(X1)

(b − )
≤

E(XN)

(b − )

1.6 Central Limit Theorem

Definition 1.42 Weak Convergence

A sequence of probabilities {Qn}∞n=1 converges weakly or, equivalently, converges in probability
to a probability Q as n→∞ if

lim
n→∞

∫

Rk
g()Qn(d) =

∫

Rk
g()Q(d)

for all bounded functions g : Rk → R. We denote converges in probability as Qn ⇒ Q. Moreover,
a sequence of random variables Xn with distributions Qn converges to X with a distribution Q if
Qn ⇒ Q.

Theorem 1.34 Finite Dimensional Weak Convergence
Let {Qn}, Q be a sequence of probabilities. The following are equivalent:

1. Qn ⇒ Q
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2.

∫

Rk
ƒdQn →
∫

Rk
ƒdQ for all bounded, continuous ƒ vanishing outside a compact set.

3.

∫

Rk
ƒdQn →
∫

Rk
ƒdQ for all infintely differentiable ƒ vanishing outside a compact set.

4. For Fn() = Qn((−∞, 1] × ... × (−∞, n]) and F() = Q((−∞, 1] × ... × (−∞, n]),
Fn()→ F() as n→∞

Theorem 1.35 Lindeberg Central Limit Theorem
For each n, let Xn,1, ..., Xn,kn be independent arrays of random variables such that E(Xn,j) = 0,

σn,j =
�

E(X2
n,j
)
�1/2

<∞,
kn
∑

j=1

σ2
n,j
= 1 and, for all ε > 0,

lim
n→∞

kn
∑

j=1

E(X2
n,j
1[ |Xn,j|>ε]) = 0 (Lindeberg Condition)

Then
kn
∑

j=1

Xn,j converges in distribution to a standard normal distribution, N (0,1).

Corollary 1.4 Classical Central Limit Theorem

Let {Xj} be a sequence of random variables with E(Xj) = μ, 0 < σ2 = VarXj < ∞. Then
∑n

j=1(Xj − μ)

(σ
p
n)

⇒ N (0,1). Equivalently,
kn
∑

j=1

Xn,j ⇒ N (nμ, σ
p
n).

Corollary 1.5 Lyapounov Central Limit Theorem

∀n, let X1,n, X2,n, ..., Xn,kn be kn independent random variables such that
kn
∑

j=1

EXn,j = μ,

kn
∑

j=1

VarXn,j = σ2 > 0 and

lim
n→∞

kn
∑

j=1

E|Xn,j − EXn,j|2+δ = 0 (Lyapounov Condition)

for some δ > 0. Then
kn
∑

j=1

Xn,j ⇒ N (μ, σ2).
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