Probability Theory

Forrest Corcoran

Fall, Winter 2022

Contents

1	MTH	l 664		2
	1.1	Prob	ability and Measure Spaces	2
		1.1.1	Probability Spaces	2
		1.1.2	Random Variables	4
	1.2	Expe	ectation	5
		1.2.1	Convexity	6
		1.2.2	L ^p Spaces	8
		1.2.3	Generating σ -algebras	9
	1.3	Inde	pendence	10
		1.3.1	Covariance & Variance	10
		1.3.2	Independent Random Maps	11
	1.4	Cond	ditional Expectation	12
		1.4.1	Conditional Probability	13
		1.4.2	Random Walks	15
	1.5	Mart	ingales	15
		1.5.1	Stopping Times	17
	1.6	Cent	ral Limit Theorem	19

Chapter 1 MTH 664

1.1 Probability and Measure Spaces

1.1.1 Probability Spaces

Definition 1.1 Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$ where

Ω is the **outcome space**

✿ \mathcal{F} ⊂ 2^Ω is the *σ*-algebra of **events**

\mathbf{r} \mathbb{P} : \mathcal{F} \to [0, 1] is a **probability function** satisifying the following properties:

1.
$$\mathbb{P}(\emptyset) = 0$$

2.
$$\mathbb{P}(\Omega) = 1$$

3. $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ where $\{A_n : A_n \in \mathcal{F}\}_{n=1}^{\infty}$ are all pairwise disjoint

Example 1.1

Suppose $\Omega = \{1, 2, ..., N\}, \mathcal{F} = \{A \subset \Omega\} := 2^{\Omega}$, and $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$

P

Is $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space?

Proof.

$$\mathbb{P}(\emptyset) = \frac{|\emptyset|}{|\Omega|} = 0$$
$$\mathbb{P}(\Omega) = \frac{|\Omega|}{|\Omega|} = 1$$
$$(\bigcup_{n=1}^{\infty} A_n) = \frac{|\bigcup_{n=1}^{\infty} A_n|}{|\Omega|} = \frac{|\sum_{n=1}^{\infty} A_n|}{|\Omega|}$$

Yes, $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space

Definition 1.2 *σ*-algebra

Let \mathcal{F} be a collection of subsets in Ω . \mathcal{F} is a σ -algebra on Ω if and only if

$$A_n \in \mathcal{F} \Rightarrow A_n^c \in \mathcal{F}$$
$$A_n \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$$
$$\emptyset \in \mathcal{F}$$

Remark

$$\forall A \in \mathcal{F}, \ \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

Proof. First note that, by the definition of σ -algebra, $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$. Now observe that

$$A \cap A^{c} = \emptyset, \ A \cup A^{c} = \Omega$$
$$\Rightarrow \mathbb{P}(A \cup A^{c}) = \mathbb{P}(A) + \mathbb{P}(A^{c}) = 1$$
$$\Rightarrow \mathbb{P}(A^{c}) = 1 - \mathbb{P}(A)$$

Remark

$$\mathbb{P}(B \cap A^c) = \mathbb{P}(B) - \mathbb{P}(B \cup A)$$

Definition 1.3 Countable Subadditivity

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and A be a collection of events in \mathcal{F} which are not necessarily disjoint. Then

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Theorem 1.1 Continuity from Below

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and A be a collection of increasing events in \mathcal{F} , that is $\forall n \geq 1$

 $A_n \subseteq A_{n+1}$

We define $\lim_{n} A_n = \bigcup_{n} A_n$. So, by countable subadditivity,

$$\mathbb{P}(\lim_{n}A_{n}) = \lim_{n}\mathbb{P}(A_{n})$$

Proof. First note that since $A_n \subseteq A_{n+1}$, $\mathbb{P}(A_n) \leq \mathbb{P}(A_{n+1})$. Additionally, since $A_n \subseteq \Omega$ and $\mathbb{P}(\Omega) = 1$, $\mathbb{P}(A_n) \leq 1$. Then by Monotone Convergence Theorem, $\lim_{n \to \infty} \mathbb{P}(A_n)$ exists.

Now, set $A = \lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$ and define the sequence of events $\{B_n\}_{n=1}^{\infty}$ such that for each $n \in \mathbb{N}$,

$$B_1 = A_1$$
$$B_2 = A_2 \setminus A_1$$
$$B_n = A_n \setminus A_{n-1}$$

So, by this construction, the B_n s are disjoint and $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$. Additionally, $\mathbb{P}(B_n) = \mathbb{P}(A_n) - \mathbb{P}(A_{n-1})$. Then we have

$$\mathbb{P}(A) = \mathbb{P}(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} \mathbb{P}(B_n)$$

$$= \left[\sum_{n=1}^{\infty} \mathbb{P}(A_n) - \mathbb{P}(A_{n-1})\right] + \mathbb{P}(A_1)$$
$$= \lim_{n \to \infty} \left[\sum_{n=1}^{\infty} (\mathbb{P}(A_n) - \mathbb{P}(A_{n-1})) + \dots + (\mathbb{P}(A_2) - \mathbb{P}(A_1))\right] + \mathbb{P}(A_1)$$
$$= \lim_{n \to \infty} \mathbb{P}(A_n)$$

Remark

We can also show that Continuity from Above, i.e.

$$A_n \supseteq A_{n+1} \Rightarrow \mathbb{P}(\lim_n A_n) = \lim_n \mathbb{P}(A_n)$$

holds. To show this, set $B_n^c = A_n$. By DeMorgan's Law

$$\left(\bigcap_{n=1}^{\infty} B_n\right)^c = \bigcup_{n=1}^{\infty} B_n^c = \bigcup_{n=1}^{\infty} A_n$$

and the proof follows as above.

1.1.2 Random Variables

Definition 1.4 Random Variables Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A **random variable** is a function $X : \Omega \to \mathbb{R}$ such that $X^{-1}([a, b]) \in \mathcal{F}$.

Definition 1.5 Distribution Function

A distribution function is a function

$$F_{\mathsf{X}}(x) = \mathbb{P}(\mathsf{X}^{-1}((-\infty, x])) = \mathbb{P}(\mathsf{X} \le x)$$

We say a distribution function is absolutely continuous if

$$F_{X}(x) = \int_{-\infty}^{x} g(u) du$$
 (1.1)

for some $g : \mathbb{R} \to \mathbb{R}$

Remark In general, $\frac{d}{dX}F_X = g(x)$ (except for some non-differentiable points).

Convergence

Definition 1.6 Convergence in Probability

Consider a sequence on random variables $\{X\}_{n=1}^{\infty}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say $\{X\}_{n=1}^{\infty}$ converges in probability to X if, $\forall \epsilon > 0$

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0$$

Definition 1.7 Almost Sure Convergence

Now consider a sequence on random variables $\{X\}_{n=1}^{\infty}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say $\{X\}_{n=1}^{\infty}$ converges **almost surely** to *X* if $\forall \omega \in \Omega$,

$$\mathbb{P}(\{\omega \in \Omega : X_n(\omega) \not\to X(\omega)\}) = 0$$

Theorem 1.2

A sequence of random variables $(X_n)_{n=1}^{\infty}$ converges to X in probability if and only if every subsequence has a further subsequence that converges almost surely to X.

1.2 Expectation

Definition 1.8 Simple Function

A random variable X is called a **simple** or **discrete** random variable if it can be written as

$$X(\omega) = \sum_{j=1}^{n} a_j \mathbb{I}_{A_j}$$

where $a_j \in \mathbb{R}$ and $A_j \cap A_i = \emptyset$ for all $1 \le i, j \le n$. Note the function \mathbb{I}_A is defined as

$$\mathbb{I}_{A}(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \text{otherwise} \end{cases}$$

Definition 1.9 Expectation of Simple Function

The **expectation** of a discrete random variable X is given by

$$\mathbb{E}[X] = \int_{\Omega} X d\mathbb{P} = \sum_{j=1}^{n} a_j \mathbb{P}(A_j)$$

Theorem 1.3

If X is a non-negative random variable, we can write

$$\mathbb{E}[X] = \sup\{\mathbb{E}[Y] : 0 \le Y \le X, Y \text{ simple}\}\$$

Theorem 1.4

Given that any function may be approximated arbitrarily closely by a sequence of non-decreasing

simple functions $(X_n)_{n=1}^{\infty}$, we may define the expectation of any function $X = \lim_{n \to \infty} X_n$ by

$$\mathbb{E}[X] = \lim_{n \to \infty} \left\{ \sum_{j=0}^{n2^n - 1} \frac{j}{2^n} \mathbb{P}(j2^{-n} \le X < (j+1)^{-n}) + n \mathbb{P}(X \ge n) \right\}$$

Theorem 1.5

More generally, we write

$$\mathbb{E}[X] = \int_{\Omega} X d\mathbb{P} = \mathbb{E}[X^+] - \mathbb{E}[X^-]$$

Theorem 1.6

The following properties of the expect value are true:

1.
$$z \le x \Rightarrow \mathbb{E}[z] \le \mathbb{E}[x]$$

2. $A \subset B \Rightarrow \mathbb{E}[X\mathbb{I}_A] \le \mathbb{E}[X\mathbb{I}_B]$
3. $A = \bigcup_{n=1}^{\infty} A_n, A_n \subseteq A_{n+1} \Rightarrow \lim_{n \to \infty} \mathbb{E}[X\mathbb{I}_{A_n}] = \mathbb{E}[X\mathbb{I}_A]$

Theorem 1.7 Change of Variable

Let $X : \Omega \to \mathbb{R}$ be a random variable and $h : \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous function. Then

$$\mathbb{E}[h \circ X] = \int_{\Omega} (h \circ X) \mathbb{P}(d\omega) = \int_{\mathbb{R}} h(X) F_X(dX)$$

Definition 1.10 Moments

Given a random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a distribution function F_X , we can define the **p-th order moment** of X to be

$$\mathbb{E}[X^{p}] = \int_{\Omega} X^{p}(\omega) \mathbb{P}(d\omega) = \int_{\mathbb{R}} x^{p} F_{X}(dx)$$

Furthermore, moments of absolute values (|X|) are referred to as **absolute moments** and are given by

$$\mathbb{E}[|X|^{p}] = p \int_{0}^{\infty} x^{p-1} \mathbb{P}(|X| > x) dx$$

1.2.1 Convexity

Theorem 1.8

The spaces $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ with norms given by

$$\|X\|_{p} = \left[\int_{\Omega} |X|^{p} d\mathbb{P}\right]^{1/p} = \left(\mathbb{E}[|X|]^{p}\right)^{1/p}$$

are Banach Spaces.

Moreover, the space $L^2(\Omega, \mathcal{F}, \mathbb{P})$ is a Hilbert Space with an inner product given by

$$\langle X, Y \rangle = \mathbb{E}[XY] = \int_{\Omega} XY d\mathbb{P}$$

So we have $||X||_2 = \langle X, X \rangle^{1/2}$

Definition 1.11

A function ϕ is **convex** on an interval *J* if for all $a, b \in J$ and $0 \le t \le 1$,

 $\phi(ta + (1-t)b) \le t\phi(a) + (1-t)\phi(b)$

Theorem 1.9 Line of Support

Suppose ϕ is a convex function on an interval J. Then the following are true:

I. If J is open:

- i. The left-hand and right-hand derivatives of ϕ (ϕ^- and ϕ^+ respectively) exists and are finite as well as non-decreasing on J with $\phi^- \leq \phi^+$
- ii. For each $x_0 \in J$, there exists a constant m such that $\phi(x) \ge \phi(x_0) + m(x x_0)$, $\forall x \in J$.
- **II.** If **J** if half open and the derivative of the open side is finite, the properties of **I** apply to the closed side with endpoint x_0 .

Theorem 1.10

Let X, Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Then the following inequalities hold:

a. (Jensen's Inequality) If ϕ is a convex function on the interval J and $\mathbb{P}(X \in J) = 1$, then

$$\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$$

Moreover, if ϕ is strictly convex, the above inequality holds iff X is almost surely constant.

b. (Lyapounov Inequality) If 0 < r < s, then

$$(\mathbb{E}[|X|^{r}])^{1/r} \leq (\mathbb{E}[|X|^{s}])^{1/s}$$

c. (Holder's Inequality) Let $p \ge 1$. If $X \in L^p$, $Y \in L^q$, $\frac{1}{p} + \frac{1}{q} = 1$, then $XY \in L^1$ and

$$\mathbb{E}[|XY|] \leq (\mathbb{E}[|X|^p])^{1/p} (\mathbb{E}[|Y|^q])^{1/q}$$

d. (Cauchy-Schwartz Inequality) If $X, Y \in L^2$, then $XY \in L^1$ so we have

 $|\mathbb{E}[XY]| \leq \sqrt{\mathbb{E}[X^2]} \sqrt{\mathbb{E}[Y^2]}$

e. (Minkowski's Inequality) Let $p \ge 1$. if $x, Y \in L^p$ then

 $\|X - Y\|_p \le \|X\|_p + \|Y\|_p$

f. (Markov/Chebyshev Inequalities) Let $p \ge 1$. If $X \in L^p$ then for $\lambda > 0$

$$\mathbb{P}(|X| \ge \lambda) \le \frac{\mathbb{E}[|X|^{p}]\mathbb{1}_{[|X| \ge \lambda]}}{\lambda^{p}} \le \frac{\mathbb{E}[|X|^{p}]}{\lambda^{p}}$$

More generally, if h is a non-negative increasing function on an interval containing the range of X, then

$$\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{E}[h(X)\mathbb{I}_{[X \ge \lambda]}]}{h(\lambda)}$$

1.2.2 L^p Spaces

Definition 1.12 *L^p* Probability Space

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $p \geq 1$. Then we define $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ to be

 $L^{p}(\Omega, \mathcal{F}, \mathbb{P}) = \{ X : \Omega \to \mathbb{R} : \mathbb{E}[|X|^{p}] < \infty \}$

Remark

For random variables $X, Y \in L^p$,

$$X = Y \iff \mathbb{E}[|X - Y|^{p}] = 0 \iff \mathbb{E}[|X|^{p}] = \mathbb{E}[|Y|^{p}]$$

Theorem 1.11

A sequence of random variables X_n converges to X in L^p if:

$$\lim_{n \to \infty} \mathbb{E}[X_n - X|^p] = 0$$

Theorem 1.12

 $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ is complete

Definition 1.13 Uniform Integrability

A sequence of random variables X_n is said to be uniformly integrable if

$$\lim_{\lambda \to \infty} \sup_{n} \mathbb{E}[\{|X_n| \mathbb{1}_{[|X_n| \ge \lambda]}\}] = 0$$

Theorem 1.13 Fatou's Lemma

Let $X_n : \Omega \rightarrow [0, \infty]$ be a sequence of non-negative random variables. Then

$$\mathbb{E}[\lim_{n \to \infty} \inf X_n(\omega)] \le \lim_{n \to \infty} \inf \mathbb{E}[X_n(\omega)]$$

We can also show that the reverse Fatou's Lemma holds. If $\exists Y : \Omega \rightarrow [0, \infty]$ such that $X_n \leq Y$ for all n and $\mathbb{E}[Y] < \infty$, then

$$\lim_{n\to\infty}\sup\mathbb{E}[X_n(\omega)]\leq\mathbb{E}[\lim_{n\to\infty}\sup X_n(\omega)]$$

Theorem 1.14

Consider $\{X_n\}_{n=1}^{\infty}$. Then

$$\mathbb{E}[|X_n - X|] \to 0 \iff \begin{cases} X_n \xrightarrow{\mathbb{P}} X\\ \{X_n\}_{n=1}^{\infty} \text{ is uniformly integrable} \end{cases}$$

1.2.3 Generating σ -algebras

Definition 1.14 Generating σ -algebras

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : \Omega \to S$, where S is a σ -algebra on S. Then $\sigma(X)$ is the **generating** σ -algebra generated by X which is the smallest σ -algebra such that X is a measurable map

Remark

Recall: $X : (X, \mathcal{F}) \to (S, \mathcal{S})$ is measurable if $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{S}$.

Definition 1.15 Product σ -algebra

Let (S_i, S_i) be a finite collection of measurable spaces. $S_1 \otimes S_2 \otimes ... \otimes S_n$ is the **product** σ -algebra which is defined as the smallest σ -algebra on $S_1 \times S_2 \times ... \times S_n$ such that all projection maps,

 $T_k: S_1 \times S_2 \times \ldots \times S_n \to S_k$

are measurable.

Definition 1.16 Product Measure

Let (S_i, S_i, μ_i) be a measure space. The **product measure** $\mu_1 \times \mu_2 \times \ldots \times \mu_n$ on $S_1 \otimes S_2 \otimes \ldots \otimes S_n$ is defined as

 $\mu_1 \times \mu_2 \times \ldots \times \mu_n(B_1 \times B_2 \times \ldots \times B_n) = \mu_1(B_1)\mu_2(B_2)\dots\mu_n(B_n)$

Definition 1.17 Absolutely Continuous

Let (X, S, μ) be a measure space. Consider the measure ν . ν is **absolutely continuous** with respect to μ if

$$\mu(A) = 0 \to \nu(A) = 0$$

 $\forall A \in S$. We denote this relationship by $\nu \ll \mu$.

Definition 1.18 Singular Measure

Let (X, S, μ) be a measure space. Consider the measure ν . ν is **singular** with respect to μ if $\exists A \in S$ with $\mu(A) = 0$ and $\nu(A^c) = 0$. We denote this relationship $\nu \perp \mu$.

Theorem 1.15 Lebesgue Decomposition

Let (X, S, μ) be a measure space. Given $\nu : S \to [0, \infty)$, where ν is σ finite, there exist two unique measures, $\nu_{ac}, \nu_s : S \to [0, \infty)$ such that,

$$v = v_{ac} + v_s$$

and $\nu_{ac} \ll \mu$ and $\nu_s \perp \mu$.

Theorem 1.16 Radon-Nikodym

Let (X, S, μ) be a measure space. Given $\nu : S \to [0, \infty)$, there exists $h : X \to [0, \infty)$ such that

$$\nu_{ac}(A) = \int_A h d\mu$$

 $\forall A \in S$. *h* is called a **density function**.

1.3 Independence

Definition 1.19 Independence

A collection of random variables $X_i : (\Omega, \mathcal{F}, \mathbb{P}) \to (S_i, S_i)$ are **independent** if the distribution function, Q, defined as

$$Q(B) = \mathbb{P} \circ (X_1, X_2, ..., X_n)^{-1}(B)$$

where $B \in S_1 \times ... \times S_n$, equals the product measure $Q_1 \times Q_2 \times ... \times Q_n$, where

$$Q_i(B_i) = \mathbb{P} \circ X_i^{-1}(B_i)$$

Theorem 1.17

If $X_1, X_2, ..., X_n$ are independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}[|X_j|] < \infty$ for all $1 \le j \le n$, then

$$\mathbb{E}[X_1X_2...X_n] = \mathbb{E}[X_1]\mathbb{E}[X_2]...\mathbb{E}[X_n]$$

Theorem 1.18

If X_1 , X_2 are independent random variables with distributions Q_1 , Q_2 , respectively, then the distribution of $X_1 + X_2$ is given by the convolution

$$Q_1 * Q_2(B) = \int_{\mathbb{R}} Q_1(B-y)Q_2(dy)$$

Where B is an event and $B - y = \{b - y : b \in B\}$

Definition 1.20 i.i.d.

A sequence of independent random variables $X_1, X_2, ...$ is **independent and identically distributed** (i.i.d.) if the distribution of X_n does not depend on n. That is, the distrubition is the same for all n.

1.3.1 Covariance & Variance

Definition 1.21 Covariance

Given two random variables X and Y in $L^2(\Omega, \mathcal{F}, \mathbb{P})$, the **covariance** of X and Y is given by

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

X and Y are said to be **uncorrelated** if Cov(X, Y) = 0.

Remark

Independent random variables are uncorrelated, however, uncorrelated random variables are not necessarily independent.

Definition 1.22 Variance

The **variance** of a random variable *X* is given by

Var(X) = Cov(X, X) $= \mathbb{E}[X - \mathbb{E}[X]]^{2}$ $= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$

Remark

The covariance term arises naturally in the variance of a sum of random variables:

$$\operatorname{Var}\left(\sum_{j=1}^{n} X_{j}\right) = \sum_{j=1}^{n} \operatorname{Var}(X_{j}) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j})$$

Theorem 1.19

If $X_1, X_2, ..., X_n$ are independent random variables in $L^2((\Omega, \mathcal{F}, \mathbb{P}))$, then

$$Var(X_1 + X_2 + ... + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n)$$

Theorem 1.20 Borel-Cantelli

Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of independent events. If $\sum_{\substack{n=1\\n=1}}^{\infty} \mathbb{P}(A_n) = 1$, then $\mathbb{P}(A_n i.o.) = 1$, where $\mathbb{P}(A_n i.o.)$ is the probability that A_n occurs "infinitely often". Moreover, $\sum_{\substack{n=1\\n=1}}^{\infty} \mathbb{P}(A_n) < \infty$ then $\mathbb{P}(A_n i.o.) = 0$.

1.3.2 Independent Random Maps

Definition 1.23

A family of random maps $\{X_t : t \in \Lambda\}$ is independent if and only if \forall disjoint pairs of finite subsets Λ_1, Λ_2 , any $V_1 \in L^2(\sigma(\{X_t : t \in \Lambda_1\}), V_2 \in L^2(\sigma(\{X_t : t \in \Lambda_2\}))$ are uncorrelated.

Theorem 1.21

Let $Y_1, Y_2, ..., Y_n$ be random variables of $(\Omega, \mathcal{F}, \mathbb{P})$ and $Z : \Omega \to \mathbb{R}$. Z is $\sigma(Y_1, Y_2, ..., Y_n)$ measurable if and only if $\exists g : \mathbb{R}^n \to \mathbb{R}$ such that $Z = g(Y_1, Y_2, ..., Y_n)$.

CONTENTS

Corollary 1.1

Suppose X_1 , X_2 are independent random maps with values (S_1, S_1) and (S_2, S_2) . Then for Borel measurable $g_i : S_i \to \mathbb{R}$, $Z_1 = g_1(X_1)$ and $Z_2 = g_2(X_2)$ are independent.

Definition 1.24 Independent Events

A collection, C, of events $A \in \mathcal{F}$ are **independent events** if the collection of indicator functions

 $\{\mathbb{1}_A : A \in \mathcal{C}\}$

is a family of independent random maps.

Remark

We denote an event A_n which occurs eventually for all n by

 $[A_{n}^{c} i.o.]^{c}$

i.e. A_n occurs for all but finitely many n.

1.4 Conditional Expectation

Definition 1.25 Conditional Expectation (L^2)

Let $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Then the **conditional expectation of** X **given** \mathcal{G} , denoted $\mathbb{E}(X|\mathcal{G})$ is the \mathcal{G} -measurable orthogonal projection of X onto $L^2(\mathcal{G})$.

Definition 1.26 Conditional Expectation (L¹)

Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Then a random variable Z is the **conditional** expectation of X given $\mathcal{G}, Z = \mathbb{E}(X|\mathcal{G})$ if

$$Z = \int_G X d\mathbb{P} = \int_G \mathbb{E}(X|\mathcal{G}) d\mathbb{P}$$

 $\forall G \in \mathcal{G}$. Or, equivalently,

$$\mathbb{E}(XZ) = \mathbb{E}(\mathbb{E}(X|G)Z)$$

 $\forall A \in \Gamma$, where $G = \{\mathbb{1}_G : G \in \mathcal{G}\}$

Theorem 1.22 Properties of Conditional Expectation

Let $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G}, \mathcal{D} sub- σ -algebras of \mathcal{F} . Then the following hold (a.s.)

1.
$$\mathbb{E}(X | \{\Omega, \emptyset\}) = \mathbb{E}(X)$$

$$2. \mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$$

3. $\mathbb{E}(cX + dY|\mathcal{G}) = c\mathbb{E}(X|\mathcal{G}) + d\mathbb{E}(Y|\mathcal{G})$ where $c, d \in \mathbb{R}$

4. $X \leq Y \Rightarrow \mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(Y|\mathcal{G})$

5.
$$\mathcal{D} \subset \mathcal{G} \Rightarrow \mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{D}) = \mathbb{E}(X|\mathcal{D})$$

6. $XY \in L^1$ and X is \mathcal{G} -measurable, then $\mathbb{E}(XY|\mathcal{G}) = X\mathbb{E}(Y|\mathcal{G})$

7. $\sigma(X)$ independent of \mathcal{G} , then $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X)$

8. Let ϕ be convex on a non-open interval J with finite left or right hand derivative at an end point of J. If $\mathbb{P}(X \in J) = 1$ and $\phi(X) \in L^1$, then

$$\phi(\mathbb{E}(X|\mathcal{G})) \leq \mathbb{E}(\phi(X)|\mathcal{G})$$

9. $X \in L^p(\Omega, \mathcal{F}, \mathbb{P}), p \ge 1$, then $||\mathbb{E}(X|\mathcal{G})||_p \le ||X||_p$

10. a. $X_n \xrightarrow{L^p} X \Rightarrow \mathbb{E}(X_n | \mathcal{G}) \xrightarrow{L^p} \mathbb{E}(X | \mathcal{G})$

- **b.** $0 \le X_n \uparrow X$ a.s. $X_n, X \in L^1$, then $\mathbb{E}(X_n | \mathcal{G}) \uparrow \mathbb{E}(X | \mathcal{G})$ and $\mathbb{E}(X_n | \mathcal{G}) \xrightarrow{L^1} \mathbb{E}(X | \mathcal{G})$
- **c.** If $X_n \to X$ a.s. and $|X_n| \le Y \in L^1$, then $\mathbb{E}(X_n | \mathcal{G}) \to \mathbb{E}(X | \mathcal{G})$ a.s.
- 11. Let $U, V : (\Omega, \mathcal{F}, \mathbb{P}) \to (S_1, S_1), (S_2, S_2)$ respectively. Let $\phi : (S_1 \times S_2, S_1 \otimes S_2) \to \mathbb{R}$ be measurable. If U is \mathcal{G} -measurable, $\sigma(V)$ and \mathcal{G} are independent, and $\mathbb{E}(|\phi(U, V)|) < \infty$, then

$$\mathbb{E}(\phi(U,V)|\mathcal{G})=h(U)$$

where $h(U) = \mathbb{E}(\phi(u, V))$

12. $\mathbb{E}(X|\sigma(Y, Z)) = \mathbb{E}(X|\sigma(Y))$ if (X, Y) and Z are independent.

1.4.1 Conditional Probability

Definition 1.27

Given $A \in \mathcal{F}$, the conditional probability of A given \mathcal{G} is

$$\mathbb{P}(A|\mathcal{G}) = \mathbb{E}(\mathbb{1}_{A}|\mathcal{G})$$

So, by orthogonality,

$$\mathbb{P}(A \cap G) = \int_G \mathbb{P}(A|\mathcal{G})\mathbb{P}(d\omega)$$

 $\forall G \in \mathcal{G}.$

Moreover, $0 \leq \mathbb{P}(A|\mathcal{G}) \leq 1$, $\mathbb{P}(\emptyset|\mathcal{G}) = 0$, $\mathbb{P}(\Omega|\mathcal{G}) = 1$, and, given countable $\{A_n\}_{n=1}^{\infty}$,

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n | \mathcal{G}) = \sum_{n=1}^{\infty} \mathbb{P}(A_n | \mathcal{G})$$

Definition 1.28

Let $Y : (\Omega, \mathcal{F}, \mathbb{P}) \to (S, S)$ be a random map and \mathcal{G} be a sub σ -algebra on \mathcal{F} . The **regular conditional distribution of** Y **given** \mathcal{G} is a function

 $(\omega, C) \mapsto \mathcal{Q}^{\mathcal{G}}$

where $Q^{\mathcal{G}}(\omega, C) = \mathbb{P}^{\mathcal{G}}([Y \in C])(\omega)$ on $\Omega \times S$ such that

- 1. $\forall C \in \mathcal{S}, \mathcal{Q}^{\mathcal{G}}(\cdot, C) = \mathbb{P}([Y \in C]|\mathcal{G})$ a.s.
- **2.** $\forall \omega \in \Omega, C \mapsto Q^{\mathcal{G}}$ is a probability measure on $\Omega \times S$.

Definition 1.29

A topological space whose topology is induced by a metric is called **metrizable**. If a metrizable space is complete and seperable, it is called a **Polish Space**.

Given
$$f : (S, S) \rightarrow \mathbb{R}$$
 with $f \in L^1$,

$$\mathbb{E}[f(Y)|\mathcal{G}] = \int_{\Omega} \int f(y) \mathcal{Q}^{\mathcal{G}}(\omega, dy) \mathbb{P}(d\omega)$$

Definition 1.30

Given $\{B_n\}_{n \in \mathbb{N}} \subseteq \mathcal{F}, B_n$ is a **partition** of \mathcal{F} if B_n is disjoint, countable, and

$$\bigcup_{n\in\mathbb{N}}B_n=\Omega$$

Theorem 1.24

Let $\{B_n\}_{n\in\mathbb{N}}$ be a paritition of \mathcal{F} such that $\mathbb{P}(B_n) > 0$ for all n = 1, 2, ... Let $\mathcal{G} = \sigma(\{B_n\}_{n\in\mathbb{N}})$. Then $\forall A \in \mathcal{F}$,

$$\mathbb{P}(A|\mathcal{G})(\omega) = \frac{\mathbb{P}(A \cap B_n)}{\mathbb{P}(B_n)}$$

if $\omega \in B_n$

Example 1.2 Canonical Probability Space

Let $\Omega = S_1 \times S_2$, $\mathcal{F} = S_1 \otimes S_2$ and \mathbb{P} be absolutely continuous with respect to $\mu = \mu_1 \times \mu_2$ and density *f*. We can view \mathbb{P} as a joint coordinate distribution (X, Y) where $X(\omega) = x$, $Y(\omega) = y$ (i.e. $\omega = (x, y) \in S_1 \times S_2$). If we take the σ -algebra generated by the first coordinate, that is

$$\mathcal{G} = \{B \times S_2 : B \in \mathcal{S}_1\}$$

Then the regular conditional distribution of Y, given $\sigma(X)$ and $C \in S_2$, is

$$\mathbb{P}([Y \in C]|\mathcal{G})(\omega) = \frac{\int_C f(x, y)\mu_2(dy)}{\int_{S_2} f(x, y)\mu_2(dy')}$$

where $A = S_1 \times C$.

Definition 1.31

The **conditional pdf of** Y **given** X = x, denoted f(y|x) is the joint density section $y \mapsto f(x, y)$ normalized to a probability density function by dividing by the marginal pdf $f_X(x) = \int_{S_2} f(x, y)\mu_2(dy)$. This is given in general form by

$$f(y|x) = \frac{f(x,y)}{\int_{S_2} f(x,y)\mu_2(dy)}$$

1.4.2 Random Walks

Definition 1.32 Random Walks

Let $Z_1, Z_2, ..., Z_n$ be a sequence of i.i.d. random variables. Then we can define a **random walk** from X by

$$S_{k,X} = X + \sum_{i=1}^{n} Z_i$$

where $X \in \mathbb{R}$ and $S_{0,X} = X$.

Theorem 1.25 Markov Property

Given i.i.d. random variables $Z_1, Z_2, ..., Z_n$ and random walk $S_{k,X}$,

$$\mathbb{E}[S_{n,X}|\sigma(S_{n-1,X}, S_{n-2,X}, \dots, S_{0,X})] = \mathbb{E}[S_{n,X}|\sigma(S_{n-1,X})]$$

Furthermore, note that

$$\mathbb{E}[S_{n,X}|\sigma(S_{n-1,X})] = S_{n,X} + \mathbb{E}[S_{n-1,X}]$$

Definition 1.33 Stochastic Processes

A family of random maps $\{X_t : t \in \Lambda\}$ such that for each $t \in \Lambda, X_t : \Omega \to S_t$ is known as a **stochastic process**.

If the index set Λ is 1, 2, 3, ..., then $\{X_t : t \in \Lambda\}$ is referred to as a **discrete-parameter stochastic process**. If $\Lambda = [0, \infty)$, then $\{X_t : t \in \Lambda\}$ is known as a **continuous-parameter stochastic process**.

1.5 Martingales

Definition 1.34 Filtration

Let $\{\mathcal{F}_t : t \in T\}$ be a collection of σ -algebras such that T is a linearly ordered set and

 $\mathcal{F}_{s}\subseteq \mathcal{F}_{t}$

for $s \le t$. Then $\{\mathcal{F}_t : t \in T\}$ is called a **filtration**. Furthermore, we say a collection of random variables $\{X_t\}$ is **adapted to** $\{\mathcal{F}_t : t \in T\}$ if X_t is \mathcal{F}_t measurable for each $t \in T$

Definition 1.35 (Super/Sub) Martingales Let $\{X_t\}$ be adapted to $\{\mathcal{F}_t : t \in T\}$. Then $\{X_t\}$ is a: $\texttt{martingale} \iff X_s = \mathbb{E}[X_t | \mathcal{F}_s]$ where $(s \le t)$ $\texttt{supermartingale} \iff X_s \ge \mathbb{E}[X_t | \mathcal{F}_s]$ where $(s \le t)$ $\texttt{submartingale} \iff X_s \le \mathbb{E}[X_t | \mathcal{F}_s]$ where $(s \le t)$

Exercise 1.1

Let $\{X_t\}_{t \in \mathbb{N}}$ be a sequence of iid random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Additionally, let $\{S_t\}_{t \in \mathbb{N}}$ be a sequence of random variables defined by

$$S_0 = X_1$$
$$S_t = S_{t+1} + X_t$$

Take the filtration $\mathcal{F}_t = \sigma(X_1, X_2, ..., X_t)$ and note that S_t is \mathcal{F}_t adapted. Is S_t a martingale, supermartingale, or submartingale? What is $\mathbb{E}[S_t + 1|\mathcal{F}_t]$?

Solution

By properties of conditional expectation we can get that

$$\mathbb{E}[S_{t+1}|\mathcal{F}_t] = S_t + \mathbb{E}[X_{t+1}]$$

So we can say that:

if $\mathbb{E}[X_t + 1] = 0 \Rightarrow S_t = \mathbb{E}[S_t + 1|\mathcal{F}_t]$ (martingale) if $\mathbb{E}[X_t + 1] > 0 \Rightarrow S_t < \mathbb{E}[S_t + 1|\mathcal{F}_t]$ (submartingale) if $\mathbb{E}[X_t + 1] < 0 \Rightarrow S_t > \mathbb{E}[S_t + 1|\mathcal{F}_t]$ (supermartingale)

Definition 1.36

Let $\{X_n : n \ge 1\}$ be a martingale. Its **martingale difference sequence** is given by $\{Z_n\}$, where

 $Z_1 = X_1$ $Z_{k+1} = X_{k+1} - X_k$

Remark

If $X_n \in L^2(\Omega, \mathcal{F}, \mathbb{P}), \forall n \ge 1, \{Z_n\}$ are uncorrelated. Moreover, if $X_n \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and f is a bounded, \mathcal{F}_n measurable function, then

$$\mathbb{E}[Z_{n+1}f(X_1, X_2, ..., X_n)] = \mathbb{E}[\mathbb{E}[Z_{n+1}f(X_1, X_2, ..., X_n)|\mathcal{F}_n]]$$

= $\mathbb{E}[f(X_1, X_2, ..., X_n)\mathbb{E}(Z_{n+1}|\mathcal{F}_n)] = 0$

Theorem 1.26

(a) If $\{X_n : n \ge 1\}$ is a martingale and $\phi(X_n)$ is a convex, integrable function, then $\{\phi(X_n) : n \ge 1\}$ is a submartingale.

(b) If $\{X_n\}$ is a submartingale and $\phi(X_n)$ is convex, non-decreasing, and integrable, then $\{\phi(X_n) : n \ge 1\}$ is a submartingale.

Theorem 1.27 Doob's Maximal Inequality

Let $p \ge 1$ and $\{X_n\}$ be an $\{\mathcal{F}_n : 1 \le k \le n\}$ adapted martingale (or a non-negative submartingale) such that $\mathbb{E}[|X_n|^p] < \infty$. Then for $\lambda > 0$ and $M_n := \max\{|X_n|\}$ satisfies the following:

$$\mathbb{P}(M_n \ge \lambda) \le \frac{1}{\lambda^p} \int_{[M_n > \lambda]} |X_n|^p d\mathbb{P} \le \frac{1}{\lambda^p} \mathbb{E}[|X_n|^p]$$

Corollary 1.2 Kolmogorov's Inequality

Let $\{X_n\}$ be a martingale with $\mathbb{E}[X_k] = 0$ and $Var(X_k) < \infty$ for all k = 1, 2, ..., n. Then for $M_n = \max\{X_n\}, \lambda > 0$,

$$\mathbb{P}(M_n > \lambda) \leq \frac{1}{\lambda^2} \operatorname{Var}(S_n) = \frac{1}{\lambda^2} \sum_{k=1}^n \operatorname{Var}(X_k) = \frac{1}{\lambda^2} \sum_{k=1}^n \mathbb{E}[|X_n|^2]$$

Theorem 1.28 Doobs Maximal Ineq. for Moments

(a) $\mathbb{E}[M_n] \leq \frac{e}{e-1}(1 + \mathbb{E}[|X_n|] \log(|X_n|))$

(b) For p > 1, $\mathbb{E}[M_n^p] \le q^p \mathbb{E}[|X_n|^p]$ where $\frac{1}{p} + \frac{1}{q} = 1$

1.5.1 Stopping Times

Definition 1.37

Let $\{F_t\}$ be a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable $\tau : \Omega \to T \cup \{\infty\}$ is a **stopping time** if

$$\{\tau \le t\} = \{\omega \in \Omega : \tau(\omega) \le t\}$$

. Furthermore, $\pmb{\tau}$ is an **optional stopping time** if

$$\{\tau < t\} = \{\omega \in \Omega : \tau(\omega) < t\} \in \mathcal{F}_t$$

 $\forall t \in T.$

Exercise 1.2

Let $T = \mathbb{N}$ and (S_i, S_i, \mathbb{P}_i) be a series of Bernoulli probability spaces, where $S_i = \{\pm 1\}, S_i = 2^{S_i}$, and $\mathbb{P}_i(\omega = +1) = 1 - \mathbb{P}(\omega = -1) = p$. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ defined as follows:

$$\Omega = \{ \omega = (\omega_i)_{i \in \mathbb{N}} : \omega_i = \pm 1 \} = S_1 \times S_2 \times \dots = \prod_{i=1}^{\infty} S_i$$
$$\mathcal{F} = \bigotimes_{i=1}^{\infty} S_i$$
$$\mathbb{P} = \prod_{i=1}^{\infty} \mathbb{P}_i$$

Finally, define a set of random variables $X_i : (\omega) \to \omega_i$ (i.e. X_i is the value of $\omega (\pm 1)$ at iteration *i*. What are $|\sigma(X_1)|$? $|\sigma(X_1, X_2)|$? $|\mathcal{F}|$? Solution

$$\sigma(X_1) = \{X_1^{-1}(\pm 1), X_1^{-1}(-1), X_1^{-1}(\emptyset), X_1^{-1}(\pm 1)\} \Rightarrow |\sigma(X_1)| = 4$$
$$|\sigma(X_1, X_2)| = 16$$
$$|\mathcal{F}| = \infty$$

Definition 1.38 Pre- τ σ -algebra

1

Suppose $\{\mathcal{F}_t : t \in T\}$ is a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$ and τ is an \mathcal{F}_t stopping time. The **Pre**- $\tau \sigma$ -**algebra** \mathcal{F}_{τ} is defined as

 $\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap [\tau \leq t] \in \mathcal{F}_t, \quad \forall t \in T \}$

Remark

If $\tau_1 \leq \tau_2$ are stopping times, then $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$

Definition 1.39 stopped process

The stochastic process $\{X_{\tau} \land t : t \ge 0\}$ is referred to as the **stopped process**, where

 $a \wedge b = \min\{a, b\}$

Definition 1.40 progressively measurable

Let $T = [0, \infty)$ or $T = [0, t_0]$. A stochastic process $\{X_t : t \in T\}$ on (S, S) is **progressively measurable** with respect to $\{\mathcal{F}_t\}$ is $(s, \omega) \mapsto x_s(\omega)$ from $[0, t_0] \times \Omega$ to S is measurable with respect to $\mathbb{B}[0, t_0] \otimes \mathcal{F}_t$ and $S \forall t \in T$.

Theorem 1.29

Suppose $\{X_t : t \in T\}$ is progressively measurable and τ is a stopping time. Then X_{τ} is \mathcal{F}_{τ} measurable. That is,

$$([X_{\tau} \in B] \cap [\tau \le t]) \in \mathcal{F}_{\tau} \quad \forall B \in \mathcal{S}, \ \forall t \in T$$

Theorem 1.30

Let Y_n be an \mathcal{F}_n martingale such that $Y_n \to Y \in L^1$. Then $Y_n = \mathbb{E}(Y|\mathcal{F}_n)$

Theorem 1.31

Let $T = \mathbb{N}$. Assume $\tau_1 \leq \tau_2$. Then

 $\mathbb{E}(X_{\tau_2}|\mathcal{F}_{\tau_1}) = X_{\tau_1}$

Corollary 1.3

Let $T = \mathbb{N}$, fix $n \in \mathbb{N}$ and assume X_t is an \mathcal{F}_{τ} measurable martingale. For any stopping time $\tau_1 \leq \tau_2$,

 $\mathbb{E}(X_{\tau_2 \wedge n} | \mathcal{F}_{\tau \wedge n}) = X_{\tau_1 \wedge n}$

Theorem 1.32 Optional Stopping Time Theorem

Let X_t be an \mathcal{F}_t martingale with $t \in T = \mathbb{N}$. Suppose $\tau_1 \leq \tau_2$ are stopping times such that:

1. $\mathbb{P}(\tau_2 < \infty) = 1$

2. $X_{\tau_2 \wedge n}$ is uniformly integrable

Then $\mathbb{E}(X_{\tau_2}|\mathcal{F}_{\tau_1}) = X_{\tau_1}$

Definition 1.41 Upcrossings

Let Z_n be \mathcal{F}_n submartingale with $n \in \mathbb{N}$,

$$\mathbb{E}(Z_n | \mathcal{F}_m) \geq Z_m$$

Fix $a \leq b$ and define $\zeta_1 = 1$ and

$$\begin{cases} \zeta_{2k} = \inf\{n \ge 2k - 1 | Z_n \ge b\} \\ \zeta_{2k+1} = \inf\{n \ge 2k | Z_n \le a\} \end{cases}, \quad k = 1, 2, \dots \end{cases}$$

Now define $X_n = \max{Z_n - a, 0}$ and note that \max is a convex function, so X_n is a submartingale by Jensen's Inequality. Also,

$$\begin{cases} X_{\zeta_{2k}} = \max\{Z_{\zeta_{2k}} - a, 0\} \ge b - a \\ X_{\zeta_{2k+1}} = \max\{Z_{\zeta_{2k+1}} - a, 0\} = 0 \end{cases}$$

The number of **Upcrossings** by time *N* is then given by $U_N = \sup\{k | \zeta_{2k} \le N\}$.

Theorem 1.33 Doob's Upcrossing Inequality

$$\mathbb{E}(U_N) \leq \frac{\mathbb{E}(X_N) - \mathbb{E}(X_1)}{(b-a)} \leq \frac{\mathbb{E}(X_N)}{(b-a)}$$

1.6 Central Limit Theorem

Definition 1.42 Weak Convergence

A sequence of probabilities $\{Q_n\}_{n=1}^{\infty}$ converges weakly or, equivalently, converges in probability to a probability Q as $n \to \infty$ if

$$\lim_{n\to\infty}\int_{\mathbb{R}^k}g(x)Q_n(dx)=\int_{\mathbb{R}^k}g(x)Q(dx)$$

for all bounded functions $g : \mathbb{R}^k \to \mathbb{R}$. We denote converges in probability as $Q_n \Rightarrow Q$. Moreover, a sequence of random variables X_n with distributions Q_n converges to X with a distribution Q if $Q_n \Rightarrow Q$.

Theorem 1.34 Finite Dimensional Weak Convergence

Let $\{Q_n\}$, Q be a sequence of probabilities. The following are equivalent:

1. $Q_n \Rightarrow Q$

CONTENTS

2.
$$\int_{\mathbb{R}^{k}} f dQ_{n} \to \int_{\mathbb{R}^{k}} f dQ \text{ for all bounded, continuous } f \text{ vanishing outside a compact set.}$$

3.
$$\int_{\mathbb{R}^{k}} f dQ_{n} \to \int_{\mathbb{R}^{k}} f dQ \text{ for all infinitely differentiable } f \text{ vanishing outside a compact set.}$$

4. For $F_{n}(x) = Q_{n}((-\infty, x_{1}] \times ... \times (-\infty, x_{n}]) \text{ and } F(x) = Q((-\infty, x_{1}] \times ... \times (-\infty, x_{n}]), F_{n}(x) \to F(x) \text{ as } n \to \infty$

Theorem 1.35 Lindeberg Central Limit Theorem

For each *n*, let $X_{n,1}, ..., X_{n,k_n}$ be independent arrays of random variables such that $\mathbb{E}(X_{n,j}) = 0$, $\sigma_{n,j} = (\mathbb{E}(X_{n,j}^2))^{1/2} < \infty, \sum_{j=1}^{k_n} \sigma_{n,j}^2 = 1$ and, for all $\epsilon > 0$, $\lim_{n \to \infty} \sum_{j=1}^{k_n} \mathbb{E}(X_{n,j}^2 \mathbb{I}_{[|X_{n,j}| > \epsilon]}) = 0$ (Lindeberg Condition)

Then $\sum_{j=1}^{N_{n,j}} X_{n,j}$ converges in distribution to a standard normal distribution, $\mathcal{N}(0, 1)$.

Corollary 1.4 Classical Central Limit Theorem

Let $\{X_j\}$ be a sequence of random variables with $\mathbb{E}(X_j) = \mu$, $0 < \sigma^2 = \operatorname{Var} X_j < \infty$. Then $\frac{\sum_{j=1}^n (X_j - \mu)}{(\sigma \sqrt{n})} \Rightarrow \mathcal{N}(0, 1). \text{ Equivalently, } \sum_{j=1}^{k_n} X_{n,j} \Rightarrow \mathcal{N}(n\mu, \sigma \sqrt{n}).$

Corollary 1.5 Lyapounov Central Limit Theorem

 $\forall n, \text{ let } X_{1,n}, X_{2,n}, \dots, X_{n,k_n} \text{ be } k_n \text{ independent random variables such that } \sum_{j=1}^{n} \mathbb{E} X_{n,j} = \mu,$ $\sum_{j=1}^{k_n} \text{Var} X_{n,j} = \sigma^2 > 0 \text{ and}$ $\lim_{n \to \infty} \sum_{j=1}^{k_n} \mathbb{E} |X_{n,j} - \mathbb{E} X_{n,j}|^{2+\delta} = 0$ (Lyapounov Condition) $\text{for some } \delta > 0. \text{ Then } \sum_{j=1}^{k_n} X_{n,j} \Rightarrow \mathcal{N}(\mu, \sigma^2).$