Probability Theory

Forrest Corcoran

Fall, Winter 2022

Contents

1 MTH 664 2
1.1 Probability and Measure Spaces 2
1.1.1 Probability Spaces 2
1.1.2 Random Variables 4
1.2 Expectation 5
1.2.1 Convexity 6
1.2.2 L^{p} Spaces 8
1.2.3 Generating σ-algebras 9
1.3 Independence 10
1.3.1 Covariance \& Variance 10
1.3.2 Independent Random Maps 11
1.4 Conditional Expectation 12
1.4.1 Conditional Probability 13
1.4.2 Random Walks 15
1.5 Martingales 15
1.5.1 Stopping Times 17
1.6 Central Limit Theorem 19

Chapter 1 MTH 664

1.1 Probability and Measure Spaces

1.1.1 Probability Spaces

Definition 1.1 Probability Space
A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$ where
$\mathscr{R} \Omega$ is the outcome space
$\& \mathcal{F} \subset 2^{\Omega}$ is the σ-algebra of events
$\mathscr{\&} \mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a probability function satisifying the following properties:

1. $\mathbb{P}(\varnothing)=0$
2. $\mathbb{P}(\Omega)=1$
3. $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)$ where $\left\{A_{n}: A_{n} \in \mathcal{F}\right\}_{n=1}^{\infty}$ are all pairwise disjoint

Example 1.1

Suppose $\Omega=\{1,2, \ldots, N\}, \mathcal{F}=\{A \subset \Omega\}:=2^{\Omega}$, and $\mathbb{P}(A)=\frac{|A|}{|\Omega|}$ Is $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space?

Proof.

$$
\begin{gathered}
\mathbb{P}(\varnothing)=\frac{|\varnothing|}{|\Omega|}=0 \\
\mathbb{P}(\Omega)=\frac{|\Omega|}{|\Omega|}=1 \\
\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\frac{\left|\bigcup_{n=1}^{\infty} A_{n}\right|}{|\Omega|}=\frac{\left|\sum_{n=1}^{\infty} A_{n}\right|}{|\Omega|}
\end{gathered}
$$

Yes, $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space

Definition $1.2 \quad \sigma$-algebra

Let \mathcal{F} be a collection of subsets in Ω. \mathcal{F} is a σ-algebra on Ω if and only if
$\mathfrak{\&} A_{n} \in \mathcal{F} \Rightarrow A_{n}^{c} \in \mathcal{F}$
\& $A_{n} \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}$
$\mathscr{\&} \varnothing \in \mathcal{F}$

1298 Remark

$$
\forall A \in \mathcal{F}, \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)
$$

Proof. First note that, by the definition of σ-algebra, $A \in \mathcal{F} \Rightarrow A^{C} \in \mathcal{F}$. Now observe that

$$
\begin{array}{r}
A \cap A^{c}=\varnothing, A \cup A^{c}=\Omega \\
\Rightarrow \mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)=1 \\
\Rightarrow \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)
\end{array}
$$

[298 Remark

$$
\mathbb{P}\left(B \cap A^{c}\right)=\mathbb{P}(B)-\mathbb{P}(B \cup A)
$$

Definition 1.3 Countable Subadditivity
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and A be a collection of events in \mathcal{F} which are not necessarily disjoint. Then

$$
\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

Theorem 1.1 Continuity from Below
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and A be a collection of increasing events in \mathcal{F}, that is $\forall n \geq 1$

$$
A_{n} \subseteq A_{n+1}
$$

We define $\lim _{n} A_{n}=\bigcup_{n} A_{n}$. So, by countable subadditivity,

$$
\mathbb{P}\left(\lim _{n} A_{n}\right)=\lim _{n} \mathbb{P}\left(A_{n}\right)
$$

Proof. First note that since $A_{n} \subseteq A_{n+1}, \mathbb{P}\left(A_{n}\right) \leq \mathbb{P}\left(A_{n+1}\right)$. Additionally, since $A_{n} \subseteq \Omega$ and $\mathbb{P}(\Omega)=$ $1, \mathbb{P}\left(A_{n}\right) \leq 1$. Then by Monotone Convergence Theorem, $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$ exists.
Now, set $A=\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} A_{n}$ and define the sequence of events $\left\{B_{n}\right\}_{n=1}^{\infty}$ such that for each $n \in \mathbb{N}$,

$$
\begin{gathered}
B_{1}=A_{1} \\
B_{2}=A_{2} \backslash A_{1} \\
B_{n}=A_{n} \backslash A_{n-1}
\end{gathered}
$$

So, by this construction, the $B_{n} s$ are disjoint and $\bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty} A_{n}$. Additionally, $\mathbb{P}\left(B_{n}\right)=\mathbb{P}\left(A_{n}\right)-$ $\mathbb{P}\left(A_{n-1}\right)$. Then we have

$$
\mathbb{P}(A)=\mathbb{P}\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(B_{n}\right)
$$

$$
\begin{array}{r}
=\left[\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)-\mathbb{P}\left(A_{n-1}\right)\right]+\mathbb{P}\left(A_{1}\right) \\
=\lim _{n \rightarrow \infty}\left[\sum_{n=1}^{\infty}\left(\mathbb{P}\left(A_{n}\right)-\mathbb{P}\left(A_{n-1}\right)\right)+\ldots+\left(\mathbb{P}\left(A_{2}\right)-\mathbb{P}\left(A_{1}\right)\right)\right]+\mathbb{P}\left(A_{1}\right) \\
=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
\end{array}
$$

[2:8 Remark
We can also show that Continuity from Above, i.e.

$$
A_{n} \supseteq A_{n+1} \Rightarrow \mathbb{P}\left(\lim _{n} A_{n}\right)=\lim _{n} \mathbb{P}\left(A_{n}\right)
$$

holds. To show this, set $B_{n}^{c}=A_{n}$. By DeMorgan's Law

$$
\left(\bigcap_{n=1}^{\infty} B_{n}\right)^{c}=\bigcup_{n=1}^{\infty} B_{n}^{c}=\bigcup_{n=1}^{\infty} A_{n}
$$

and the proof follows as above.

1.1.2 Random Variables

Definition 1.4 Random Variables
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A random variable is a function $X: \Omega \rightarrow \mathbb{R}$ such that $X^{-1}([a, b]) \in \mathcal{F}$.

Definition 1.5 Distribution Function
A distribution function is a function

$$
F_{X}(x)=\mathbb{P}\left(X^{-1}((-\infty, x])\right)=\mathbb{P}(X \leq x)
$$

We say a distribution function is absolutely continuous if

$$
\begin{equation*}
F_{X}(x)=\int_{-\infty}^{x} g(u) d u \tag{1.1}
\end{equation*}
$$

for some $g: \mathbb{R} \rightarrow \mathbb{R}$

Iqz Remark

In general, $\frac{d}{d X} F_{X}=g(x)$ (except for some non-differentiable points).

Convergence

Definition 1.6 Convergence in Probability
Consider a sequence on random variables $\{X\}_{n=1}^{\infty}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say $\{X\}_{n=1}^{\infty}$ converges in probability to X if, $\forall \epsilon>0$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

Definition 1.7 Almost Sure Convergence
Now consider a sequence on random variables $\{X\}_{n=1}^{\infty}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say $\{X\}_{n=1}^{\infty}$ converges almost surely to X if $\forall \omega \in \Omega$,

$$
\mathbb{P}\left(\left\{\omega \in \Omega: X_{n}(\omega) \nrightarrow X(\omega)\right\}\right)=0
$$

Theorem 1.2

A sequence of random variables $\left(X_{n}\right)_{n=1}^{\infty}$ converges to X in probability if and only if every subsequence has a further subsequence that converges almost surely to X.

1.2 Expectation

Definition 1.8 Simple Function
A random variable X is called a simple or discrete random variable if it can be written as

$$
X(\omega)=\sum_{j=1}^{n} a_{j} \mathbb{1}_{A_{j}}
$$

where $a_{j} \in \mathbb{R}$ and $A_{j} \cap A_{i}=\varnothing$ for all $1 \leq i, j \leq n$. Note the function $\mathbb{1}_{A}$ is defined as

$$
\mathbb{I}_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \text { otherwise }\end{cases}
$$

Definition 1.9 Expectation of Simple Function
The expectation of a discrete random variable X is given by

$$
\mathbb{E}[X]=\int_{\Omega} X d \mathbb{P}=\sum_{j=1}^{n} a_{j} \mathbb{P}\left(A_{j}\right)
$$

Theorem 1.3

If X is a non-negative random variable, we can write

$$
\mathbb{E}[X]=\sup \{\mathbb{E}[Y]: 0 \leq Y \leq X, Y \text { simple }\}
$$

Theorem 1.4

Given that any function may be approximated arbitrarily closely by a sequence of non-decreasing
simple functions $\left(X_{n}\right)_{n=1}^{\infty}$, we may define the expectation of any function $X=\lim _{n \rightarrow \infty} X_{n}$ by

$$
\mathbb{E}[X]=\lim _{n \rightarrow \infty}\left\{\sum_{j=0}^{n 2^{n}-1} \frac{j}{2^{n}} \mathbb{P}\left(j 2^{-n} \leq X<(j+1)^{-n}\right)+n \mathbb{P}(X \geq n)\right\}
$$

Theorem 1.5
More generally, we write

$$
\mathbb{E}[X]=\int_{\Omega} X d \mathbb{P}=\mathbb{E}\left[X^{+}\right]-\mathbb{E}\left[X^{-}\right]
$$

Theorem 1.6

The following properties of the expect value are true:

1. $z \leq x \Rightarrow \mathbb{E}[z] \leq \mathbb{E}[x]$
2. $A \subset B \Rightarrow \mathbb{E}\left[X \mathbb{1}_{A}\right] \leq \mathbb{E}\left[X \mathbb{1}_{B}\right]$
3. $A=\bigcup_{n=1}^{\infty} A_{n}, A_{n} \subseteq A_{n+1} \Rightarrow \lim _{n \rightarrow \infty} \mathbb{E}\left[X \mathbb{1}_{A_{n}}\right]=\mathbb{E}\left[X \mathbb{1}_{A}\right]$

Theorem 1.7 Change of Variable

Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous function. Then

$$
\mathbb{E}[h \circ X]=\int_{\Omega}(h \circ X) \mathbb{P}(d \omega)=\int_{\mathbb{R}} h(X) F_{X}(d X)
$$

Definition 1.10 Moments

Given a random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a distribution function F_{X}, we can define the \mathbf{p}-th order moment of X to be

$$
\mathbb{E}\left[X^{p}\right]=\int_{\Omega} X^{p}(\omega) \mathbb{P}(d \omega)=\int_{\mathbb{R}} x^{p} F_{X}(d x)
$$

Furthermore, moments of absolute values $(|X|)$ are refered to as absolute moments and are given by

$$
\mathbb{E}\left[|X|^{p}\right]=p \int_{0}^{\infty} x^{p-1} \mathbb{P}(|X|>x) d x
$$

1.2.1 Convexity

Theorem 1.8

The spaces $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ with norms given by

$$
\|X\|_{p}=\left[\int_{\Omega}|X|^{p} d \mathbb{P}\right]^{1 / p}=\left(\mathbb{E}[|X|]^{p}\right)^{1 / p}
$$

are Banach Spaces.

Moreover, the space $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ is a Hilbert Space with an inner product given by

$$
\langle X, Y\rangle=\mathbb{E}[X Y]=\int_{\Omega} X Y d \mathbb{P}
$$

So we have $\|X\|_{2}=\langle X, X\rangle^{1 / 2}$

Definition 1.11

A function ϕ is convex on an interval J if for all $a, b \in J$ and $0 \leq t \leq 1$,

$$
\phi(t a+(1-t) b) \leq t \phi(a)+(1-t) \phi(b)
$$

Theorem 1.9 Line of Support
Suppose ϕ is a convex function on an interval J. Then the following are true:
I. If J is open:
i. The left-hand and right-hand derivatives of ϕ (ϕ^{-}and ϕ^{+}respectively) exists and are finite as well as non-decreasing on J with $\phi^{-} \leq \phi^{+}$
ii. For each $x_{0} \in J$, there exists a constant m such that $\phi(x) \geq \phi\left(x_{0}\right)+m\left(x-x_{0}\right), \forall x \in J$.
II. IfJ if half open and the derivative of the open side is finite, the properties of I apply to the closed side with endpoint x_{0}.

Theorem 1.10

Let X, Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Then the following inequalities hold:
a. (Jensen's Inequality) If ϕ is a convex function on the interval J and $\mathbb{P}(X \in J)=1$, then

$$
\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]
$$

Moreover, if ϕ is strictly convex, the above inequality holds iff X is almost surely constant.
b. (Lyapounov Inequality) If $0<r<s$, then

$$
\left(\mathbb{E}\left[|X|^{r}\right]\right)^{1 / r} \leq\left(\mathbb{E}\left[|X|^{s}\right]\right)^{1 / s}
$$

c. (Holder's Inequality) Let $p \geq 1$. If $X \in L^{p}, Y \in L^{q}, \frac{1}{p}+\frac{1}{q}=1$, then $X Y \in L^{1}$ and

$$
\mathbb{E}[|X Y|] \leq\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}\left(\mathbb{E}\left[|Y|^{q}\right]\right)^{1 / q}
$$

d. (Cauchy-Schwartz Inequality) If $X, Y \in L^{2}$, then $X Y \in L^{1}$ so we have

$$
|\mathbb{E}[X Y]| \leq \sqrt{\mathbb{E}\left[X^{2}\right]} \sqrt{\mathbb{E}\left[Y^{2}\right]}
$$

e. (Minkowski's Inequality) Let $p \geq 1$. if $x, Y \in L^{p}$ then

$$
\|X-Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p}
$$

f. (Markov/Chebyshev Inequalities) Let $p \geq 1$. If $X \in L^{p}$ then for $\lambda>0$

$$
\mathbb{P}(|X| \geq \lambda) \leq \frac{\left.\mathbb{E}\left[|X|^{p}\right]\right]_{[|X| \geq \lambda]}}{\lambda^{p}} \leq \frac{\mathbb{E}\left[|X|^{p}\right]}{\lambda^{p}}
$$

More generally, if h is a non-negative increasing function on an interval containing the range of X, then

$$
\mathbb{P}(X \geq \lambda) \leq \frac{\mathbb{E}\left[h(X) \mathbb{1}_{[X \geq \lambda]}\right]}{h(\lambda)}
$$

1.2.2 L^{p} Spaces

Definition $1.12 L^{p}$ Probability Space
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $p \geq 1$. Then we define $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ to be

$$
L^{p}(\Omega, \mathcal{F}, \mathbb{P})=\left\{X: \Omega \rightarrow \mathbb{R}: \mathbb{E}\left[|X|^{p}\right]<\infty\right\}
$$

ns

For random variables $X, Y \in L^{p}$,

$$
X=Y \Longleftrightarrow \mathbb{E}\left[|X-Y|^{p}\right]=0 \Longleftrightarrow \mathbb{E}\left[|X|^{p}\right]=\mathbb{E}\left[|Y|^{p}\right]
$$

Theorem 1.11

A sequence of random variables X_{n} converges to X in L^{p} if:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}-\left.X\right|^{p}\right]=0
$$

Theorem 1.12

$L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ is complete
Definition 1.13 Uniform Integrability
A sequence of random variables X_{n} is said to be uniformly integrable if

$$
\lim _{\lambda \rightarrow \infty} \sup _{n} \mathbb{E}\left[\left\{\left|X_{n}\right| \mathbb{U}_{\left[\left|X_{n}\right| \geq \lambda\right]}\right\}\right]=0
$$

Theorem 1.13 Fatou's Lemma
Let $X_{n}: \Omega \rightarrow[0, \infty]$ be a sequence of non-negative random variables. Then

$$
\mathbb{E}\left[\lim _{n \rightarrow \infty} \inf X_{n}(\omega)\right] \leq \lim _{n \rightarrow \infty} \inf \mathbb{E}\left[X_{n}(\omega)\right]
$$

We can also show that the reverse Fatou's Lemma holds. If $\exists Y: \Omega \rightarrow[0, \infty]$ such that $X_{n} \leq Y$ for all n and $\mathbb{E}[Y]<\infty$, then

$$
\lim _{n \rightarrow \infty} \sup \mathbb{E}\left[X_{n}(\omega)\right] \leq \mathbb{E}\left[\lim _{n \rightarrow \infty} \sup X_{n}(\omega)\right]
$$

Theorem 1.14

Consider $\left\{X_{n}\right\}_{n=1}^{\infty}$. Then

$$
\mathbb{E}\left[\left|X_{n}-X\right|\right] \rightarrow 0 \Longleftrightarrow\left\{\begin{array}{l}
X_{n} \xrightarrow{\mathbb{P}} X \\
\left\{X_{n}\right\}_{n=1}^{\infty} \text { is uniformly integrable }
\end{array}\right.
$$

1.2.3 Generating σ-algebras

Definition 1.14 Generating σ-algebras
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X: \Omega \rightarrow \mathcal{S}$, where \mathcal{S} is a σ-algebra on S. Then $\sigma(X)$ is the generating σ-algebra generated by X which is the smallest σ-algebra such that X is a measurable map

[-7 Remark

Recall: $X:(X, \mathcal{F}) \rightarrow(S, \mathcal{S})$ is measurable if $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{S}$.

Definition 1.15 Product σ-algebra

Let $\left(S_{i}, \mathcal{S}_{i}\right)$ be a finite collection of measurable spaces. $\mathcal{S}_{1} \otimes \mathcal{S}_{2} \otimes \ldots \otimes \mathcal{S}_{n}$ is the product σ-algebra which is defined as the smallest σ-algebra on $S_{1} \times S_{2} \times \ldots \times S_{n}$ such that all projection maps,

$$
T_{k}: S_{1} \times S_{2} \times \ldots \times S_{n} \rightarrow S_{k}
$$

are measurable.

Definition 1.16 Product Measure

Let $\left(S_{i}, \mathcal{S}_{i}, \mu_{i}\right)$ be a measure space. The product measure $\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}$ on $\mathcal{S}_{1} \otimes \mathcal{S}_{2} \otimes \ldots \otimes \mathcal{S}_{n}$ is defined as

$$
\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\left(B_{1} \times B_{2} \times \ldots \times B_{n}\right)=\mu_{1}\left(B_{1}\right) \mu_{2}\left(B_{2}\right) \ldots \mu_{n}\left(B_{n}\right)
$$

Definition 1.17 Absolutely Continuous
Let (X, \mathcal{S}, μ) be a measure space. Consider the measure $\nu . \nu$ is absolutely continuous with respect to μ if

$$
\mu(A)=0 \rightarrow \nu(A)=0
$$

$\forall A \in \mathcal{S}$. We denote this relationship by $\nu \ll \mu$.

Definition 1.18 Singular Measure

Let (X, \mathcal{S}, μ) be a measure space. Consider the measure ν. ν is singular with respect to μ if $\exists A \in \mathcal{S}$ with $\mu(A)=0$ and $\nu\left(A^{c}\right)=0$. We denote this relationship $\nu \perp \mu$.

Theorem 1.15 Lebesgue Decomposition

Let (X, \mathcal{S}, μ) be a measure space. Given $\nu: \mathcal{S} \rightarrow[0, \infty)$, where ν is σ finite, there exist two unique measures, $\nu_{a c}, \nu_{s}: \mathcal{S} \rightarrow[0, \infty)$ such that,

$$
\nu=\nu_{a c}+v_{s}
$$

and $\nu_{a c} \ll \mu$ and $\nu_{s} \perp \mu$.
Theorem 1.16 Radon-Nikodym
Let (X, \mathcal{S}, μ) be a measure space. Given $\nu: \mathcal{S} \rightarrow[0, \infty)$, there exists $h: X \rightarrow[0, \infty)$ such that

$$
\nu_{a c}(A)=\int_{A} h d \mu
$$

$\forall A \in \mathcal{S} . h$ is called a density function.

1.3 Independence

Definition 1.19 Independence
A collection of random variables $X_{i}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(S_{i}, \mathcal{S}_{i}\right)$ are independent if the distribution function, Q, defined as

$$
Q(B)=\mathbb{P} \circ\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{-1}(B)
$$

where $B \in S_{1} \times \ldots \times S_{n}$, equals the product measure $Q_{1} \times Q_{2} \times \ldots \times Q_{n}$, where

$$
Q_{i}\left(B_{i}\right)=\mathbb{P} \circ X_{i}^{-1}\left(B_{i}\right)
$$

Theorem 1.17

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}\left[\left|X_{j}\right|\right]<\infty$ for all $1 \leq$ $j \leq n$, then

$$
\mathbb{E}\left[X_{1} X_{2} \ldots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \ldots \mathbb{E}\left[X_{n}\right]
$$

Theorem 1.18

If X_{1}, X_{2} are independent random variables with distributions Q_{1}, Q_{2}, respectively, then the distribution of $X_{1}+X_{2}$ is given by the convolution

$$
Q_{1} * Q_{2}(B)=\int_{\mathbb{R}} Q_{1}(B-y) Q_{2}(d y)
$$

Where B is an event and $B-y=\{b-y: b \in B\}$

Definition 1.20 i.i.d.

A sequence of independent random variables X_{1}, X_{2}, \ldots is independent and identically distributed (i.i.d.) if the distribution of X_{n} does not depend on n. That is, the distrubition is the same for all n.

1.3.1 Covariance \& Variance

Definition 1.21 Covariance

Given two random variables X and Y in $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$, the covariance of X and Y is given by

$$
\begin{array}{r}
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
\end{array}
$$

X and Y are said to be uncorrelated if $\operatorname{Cov}(X, Y)=0$.

If
Independent random variables are uncorrelated, however, uncorrelated random variables are not necessarily independent.

Definition 1.22 Variance
The variance of a random variable X is given by

$$
\begin{array}{r}
\operatorname{Var}(X)=\operatorname{Cov}(X, X) \\
=\mathbb{E}[X-\mathbb{E}[X]]^{2} \\
=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{array}
$$

Iqz Remark

The covariance term arises naturally in the variance of a sum of random variables:

$$
\operatorname{Var}\left(\sum_{j=1}^{n} X_{j}\right)=\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Theorem 1.19

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables in $L^{2}((\Omega, \mathcal{F}, \mathbb{P}))$, then

$$
\operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)
$$

Theorem 1.20 Borel-Cantelli

Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of independent events. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=1$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$, where $\mathbb{P}\left(A_{n}\right.$ i.o. $)$ is the probability that A_{n} occurs "infintely often".
Moreover, $\sum_{n=1}^{\infty} \mathbb{P}\left({ }_{A} n\right)<\infty$ then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$.

1.3.2 Independent Random Maps

Definition 1.23

A family of random maps $\left\{X_{t}: t \in \Lambda\right\}$ is independent if and only if \forall disjoint pairs of finite subsets Λ_{1}, Λ_{2}, any $V_{1} \in L^{2}\left(\sigma\left(\left\{X_{t}: t \in \Lambda_{1}\right\}\right), V_{2} \in L^{2}\left(\sigma\left(\left\{X_{t}: t \in \Lambda_{2}\right\}\right)\right.\right.$ are uncorrelated.

Theorem 1.21

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be random variables of $(\Omega, \mathcal{F}, \mathbb{P})$ and $Z: \Omega \rightarrow \mathbb{R} . Z$ is $\sigma\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ measurable if and only if $\exists g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $Z=g\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.

Corollary 1.1

Suppose X_{1}, X_{2} are independent random maps with values $\left(S_{1}, \mathcal{S}_{1}\right)$ and $\left(S_{2}, \mathcal{S}_{2}\right)$. Then for Borel measurable $g_{i}: \mathcal{S}_{i} \rightarrow \mathbb{R}, Z_{1}=g_{1}\left(X_{1}\right)$ and $Z_{2}=g_{2}\left(X_{2}\right)$ are independent.

Definition 1.24 Independent Events
A collection, \mathcal{C}, of events $A \in \mathcal{F}$ are independent events if the collection of indicator functions

$$
\left\{\mathbb{1}_{A}: A \in \mathcal{C}\right\}
$$

is a family of independent random maps.
n-
We denote an event A_{n} which occurs eventually for all n by

$$
\left[A_{n}^{c} \text { i.o. }\right]^{c}
$$

i.e. A_{n} occurs for all but finitely many n.

1.4 Conditional Expectation

Definition 1.25 Conditional Expectation (L^{2})
Let $X \in L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Then the conditional expectation of X given \mathcal{G}, denoted $\mathbb{E}(X \mid \mathcal{G})$ is the \mathcal{G}-measurable orthogonal projection of X onto $L^{2}(\mathcal{G})$.

Definition 1.26 Conditional Expectation (L^{1})
Let $X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Then a random variable Z is the conditional expectation of X given $\mathcal{G}, Z=\mathbb{E}(X \mid \mathcal{G})$ if

$$
Z=\int_{G} X d \mathbb{P}=\int_{G} \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}
$$

$\forall G \in \mathcal{G}$. Or, equivalently,

$$
\mathbb{E}(X Z)=\mathbb{E}(\mathbb{E}(X \mid G) Z)
$$

$\forall A \in \Gamma$, where $G=\left\{\mathbb{1}_{G}: G \in \mathcal{G}\right\}$
Theorem 1.22 Properties of Conditional Expectation
Let $X, Y \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G}, \mathcal{D} sub- σ-algebras of \mathcal{F}. Then the following hold (a.s.)

1. $\mathbb{E}(X \mid\{\Omega, \varnothing\})=\mathbb{E}(X)$
2. $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$
3. $\mathbb{E}(c X+d Y \mid \mathcal{G})=c \mathbb{E}(X \mid \mathcal{G})+d \mathbb{E}(Y \mid \mathcal{G})$ where $c, d \in \mathbb{R}$
4. $X \leq Y \Rightarrow \mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$
5. $\mathcal{D} \subset \mathcal{G} \Rightarrow \mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{D})=\mathbb{E}(X \mid \mathcal{D})$
6. $X Y \in L^{1}$ and X is \mathcal{G}-measurable, then $\mathbb{E}(X Y \mid \mathcal{G})=X \mathbb{E}(Y \mid \mathcal{G})$
7. $\sigma(X)$ independent of \mathcal{G}, then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(X)$
8. Let ϕ be convex on a non-open interval J with finite left or right hand derivative at an end point of J. If $\mathbb{P}(X \in J)=1$ and $\phi(X) \in L^{1}$, then

$$
\phi(\mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{E}(\phi(X) \mid \mathcal{G})
$$

9. $X \in L^{p}(\Omega, \mathcal{F}, \mathbb{P}), p \geq 1$, then $\|\mathbb{E}(X \mid \mathcal{G})\|_{p} \leq\|X\|_{p}$
10. a. $X_{n} \xrightarrow{L^{p}} X \Rightarrow \mathbb{E}\left(X_{n} \mid \mathcal{G}\right) \xrightarrow{L^{p}} \mathbb{E}(X \mid \mathcal{G})$
b. $0 \leq X_{n} \uparrow X$ a.s. $X_{n}, X \in L^{1}$, then $\mathbb{E}\left(X_{n} \mid \mathcal{G}\right) \uparrow \mathbb{E}(X \mid \mathcal{G})$ and $\mathbb{E}\left(X_{n} \mid \mathcal{G}\right) \xrightarrow{L^{1}} \mathbb{E}(X \mid \mathcal{G})$
c. If $X_{n} \rightarrow X$ a.s. and $\left|X_{n}\right| \leq Y \in L^{1}$, then $\mathbb{E}\left(X_{n} \mid \mathcal{G}\right) \rightarrow \mathbb{E}(X \mid \mathcal{G})$ a.s.
11. Let $U, V:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(S_{1}, \mathcal{S}_{1}\right),\left(S_{2}, \mathcal{S}_{2}\right)$ respectively. Let $\phi:\left(S_{1} \times S_{2}, \mathcal{S}_{1} \otimes \mathcal{S}_{2}\right) \rightarrow \mathbb{R}$ be measurable. If \cup is \mathcal{G}-measurable, $\sigma(V)$ and \mathcal{G} are independent, and $\mathbb{E}(|\phi(U, V)|)<\infty$, then

$$
\mathbb{E}(\phi(U, V) \mid \mathcal{G})=h(U)
$$

where $h(U)=\mathbb{E}(\phi(u, V))$
12. $\mathbb{E}(X \mid \sigma(Y, Z))=\mathbb{E}(X \mid \sigma(Y))$ if (X, Y) and Z are independent.

1.4.1 Conditional Probability

Definition 1.27

Given $A \in \mathcal{F}$, the conditional probability of A given \mathcal{G} is

$$
\mathbb{P}(A \mid \mathcal{G})=\mathbb{E}\left(\mathbb{1}_{A} \mid \mathcal{G}\right)
$$

So, by orthogonality,

$$
\mathbb{P}(A \cap G)=\int_{G} \mathbb{P}(A \mid \mathcal{G}) \mathbb{P}(d \omega)
$$

$\forall G \in \mathcal{G}$.
Moreover, $0 \leq \mathbb{P}(A \mid \mathcal{G}) \leq 1, \mathbb{P}(\varnothing \mid \mathcal{G})=0, \mathbb{P}(\Omega \mid \mathcal{G})=1$, and, given countable $\left\{A_{n}\right\}_{n=1}^{\infty}$,

$$
\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n} \mid \mathcal{G}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n} \mid \mathcal{G}\right)
$$

Definition 1.28

Let $Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(S, \mathcal{S})$ be a random map and \mathcal{G} be a sub σ-algebra on \mathcal{F}. The regular conditional distribution of Y given \mathcal{G} is a function

$$
(\omega, C) \mapsto \mathcal{Q}^{\mathcal{G}}
$$

where $Q^{\mathcal{G}}(\omega, C)=\mathbb{P}^{\mathcal{G}}([Y \in C])(\omega)$ on $\Omega \times S$ such that

1. $\forall C \in \mathcal{S}, \mathcal{Q}^{\mathcal{G}}(\cdot, C)=\mathbb{P}([Y \in C] \mid \mathcal{G})$ a.s.
2. $\forall \omega \in \Omega, C \mapsto \mathcal{Q}^{\mathcal{G}}$ is a probability measure on $\Omega \times S$.

Definition 1.29

A topological space whose topology is induced by a metric is called metrizable. If a metrizable space is complete and seperable, it is called a Polish Space.

Theorem 1.23 Disintegration Formula
Given $f:(S, \mathcal{S}) \rightarrow \mathbb{R}$ with $f \in L^{1}$,

$$
\mathbb{E}[f(Y) \mid \mathcal{G}]=\int_{\Omega} \int f(y) \mathcal{Q}^{\mathcal{G}}(\omega, d y) \mathbb{P}(d \omega)
$$

Definition 1.30

Given $\left\{B_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{F}, B_{n}$ is a partition of \mathcal{F} if B_{n} is disjoint, countable, and

$$
\bigcup_{n \in \mathbb{N}} B_{n}=\Omega
$$

Theorem 1.24

Let $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be a paritition of \mathcal{F} such that $\mathbb{P}\left(B_{n}\right)>0$ for all $n=1,2, \ldots$ Let $\mathcal{G}=\sigma\left(\left\{B_{n}\right\}_{n \in \mathbb{N}}\right)$. Then $\forall A \in \mathcal{F}$,

$$
\mathbb{P}(A \mid \mathcal{G})(\omega)=\frac{\mathbb{P}\left(A \cap B_{n}\right)}{\mathbb{P}\left(B_{n}\right)}
$$

if $\omega \in B_{n}$

Example 1.2 Canonical Probability Space

Let $\Omega=S_{1} \times S_{2}, \mathcal{F}=\mathcal{S}_{1} \otimes \mathcal{S}_{2}$ and \mathbb{P} be absolutely continuous with respect to $\mu=\mu_{1} \times \mu_{2}$ and density f. We can view \mathbb{P} as a joint coordinate distribution (X, Y) where $X(\omega)=x, Y(\omega)=y$ (i.e. $\left.\omega=(x, y) \in S_{1} \times S_{2}\right)$. If we take the σ-algebra generated by the first coordinate, that is

$$
\mathcal{G}=\left\{B \times S_{2}: B \in \mathcal{S}_{1}\right\}
$$

Then the regular conditional distribution of Y, given $\sigma(X)$ and $C \in \mathcal{S}_{2}$, is

$$
\mathbb{P}([Y \in C] \mid \mathcal{G})(\omega)=\frac{\int_{C} f(x, y) \mu_{2}(d y)}{\int_{S_{2}} f(x, y) \mu_{2}\left(d y^{\prime}\right)}
$$

where $A=S_{1} \times C$.

Definition 1.31

The conditional pdf of Y given $X=x$, denoted $f(y \mid x)$ is the joint density section $y \mapsto$ $f(x, y)$ normalized to a probability density function by dividing by the marginal pdf $f_{X}(x)=$ $\int_{S_{2}} f(x, y) \mu_{2}(d y)$. This is given in general form by

$$
f(y \mid x)=\frac{f(x, y)}{\int_{S_{2}} f(x, y) \mu_{2}(d y)}
$$

1.4.2 Random Walks

Definition 1.32 Random Walks
Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be a sequence of i.i.d. random variables. Then we can define a random walk from X by

$$
S_{k, x}=X+\sum_{i=1}^{n} z_{i}
$$

where $X \in \mathbb{R}$ and $S_{0, X}=X$.

Theorem 1.25 Markov Property

Given i.i.d. random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$ and random walk $S_{k, X}$

$$
\mathbb{E}\left[S_{n, x} \mid \sigma\left(S_{n-1, x}, S_{n-2, x}, \ldots, S_{0, x}\right)\right]=\mathbb{E}\left[S_{n, x} \mid \sigma\left(S_{n-1, x}\right)\right]
$$

Furthermore, note that

$$
\mathbb{E}\left[S_{n, x} \mid \sigma\left(S_{n-1, x}\right)\right]=S_{n, x}+\mathbb{E}\left[S_{n-1, x}\right]
$$

Definition 1.33 Stochastic Processes

A family of random maps $\left\{X_{t}: t \in \Lambda\right\}$ such that for each $t \in \Lambda, X_{t}: \Omega \rightarrow S_{t}$ is known as a stochastic process.
If the index set Λ is $1,2,3, \ldots$, then $\left\{X_{t}: t \in \Lambda\right\}$ is refered to as a discrete-parameter stochastic process. If $\Lambda=[0, \infty)$, then $\left\{X_{t}: t \in \Lambda\right\}$ is known as a continuous-parameter stochastic process.

1.5 Martingales

Definition 1.34 Filtration

Let $\left\{\mathcal{F}_{t}: t \in T\right\}$ be a collection of σ-algebras such that T is a linearly ordered set and

$$
\mathcal{F}_{s} \subseteq \mathcal{F}_{t}
$$

for $s \leq t$. Then $\left\{\mathcal{F}_{t}: t \in T\right\}$ is called a filtration.
Furthermore, we say a collection of random variables $\left\{X_{t}\right\}$ is adapted to $\left\{\mathcal{F}_{t}: t \in T\right\}$ if X_{t} is \mathcal{F}_{t} measurable for each $t \in T$

Definition 1.35 (Super/Sub) Martingales

Let $\left\{X_{t}\right\}$ be adapted to $\left\{\mathcal{F}_{t}: t \in T\right\}$. Then $\left\{X_{t}\right\}$ is a:
$\mathfrak{\&}$ martingale $\Longleftrightarrow X_{s}=\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]$ where $(s \leq t)$
\mathscr{H} supermartingale $\Longleftrightarrow X_{s} \geq \mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]$ where $(s \leq t)$
\mathfrak{g} submartingale $\Longleftrightarrow X_{s} \leq \mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]$ where $(s \leq t)$

Exercise 1.1

Let $\left\{X_{t}\right\}_{t \in \mathbb{N}}$ be a sequence of iid random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Additionally, let $\left\{S_{t}\right\}_{t \in \mathbb{N}}$ be a sequence of random variables defined by

$$
\begin{gathered}
S_{0}=X_{1} \\
S_{t}=S_{t+1}+X_{t}
\end{gathered}
$$

Take the filtration $\mathcal{F}_{t}=\sigma\left(X_{1}, X_{2}, \ldots, X_{t}\right)$ and note that S_{t} is \mathcal{F}_{t} adapted.
Is S_{t} a martingale, supermartingale, or submartingale? What is $\mathbb{E}\left[S_{t}+1 \mid \mathcal{F}_{t}\right]$?

Solution

By properties of conditional expectation we can get that

$$
\mathbb{E}\left[S_{t+1} \mid \mathcal{F}_{t}\right]=S_{t}+\mathbb{E}\left[X_{t+1}\right]
$$

So we can say that:

$$
\begin{array}{r}
\quad \text { if } \mathbb{E}\left[X_{t}+1\right]=0 \Rightarrow S_{t}=\mathbb{E}\left[S_{t}+1 \mid \mathcal{F}_{t}\right] \text { (martingale) } \\
\text { if } \mathbb{E}\left[X_{t}+1\right]>0 \Rightarrow S_{t}<\mathbb{E}\left[S_{t}+1 \mid \mathcal{F}_{t}\right] \text { (submartingale) } \\
\text { if } \mathbb{E}\left[X_{t}+1\right]<0 \Rightarrow S_{t}>\mathbb{E}\left[S_{t}+1 \mid \mathcal{F}_{t}\right] \text { (supermartingale) }
\end{array}
$$

Definition 1.36

Let $\left\{X_{n}: n \geq 1\right\}$ be a martingale. Its martingale difference sequence is given by $\left\{Z_{n}\right\}$, where

$$
\begin{array}{r}
Z_{1}=X_{1} \\
Z_{k+1}=X_{k+1}-X_{k}
\end{array}
$$

[198) Remark

If $X_{n} \in L^{2}(\Omega, \mathcal{F}, \mathbb{P}), \forall n \geq 1,\left\{Z_{n}\right\}$ are uncorrelated. Moreover, if $X_{n} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ and f is a bounded, \mathcal{F}_{n} measurable function, then

$$
\begin{array}{r}
\mathbb{E}\left[Z_{n+1} f\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{n+1} f\left(X_{1}, X_{2}, \ldots, X_{n}\right) \mid \mathcal{F}_{n}\right]\right] \\
=\mathbb{E}\left[f\left(X_{1}, X_{2}, \ldots, X_{n}\right) \mathbb{E}\left(Z_{n+1} \mid \mathcal{F}_{n}\right)\right]=0
\end{array}
$$

Theorem 1.26

(a) If $\left\{X_{n}: n \geq 1\right\}$ is a martingale and $\phi\left(X_{n}\right)$ is a convex, integrable function, then $\left\{\phi\left(X_{n}\right): n \geq\right.$ $1\}$ is a submartingale.
(b) If $\left\{X_{n}\right\}$ is a submartingale and $\phi\left(X_{n}\right)$ is convex, non-decreasing, and integrable, then $\left\{\phi\left(X_{n}\right)\right.$: $n \geq 1\}$ is a submartingale.

Theorem 1.27 Doob's Maximal Inequality
Let $p \geq 1$ and $\left\{X_{n}\right\}$ be an $\left\{F_{n}: 1 \leq k \leq n\right\}$ adapted martingale (or a non-negative submartingale) such that $\mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty$. Then for $\lambda>0$ and $M_{n}:=\max \left\{\left|X_{n}\right|\right\}$ satisfies the following:

$$
\mathbb{P}\left(M_{n} \geq \lambda\right) \leq \frac{1}{\lambda^{p}} \int_{\left[M_{n}>\lambda\right]}\left|X_{n}\right|^{p} d \mathbb{P} \leq \frac{1}{\lambda^{p}} \mathbb{E}\left[\left|X_{n}\right|^{p}\right]
$$

Corollary 1.2 Kolmogorov's Inequality

Let $\left\{X_{n}\right\}$ be a martingale with $\mathbb{E}\left[X_{k}\right]=0$ and $\operatorname{Var}\left(X_{k}\right)<\infty$ for all $k=1,2, \ldots, n$. Then for $M_{n}=\max \left\{X_{n}\right\}, \lambda>0$,

$$
\mathbb{P}\left(M_{n}>\lambda\right) \leq \frac{1}{\lambda^{2}} \operatorname{Var}\left(S_{n}\right)=\frac{1}{\lambda^{2}} \sum_{k=1}^{n} \operatorname{Var}\left(X_{k}\right)=\frac{1}{\lambda^{2}} \sum_{k=1}^{n} \mathbb{E}\left[\left|X_{n}\right|^{2}\right]
$$

Theorem 1.28 Doobs Maximal Ineq. for Moments
(a) $\mathbb{E}\left[M_{n}\right] \leq \frac{e}{e-1}\left(1+\mathbb{E}\left[\left|X_{n}\right|\right] \log \left(\left|X_{n}\right|\right)\right)$
(b) For $p>1, \mathbb{E}\left[M_{n}^{p}\right] \leq q^{p} \mathbb{E}\left[\left|X_{n}\right|^{p}\right]$ where $\frac{1}{p}+\frac{1}{q}=1$

1.5.1 Stopping Times

Definition 1.37

Let $\left\{F_{t}\right\}$ be a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable $\tau: \Omega \rightarrow T \cup\{\infty\}$ is a stopping time if

$$
\{\tau \leq t\}=\{\omega \in \Omega: \tau(\omega) \leq t\}
$$

Furthermore, τ is an optional stopping time if

$$
\{\tau<t\}=\{\omega \in \Omega: \tau(\omega)<t\} \in \mathcal{F}_{t}
$$

$\forall t \in T$.

Exercise 1.2

Let $T=\mathbb{N}$ and $\left(S_{i}, \mathcal{S}_{i}, \mathbb{P}_{i}\right)$ be a series of Bernoulli probability spaces, where $S_{i}=\{ \pm 1\}, \mathcal{S}_{i}=2^{S_{i}}$, and $\mathbb{P}_{i}(\omega=+1)=1-\mathbb{P}(\omega=-1)=p$. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ defined as follows:

$$
\begin{aligned}
\Omega=\left\{\omega=\left(\omega_{i}\right)_{i \in \mathbb{N}}: \omega_{i}\right. & = \pm 1\}=S_{1} \times S_{2} \times \ldots=\prod_{i=1}^{\infty} S_{i} \\
\mathcal{F} & =\bigotimes_{i=1}^{\infty} s_{i} \\
\mathbb{P} & =\prod_{i=1}^{\infty} \mathbb{P}_{i}
\end{aligned}
$$

Finally, define a set of random variables $X_{i}:(\omega) \rightarrow \omega_{i}$ (i.e. X_{i} is the value of $\omega(\pm 1)$ at iteration i. What are $\left|\sigma\left(x_{1}\right)\right| \boldsymbol{?}\left|\sigma\left(X_{1}, X_{2}\right)\right| \boldsymbol{?}|\mathcal{F}| \boldsymbol{?}$

Solution

$$
\begin{array}{r}
\sigma\left(X_{1}\right)=\left\{X_{1}^{-1}(+1), X_{1}^{-1}(-1), X_{1}^{-1}(\varnothing), X_{1}^{-1}(\pm 1)\right\} \Rightarrow\left|\sigma\left(X_{1}\right)\right|=4 \\
\left|\sigma\left(X_{1}, X_{2}\right)\right|=16 \\
|\mathcal{F}|=\infty
\end{array}
$$

Definition 1.38 Pre- $\tau \sigma$-algebra
Suppose $\left\{\mathcal{F}_{t}: t \in T\right\}$ is a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$ and τ is an \mathcal{F}_{t} stopping time. The Pre- $\tau \sigma$-algebra \mathcal{F}_{τ} is defined as

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap[\tau \leq t] \in \mathcal{F}_{t}, \quad \forall t \in T\right\}
$$

[198) Remark

If $\tau_{1} \leq \tau_{2}$ are stopping times, then $\mathcal{F}_{\tau_{1}} \subseteq \mathcal{F}_{\tau_{2}}$

Definition 1.39 stopped process

The stochastic process $\left\{X_{\tau} \wedge t: t \geq 0\right\}$ is referred to as the stopped process, where

$$
a \wedge b=\min \{a, b\}
$$

Definition 1.40 progressively measurable
Let $T=[0, \infty)$ or $T=\left[0, t_{0}\right]$. A stochastic process $\left\{X_{t}: t \in T\right\}$ on (S, \mathcal{S}) is progressively measurable with respect to $\left\{\mathcal{F}_{t}\right\}$ is $(s, \omega) \mapsto \chi_{s}(\omega)$ from [$0, t_{0}$] $\times \Omega$ to S is measurable with respect to $\mathbb{B}\left[0, t_{0}\right] \otimes \mathcal{F}_{t}$ and $\mathcal{S} \forall t \in T$.

Theorem 1.29

Suppose $\left\{X_{t}: t \in T\right\}$ is progressively measurable and τ is a stopping time. Then X_{τ} is \mathcal{F}_{τ} measurable. That is,

$$
\left(\left[X_{\tau} \in B\right] \cap[\tau \leq t]\right) \in \mathcal{F}_{\tau} \quad \forall B \in \mathcal{S}, \forall t \in T
$$

Theorem 1.30

Let Y_{n} be an \mathcal{F}_{n} martingale such that $Y_{n} \rightarrow Y \in L^{1}$. Then $Y_{n}=\mathbb{E}\left(Y \mid \mathcal{F}_{n}\right)$

Theorem 1.31

Let $T=\mathbb{N}$. Assume $\tau_{1} \leq \tau_{2}$. Then

$$
\mathbb{E}\left(X_{\tau_{2}} \mid \mathcal{F}_{\tau_{1}}\right)=X_{\tau_{1}}
$$

Corollary 1.3

Let $T=\mathbb{N}$, fix $n \in \mathbb{N}$ and assume X_{t} is an \mathcal{F}_{τ} measurable martingale. For any stopping time $\tau_{1} \leq \tau_{2}$,

$$
\mathbb{E}\left(X_{\tau_{2} \wedge n} \mid \mathcal{F}_{\tau \wedge n}\right)=X_{\tau_{1} \wedge n}
$$

Theorem 1.32 Optional Stopping Time Theorem
Let X_{t} be an \mathcal{F}_{t} martingale with $t \in T=\mathbb{N}$. Suppose $\tau_{1} \leq \tau_{2}$ are stopping times such that:

1. $\mathbb{P}\left(\tau_{2}<\infty\right)=1$
2. $X_{\tau_{2} \wedge n}$ is uniformly integrable

Then $\mathbb{E}\left(X_{\tau_{2}} \mid \mathcal{F}_{\tau_{1}}\right)=X_{\tau_{1}}$
Definition 1.41 Upcrossings
Let Z_{n} be \mathcal{F}_{n} submartingale with $n \in \mathbb{N}$,

$$
\mathbb{E}\left(Z_{n} \mid \mathcal{F}_{m}\right) \geq Z_{m}
$$

Fix $a \leq b$ and define $\zeta_{1}=1$ and

$$
\left\{\begin{array}{l}
\zeta_{2 k}=\inf \left\{n \geq 2 k-1 \mid Z_{n} \geq b\right\} \\
\zeta_{2 k+1}=\inf \left\{n \geq 2 k \mid Z_{n} \leq a\right\}
\end{array} \quad, \quad k=1,2, \ldots\right.
$$

Now define $X_{n}=\max \left\{Z_{n}-a, 0\right\}$ and note that max is a convex function, so X_{n} is a submartingale by Jensen's Inequality. Also,

$$
\left\{\begin{array}{l}
X_{\zeta_{2 k}}=\max \left\{Z_{\zeta_{2 k}}-a, 0\right\} \geq b-a \\
X_{\zeta_{2 k+1}}=\max \left\{Z_{\zeta_{2 k+1}}-a, 0\right\}=0
\end{array}\right.
$$

The number of Upcrossings by time N is then given by $U_{N}=\sup \left\{k \mid \zeta_{2 k} \leq N\right\}$.
Theorem 1.33 Doob's Upcrossing Inequality

$$
\mathbb{E}\left(U_{N}\right) \leq \frac{\mathbb{E}\left(X_{N}\right)-\mathbb{E}\left(X_{1}\right)}{(b-a)} \leq \frac{\mathbb{E}\left(X_{N}\right)}{(b-a)}
$$

1.6 Central Limit Theorem

Definition 1.42 Weak Convergence
A sequence of probabilities $\left\{Q_{n}\right\}_{n=1}^{\infty}$ converges weakly or, equivalently, converges in probability to a probability Q as $n \rightarrow \infty$ if

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{k}} g(x) Q_{n}(d x)=\int_{\mathbb{R}^{k}} g(x) Q(d x)
$$

for all bounded functions $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$. We denote converges in probability as $Q_{n} \Rightarrow Q$. Moreover, a sequence of random variables X_{n} with distributions Q_{n} converges to X with a distribution Q if $Q_{n} \Rightarrow Q$.

Theorem 1.34 Finite Dimensional Weak Convergence
Let $\left\{Q_{n}\right\}, Q$ be a sequence of probabilities. The following are equivalent:

1. $Q_{n} \Rightarrow Q$
2. $\int_{\mathbb{R}^{k}} f d Q_{n} \rightarrow \int_{\mathbb{R}^{k}} f d Q$ for all bounded, continuous f vanishing outside a compact set.
3. $\int_{\mathbb{R}^{k}} f d Q_{n} \rightarrow \int_{\mathbb{R}^{k}} f d Q$ for all infintely differentiable f vanishing outside a compact set.
4. For $F_{n}(x)=Q_{n}\left(\left(-\infty, x_{1}\right] \times \ldots \times\left(-\infty, x_{n}\right]\right)$ and $F(x)=Q\left(\left(-\infty, x_{1}\right] \times \ldots \times\left(-\infty, x_{n}\right]\right)$, $F_{n}(x) \rightarrow F(x)$ as $n \rightarrow \infty$

Theorem 1.35 Lindeberg Central Limit Theorem

For each n, let $X_{n, 1}, \ldots, X_{n, k_{n}}$ be independent arrays of random variables such that $\mathbb{E}\left(X_{n, j}\right)=0$,
$\sigma_{n, j}=\left(\mathbb{E}\left(X_{n, j}^{2}\right)\right)^{1 / 2}<\infty, \sum_{j=1}^{k_{n}} \sigma_{n, j}^{2}=1$ and, for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{k_{n}} \mathbb{E}\left(X_{n, j}^{2} \eta_{\left[\left|X_{n, j}\right|>\epsilon\right]}\right)=0
$$

(Lindeberg Condition)

Then $\sum_{j=1}^{k_{n}} x_{n, j}$ converges in distribution to a standard normal distribution, $\mathcal{N}(0,1)$.

Corollary 1.4 Classical Central Limit Theorem

Let $\left\{X_{j}\right\}$ be a sequence of random variables with $\mathbb{E}\left(X_{j}\right)=\mu, 0<\sigma^{2}=\operatorname{Var} X_{j}<\infty$. Then $\frac{\sum_{j=1}^{n}\left(X_{j}-\mu\right)}{(\sigma \sqrt{n})} \Rightarrow \mathcal{N}(0,1)$. Equivalently, $\sum_{j=1}^{k_{n}} x_{n, j} \Rightarrow \mathcal{N}(n \mu, \sigma \sqrt{n})$.

Corollary 1.5 Lyapounov Central Limit Theorem
$\forall n$, let $X_{1, n}, X_{2, n}, \ldots, X_{n, k_{n}}$ be k_{n} independent random variables such that $\sum_{j=1}^{k_{n}} \mathbb{E} X_{n, j}=\mu$, $\sum_{j=1}^{k_{n}} \operatorname{Var} X_{n, j}=\sigma^{2}>0$ and

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{k_{n}} \mathbb{E}\left|X_{n, j}-\mathbb{E} X_{n, j}\right|^{2+\delta}=0
$$

(Lyapounov Condition)
for some $\delta>0$. Then $\sum_{j=1}^{k_{n}} x_{n, j} \Rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$.

