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m Probability and Measure Spaces

m Probability Spaces
PELNTINAE Probability Space

A probability space is a triplet (Q, 7, [’) where

¢ Q is the outcome space
¢ 7 c 29is the o-algebra of events
€ P: 7 —[0,1] is a probability function satisifying the following properties:
1.P(@)=0
2.P(Q)=1
o0 (0.0]
3. P( U Ap) = Z P(An) where {A, : Ap € ]—"};7"’=1 are all pairwise disjoint

n=1 n=1

A
Suppose Q= {1,2,...,N}, F = {Ac Q} :=2% and P(A) = %
Is (Q, F, ) a probability space?
Proof.
12|
Q]
P «© A _ |U,:o=1An| _ |Z,°7°=1An|
U =0 ="
n=1
Yes, (Q, F, P) a probability space |

PRGN o-algebra

Let F be a collection of subsets in Q. F is a 0-algebra on Q if and only if

*AneF:Agef

(o0]
SA,EF> UA,,E]—"
n=1

e F
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I3 Remark
VA€ F, P(A°)=1—-P(A)

Proof. First note that, by the definition of o-algebra, A € ¥ = A® € F. Now observe that

ANA =@, AUA =Q
= P(AUAS) =P(A) + P(A9) =1
= P(A°) =1—P(A)

I Remark
P(BNA®)=P(B)—P(BUA)

PRGN E Countable Subadditivity

Let (Q, F, P) be a probability space and A be a collection of events in 7 which are not necessarily
disjoint. Then

P(|J An) < D P(An)
n=1 n=1

LLC G URRE Continuity from Below

Let (Q, 7, P) be a probability space and A be a collection of increasing events in F, thatis Vn > 1
An - An+1

We define lim A = |_JAn. So, by countable subadditivity,
n

P(lim An) = lim P(An)

Proof. Firstnotethatsince A, € Ap+1,P(An) < P(Ap+1). Additionally, since A, € QandP(Q) =
1,P(An) < 1. Then by Monotone Convergence Theorem, r!irgo P(Ap) exists.

(0 0]
Now, set A = nlirr;oAn = U Ap and define the sequence of events {Bp, ,?'°=1 such that for each
n=1
neN,
B1=A,
B, =A2\ A
Bn=An \An—l

(e e] (0]
So, by this construction, the B, s are disjoint and U B, = U Apn. Additionally, P(Bp) = P(Ap) —
n=1 n=1

P(Ap—1). Then we have

P(A)=P(|J Bn) = >, P(Bn)
n=1 =1

n
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(ee]

=[ > P(An) = P(Ar-1) | + P(A1)

n=1
= lim [ > (P(An) = P(An-1)) + ... + (P(A2) — P(A1)) ]| + P(A1)
n=1

= (A

I=3° Remark
We can also show that Continuity from Above, i.e.

Ap 2 Apy1 = P(”r';nAn) = ”,f'n P(An)

holds. To show this, set Bg = Ap. By DeMorgan'’s Law

(0] c (0] (0.e]
(8a) =UBs=UA
n=1 n=1 n=1

and the proof follows as above.

m Random Variables

DI W Random Variables

Let (Q, F,P) be a probability space. A random variable is a function X : Q — R such that
X~Y([a, b]) e F.

DI MBS Distribution Function
A distribution function is a function

Fx(x) = P(X_l((—oo, x])) =P(X <Xx)

We say a distribution function is absolutely continuous if

Fx(x) =J g(uw)du (1.7)

—00

forsomeg:R— R

I Remark

d
In general, &Fx = g(x) (except for some non-differentiable points).

Probability Theory: 664, 665
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- Convergence

DELNCT AN Convergence in Probability

Consider a sequence on random variables {X};‘f=1 on a probability space (Q, 7, P). We say
{X};7'°=1 converges in probability to X if, Ve > 0

r!i_)rrgoIP(an— X|>€)=0

PRGN Almost Sure Convergence

Now consider a sequence on random variables {X},‘;°=1 on a probability space (Q, F, P). We say
{X};7'°=1 converges almost surely to X if Vw € Q,

P{weQ: Xp(w) A~ X(w)})=0

Theorem 1.2

A sequence of random variables (X n);’)°=1 converges to X in probability if and only if every subse-
quence has a further subsequence that converges almost surely to X.

m Expectation

PEGNTTINEE Simple Function

A random variable X is called a simple or discrete random variable if it can be written as

n
X(w) = ajly
j=1

whereaj € Rand AjnA; =@ forall 1 < (,j < n. Note the function 14 is defined as

l, weA
Ta(w) = _
0, otherwise

DI B Fxpectation of Simple Function

The expectation of a discrete random variable X is given by
n
E[X] = f XdP = ) ajP(A))

Q =

Jj=1

Theorem 1.3

If X is a non-negative random variable, we can write

E[X] =sup{E[Y]:0<Y <X, Ysimple}

Theorem 1.4

Given that any function may be approximated arbitrarily closely by a sequence of non-decreasing

Probability Theory: 664, 665 Oregon State University
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simple functions (X ”);7.0=1' we may define the expectation of any function X = nll_mo Xn by

n2"—-1 ;
E[X] = nll—q)]o{ ; %IP(/Z_” <X<(@U+1) ™M)+ nP(X> n)}

Theorem 1.5

More generally, we write

E[X] =J XdP =E[XT]—E[X"]
Q

Theorem 1.6

The following properties of the expect value are true:
1. z<x=>[E[z] < E[X]
2.ACB=[E[XTa] <E[XT5]

o0
3A=JAn AnCAp> lim E[XTa,] = E[XTA]

n=1

LLCIEUNWAR Change of Variable

Let X : Q — R be a random variable and h : Rt — R™ be a continuous function. Then

E[h o X] =f (h o X)P(dw) =J h(X)Fx(dX)
Q R

DI LT A (U Moments
Given a random variable X on a probability space (Q, 7, P) with a distribution function Fx, we can
define the p-th order moment of X to be

E[XP] = f XP(w)P(dw) = f XPFx(dx)
Q R

Furthermore, moments of absolute values (| X|) are refered to as absolute moments and are given
by

E[|X|P]1=p f xP~IP(1X| > x)dx
0

m Convexity

Theorem 1.8

The spaces LP(Q, F, P) with norms given by

IXllo = fo xiPar]”’ = (Erx11e)

are Banach Spaces.

Probability Theory: 664, 665 Oregon State University
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Moreover, the space L?(Q, F, P) is a Hilbert Space with an inner product given by

(X,Y) =E[XY] = f XYdP
Q
So we have || X||> = (X, X)1/?

Definition 1.11

A function ¢ is convex on aninterval J if foralla,be/and 0 <t <1,

d(ta+ (1 —t)b) < t¢(a)+ (1 —t)p(b)
Line of Support

Suppose ¢ is a convex function on an interval J. Then the following are true:

I. If ] is open:

i. The left-hand and right-hand derivatives of ¢ (¢~ and ¢ respectively) exists and are finite
as well as non-decreasing on | with ¢~ < ¢~

ii. For each xq € J, there exists a constant m such that ¢(x) > ¢(xo) + m(x — xp), Vx €.

II. If ] if half open and the derivative of the open side is finite, the properties of I apply to the closed
side with endpoint x.

Theorem 1.10

Let X, Y be random variables on (Q, F, P). Then the following inequalities hold:

a. (Jensen’s Inequality) If ¢ is a convex function on the interval | and P(X € J) = 1, then

¢(E[X]) < E[¢(X)]

Moreover, if ¢ is strictly convex, the above inequality holds iff X is almost surely constant.

b. (Lyapounov Inequality) If 0 < r < s, then

ELIXI"DY" < (ELIXIPDY?

1 1
c. (Holder’s Inequality) Letp > 1. If X € LP, Y € L9, — + — =1, then XY € L! and
p q

ELIXYI] < (ELIXIPDYP(ELIYI91)Y9

d. (Cauchy-Schwartz Inequality) If X, Y € L?, then XY € L' so we have

ELXY]] < VELX2TVELY?]
e. (Minkowski's Inequality) Let p > 1. if x, Y € LP then

IX=Yllp < IXllp + IYllp

Probability Theory: 664, 665 Oregon State University
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f. (Markov/Chebyshev Inequalities) Let p > 1. If X € LP then for A > 0

ELIXIP1Trix12A1 < ELIXIP]

>A) <
P(X|=A) < P Y-
More generally, if h is a non-negative increasing function on an interval containing the range of
X, then [h(X) ]
E[ A(X) Ty x>A
P(X > A) < ]

h(A)

m LP Spaces

DI A VIR | P Probability Space
Let (Q, F, P) be a probability space and p > 1. Then we define LP(Q, F, P) to be

LP(Q, F,P) = {X :Q - R: E[|X|P] < o}

I5° Remark
For random variables X, Y € LP,

X=Y < E[IX-YIP]=0 < E[IX|P]=E[|Y|’]

Theorem 1.11

A sequence of random variables X, converges to X in LP if:

, e
nll_[‘go[E[Xn X|’1=0

Theorem 1.12

LP(Q, F, P) is complete

PEMICH NN ER Uniform Integrability

A sequence of random variables X, is said to be uniformly integrable if

Jim SUPE[{IXnlTixp1221}] =0

LLCEIC R KR Fatou's Lemma
Let X, : Q — [0, co] be a sequence of non-negative random variables. Then

E[JLrQoiann(w)] < ALrQoinfE[Xn(w)]

We can also show that the reverse Fatou’s Lemma holds. If 3Y : Q — [0, co] such that X, <Y for
allnand E[ Y] < oo, then

lim supELXn(w)] < EL lim sup Xn(w)]

Probability Theory: 664, 665 Oregon State University
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Theorem 1.14

Consider {Xn };7";1. Then

X, o X

E[|IXn—X|] - 0 <
{Xn },‘f:l is uniformly integrable

m Generating o-algebras

DEGNTTINAREE Generating o-algebras
Let (Q, F, P) be a probability space and X : Q — S, where S is a 0-algebraon S. Then o(X) is the
generating o-algebra generated by X which is the smallest o-algebra such that X is a measurable
map

=3 Remark
Recall: X : (X, F) — (S, S) is measurable if X"1(A) € FforallA € S.

DELNTH NN EN Product o-algebra

Let (S;, Si) be afinite collection of measurable spaces. S1 ® S> ® ... ® S is the product o-algebra
which is defined as the smallest o-algebraon S; x Sy x ... x S, such that all projection maps,

Tik:S1xSyx...xS,— Sk

are measurable.

DI M Product Measure

Let (S;, Si, 1) be a measure space. The product measure 111 X L X ... X U, ONS1® S2® ... ® Spy
is defined as

H1 X 2 X ... X Up(B1 x B2 x ... x Bp) = u1(B1)u2(B2)...un(Bn)

PRGNV Absolutely Continuous

Let (X, S, 1) be a measure space. Consider the measure v. Vv is absolutely continuous with re-
spect to u if

H(A)=0—-Vv(A)=0
VA € S. We denote this relationship by v < .

PENNC ML Singular Measure

Let (X, S, u) be a measure space. Consider the measure v. Vv is singular with respect to u if
JA € S with u(A) = 0 and V(A®) = 0. We denote this relationship v L u.

LU NREN | ebesgue Decomposition

Let (X, S, u) be a measure space. Given v : S — [0, o), where V is O finite, there exist two unique
measures, Vqc, Vs : S — [ 0, 00) such that,

V=Vac+Vs

Probability Theory: 664, 665 Oregon State University
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and Voqc < U and vs L .

LLCEIE AT Radon-Nikodym

Let (X, S, u) be a measure space. Given v : S — [0, o), there exists h : X — [0, 00) such that

Vac(A)=J hdu
A

VA € S. his called a density function.

m Independence

PELNTNREE Independence

A collection of random variables X; : (Q, F, P) — (S;, S;) are independent if the distribution func-
tion, Q, defined as

Q(B)=Po (X1, X2,.... Xn)"1(B)

where B € 57 x ... x S, equals the product measure Q1 x Q2 x ... x Qp, where

Qi(B) =P o X (B)

Theorem 1.17
If X1, X2, ..., Xn are independent random variables on (Q, 7, P) such that E[|X;|] < oo forall 1 <
j < n, then

E[X1X2..Xn] =E[X1]E[X2]...E[ Xn]

Theorem 1.18

If X1, X, are independent random variables with distributions Q1, Q>, respectively, then the distri-
bution of X1 + X3 is given by the convolution

Q1 * Q2(B) =J Q1(B—y)Q2(dy)
R
Where Bisaneventand B—y = {b—y : b B}

Definition 1.20 ERK:H

A sequence of independent random variables X1, X>, ... is independent and identically distributed
(i.i.d.) if the distribution of X, does not depend on n. That is, the distrubition is the same for all n.

m Covariance & Variance

DL A Covariance

Given two random variables X and Y in L2(Q, F, P), the covariance of X and Y is given by

Cov(X, Y) = E[(X — E[X])(Y = E[Y])]
= E[XY]—E[X]E[Y]

Probability Theory: 664, 665 Oregon State University
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X and Y are said to be uncorrelated if Cov(X, Y) = 0.

5" Remark
Independent random variables are uncorrelated, however, uncorrelated random variables are not

necessarily independent.

DI N ¥ Variance
The variance of a random variable X is given by

Var(X) = Cov(X, X)

= E[X —E[X]]?
= E[X?] — E[X]?

I=3° Remark
The covariance term arises naturally in the variance of a sum of random variables:

M>

Var( Xj) = iVar(Xj) + 2 Z Cov(Xi, Xj)

j=1 j=1 1<i<j<n

Theorem 1.19

If X1, X>2, ..., X are independent random variables in L2((Q, F,[P)), then

Var(X1+ X2 + ... + Xp) = Var(X1) + Var(X2) + ... + Var(X,)

LG PAE Borel-Cantelli

o0
Let {A,,};,‘°=1 be a sequence of independent events. If Z P(An) = 1, then P(Ani.0.) = 1, where
n=1
P(An i.0.) is the probability that A, occurs "infintely often”.
o0
Moreover, Z P(an) < oo then P(A, i.0.) = 0.

n=1

m Independent Random Maps

A family of random maps { Xt : t € A} isindependent if and only if V disjoint pairs of finite subsets
A1, N2, any V1 € L2(0({X¢ : t € A1}), V2 € L2(0({X¢t : t € A2 }) are uncorrelated.

Theorem 1.21
LetY1,Y>,..., Yn be random variables of (QQ, F,P)and Z : Q - R. Zis o(Y1, Y2, ..., Yn) measur-
able ifand only if 3g : R" — R such that Z = g(Y1, Y2, ..., Yn).

Probability Theory: 664, 665 Oregon State University
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Corollary 1.1

Suppose X1, X, are independent random maps with values (S1, S1) and (S2, S2). Then for Borel
measurable g; : S; —» R, Z1 = g1(X1) and Z, = g(X3) are independent.

DELN W2 Independent Events

A collection, C, of events A € F are independent events if the collection of indicator functions

{Ta:A€C}

is a family of independent random maps.

I3 Remark
We denote an event A, which occurs eventually for all n by

[Afi.0.]¢

i.e. An occurs for all but finitely many n.

m Conditional Expectation
PIIINIVEE Conditional Expectation (L2)

Let X € L?(Q, F, P) and G be a sub-o-algebra of 7. Then the conditional expectation of X given
G, denoted E(X|G) is the G-measurable orthogonal projection of X onto L?(G).

PN NI Conditional Expectation (L1)

Let X € L1(Q, 7, ) and G be a sub-o-algebra of 7. Then a random variable Z is the conditional
expectation of X given G, Z = E(X|G) if

Z= f XdP = f E(X|G)dP
G G

VG € G. Or, equivalently,
E(XZ) = E(E(X|G)Z)

VAeTl, whereG={lg:Ge€gG}

Properties of Conditional Expectation

LetX,Y € L1(Q, F,P) and G, D sub-o-algebras of F. Then the following hold (a.s.)
1. E(X[{Q, @}) = E(X)

2. E(E(X|G)) = E(X)

3. E(cX + dY|G) = cE(X|G) + dE(Y|G) where c, d € R

4. X <Y = E(X|G) < E(YIG)

5.D c G = E(E(X|9)|D) = E(X|D)

6. XY € L and X is G-measurable, then E(XY|G) = XE(Y|G)

7. 0(X) independent of G, then E(X|G) = E(X)

Oregon State University
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8. Let ¢ be convex on a non-open interval J with finite left or right hand derivative at an end point of
J.IfP(X €)) =1 and ¢(X) € L%, then

¢ (E(X]9)) < E(9(X)I9)

9. X € LP(Q, F,P), p = 1, then [|[E(X|)lp < IIXllp
10. a X, 15 X = EX116) 2 E(XI)

1
b.0 < Xp 1 Xa.s. Xp, X € LY, then E(X5|G) 1 E(X|G) and E(Xn|G) £ E(X]|G)
c. If X, = X a.s. and |Xp| <Y € LY, then E(Xx|G) — E(X|G) a.s.

11.Let U,V : (Q, F,P) — (51,851), (52, S2) respectively. Let ¢ : (51 x S2,51 ® S2) — R be
measurable. If U is G-measurable, (V') and G are independent, and E(|¢(U, V)|) < oo, then

E(o(U, V)IG) = h(U)

where h(U) = E(¢(u, V))
12. E(X|o(Y, Z)) = E(X|o(Y)) if (X, Y) and Z are independent.

m Conditional Probability

Given A € F, the conditional probability of A given G is

P(AIG) = E(Tal9)

So, by orthogonality,
P(ANG) = J P(A|G)P(dw)

G
VG eg.
Moreover, 0 < P(A|G) < 1, P(2|G) = 0, P(Q|G) = 1, and, given countable {An}> .,
(0e) (0 0]
P(J AnlG) = D> P(Anl9)
n=1 n=1
Definition 1.28

LetY : (Q, F,P) — (S, S) be arandom map and G be a sub o-algebra on 7. The regular condi-
tional distribution of Y given G is a function

(w,C)— QY

where Q9(w, C) =PY([Y € C])(w) on Q x S such that

1.VCeS, 09, C)=P([Y € C]|G) a-s.
2. Vw € Q, C — QY is a probability measure on Q x S.

Probability Theory: 664, 665 Oregon State University
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Definition 1.29

A topological space whose topology is induced by a metric is called metrizable. If a metrizable
space is complete and seperable, it is called a Polish Space.

LG G MW Disintegration Formula

Givenf : (S,S) » Rwithf e L,

ELF(V)IG] = JQ ff(y)Qg(w, dy)P(dw)

Definition 1.30

Given {Bn}nen C F, Bp is a partition of 7 if By, is disjoint, countable, and

UBn=0

neN

Theorem 1.24

Let {Bn}nen be a paritition of F such that P(B,) > O foralln=1,2,... Let G = 0({Bn}nen).

Then VA € F,

P(ANBp)
PC(A[G)(w) = W

if w € B

w Canonical Probability Space

LetQ =57 x Sy, F = S1 ® S and P be absolutely continuous with respect to u = 1 x 2 and
density f. We can view [P as a joint coordinate distribution (X, Y) where X(w) = x ,Y(w) =y (i.e.
w = (Xx,y) € S1 x Sy). If we take the o-algebra generated by the first coordinate, that is

G={BxS,:Be S}

Then the regular conditional distribution of Y, given o(X) and C € Sy, is

[ f(x, y)uz2(dy)
Js, FO yYIua(dy”)

P(LY € ClI6)(w) =

where A =57 x C.

Definition 1.31

The conditional pdf of Y given X = X, denoted f(y|x) is the joint density section y —
f(x, y) normalized to a probability density function by dividing by the marginal pdf fx(x) =

f(x, y)uz2(dy). This is given in general form by
S>

fx,y)
Js,F(x, yIu2(dy)

flylx) =

Oregon State University
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m Random Walks

DN MY Random Walks

Let Z1,2Z>, ..., Z, be a sequence of i.i.d. random variables. Then we can define a random walk
from X by

n
Skx=X+ ZZ[
i=1
where X e Rand S x = X.

LLEE WA Markov Property

Given i.i.d. random variables Z1, Z>, ..., Zn, and random walk Si x,

E[Sh x|0(Sh—1,x, Sn—=2.%, ---» S0,x)] = E[Sn,x|0(Sn—1,x)]

Furthermore, note that
E[Sn,x|0(Sh-1,x)1 = Sn,x + E[Spn-1,x]

DEIGH MR Stochastic Processes

A family of random maps {X: : t € A} such that foreacht € A, Xt : Q — St is known as a
stochastic process.

If the index set Ais 1, 2, 3, ..., then {X; : t € A} isrefered to as a discrete-parameter stochastic
process. If A = [0, 00), then {X; : t € A} is known as a continuous-parameter stochastic
process.

m Martingales

DL ML Filtration

Let {F+: t € T} be a collection of g-algebras such that T is a linearly ordered set and

Fs C Ft

fors < t. Then {F:: t € T} is called a filtration.
Furthermore, we say a collection of random variables {X:} is adaptedto { 7 : t € T} if Xt is F¢
measurable foreacht € T

DTN T (Super/Sub) Martingales

Let {X:} be adaptedto {F::t € T}. Then {X¢} is a:

€ martingale <= X = E[ X¢|Fs] where (s < t)
< supermartingale < X > E[ X¢|Fs] where (s < t)

€ submartingale <= X < E[ X¢|Fs] where (s < t)

Probability Theory: 664, 665 Oregon State University
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Let {X¢}+ten be a sequence of iid random variables on a probability space (Q, 7, P). Additionally,
let {St}ten be a sequence of random variables defined by

So=X1
St =Sty1 + Xt

Take the filtration 7+ = 0(X1, X2, ..., X¢) and note that S; is 7 adapted.
Is St a martingale, supermartingale, or submartingale? What is E[ St + 1| F¢]?

Solution

By properties of conditional expectation we can get that
E[St+1]Ft] = St + E[Xt+1]
So we can say that:

if E[Xt+ 1] = 0= St = E[St + 1| F¢] (martingale)
if E[Xt+ 1] > 0= St < E[St + 1|F¢] (submartingale)
if E[Xt+ 1] < 0= St > E[St + 1|Ft] (supermartingale)

Definition 1.36

Let {X, : n > 1} be a martingale. Its martingale difference sequence is given by {Z,}, where

Z1=X1
Zk+1 = Xk+1— Xk

> Remark
If X, € L2(Q, F,P), Vn > 1, {Z,} are uncorrelated. Moreover, if X, € L}(Q, F,[P) and f is a
bounded, 7, measurable function, then

E[Zn+1f (X1, X2, ..., Xn)] = E[E[Zn+1f (X1, X2, ..., Xn)|Fn]]
=E[f(X1, X2, ..., Xn)E(Zn+1|Fn)]1 =0

Theorem 1.26

(a) If {Xn : n> 1} is amartingale and ¢(Xp,) is a convex, integrable function, then {¢(Xp) : n >
1} is a submartingale.

(b) If {Xn} is a submartingale and ¢(Xp) is convex, non-decreasing, and integrable, then {¢(X,) :
n > 1} is a submartingale.
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LLEE I NWIE Doob’s Maximal Inequality

Letp > 1and {X,} bean {F, : 1 < k < n} adapted martingale (or a non-negative submartingale)
such that E[ | Xp|P] < oo. Then for A > 0 and M, := max{|Xn|} satisfies the following:

1 1
i p _ p
P(Mn 2 A) < Apf XnlPdP < —EL1Xn|°]

[Mnh>A]
e JIETA WA Kolmogorov's Inequality

Let {X,} be a martingale with E[Xx] = 0 and Var(Xx) < oo forallk = 1,2,...,n. Then for
Mp =max{Xnp}, A >0,

1 1 & 1 &
P(M, > A) < )?Var(Sn) E ﬁ,; Var(Xg) = )7/;[5[|xn|2]

LLC G W2 Doobs Maximal Ineq. for Moments

(@) ELMp] < 2Z55(1 + E[IXnl110g(1Xn]))

(b) For p > 1, ELMP] < qPEL|X,[P] where 2 + 1 = 1

m Stopping Times

Definition 1.37

Let {F:} be afiltration on (Q, 7, P). Arandom variable T: Q — T U {0} is a stopping time if

{1<t}={weQ:1(w) <t}
. Furthermore, T is an optional stopping time if
{t<t}={weQ:1(w)<t}eF
VteT.

| Exercise 1.2 |
Let T =N and (S;, S;, ;) be a series of Bernoulli probability spaces, where S; = {1}, S; = 231
and Pi(w = +1) = 1 —P(w = —1) = p. Consider the probability space (Q, 7, ) defined as
follows:

Q={w=(W)ien: Wi=%x1}=S1 xSy x ... =l_[5[
i=1

Finally, define a set of random variables X; : (w) — w; (i.e. X; is the value of w (+1) at iteration (.
What are |0(x1)|? |o(X1, X2)|? | F|?

Oregon State University
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Solution

o(X1) = {X71(+1), X1 (=1), X7 1(@), X (£ 1)} = |o(X1)| = 4
lo(X1, X2)| =16
| 7| = o0

PRGN Pre-T 0-algebra

Suppose { F: : t € T } is afiltration on (Q, 7, ) and T is an F; stopping time. The Pre-T 0-algebra
Fr is defined as
Fr={AeF:An[t<tleF, VteT}

=5~ Remark
If T1 < T, are stopping times, then 7+, C Fr,

PELNTT R stopped process

The stochastic process {X; A t: t > 0} is referred to as the stopped process, where

aAnb=min{a, b}

DELNC MRV progressively measurable

Let T =[0,0)orT =[0,ty]. A stochastic process {X; : t € T} on (S, S) is progressively
measurable with respect to { 7t} is (s, w) — Xs(w) from [0, tg] x Q to S is measurable with
respectto B[O, tp] ® Frand SVt e T.

Theorem 1.29

Suppose {Xt : t € T} is progressively measurable and T is a stopping time. Then X+ is Fr mea-
surable. That is,

([XreB]ln[Tt<t])eF; VBeS, VteT

Theorem 1.30

Let Y, be an F, martingale such that Y, — Y € LY. Then Y, = E(Y|Fn)

Theorem 1.31

Let T =N. Assume T1 < T2. Then

[E(XTzl-FTl) = XTl

Corollary 1.3

Let T =N, fix n € Nand assume Xt is an 7 measurable martingale. For any stopping time T1 < T,

[E(XTz /\n|~7:‘r/\n) = XT1 AN

Oregon State University
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LLC YA Optional Stopping Time Theorem

Let Xt be an F: martingale with t € T = N. Suppose T1 < T are stopping times such that:

1.P(Tp <o0)=1
2. X1, an is uniformly integrable

Then [E(XTzl‘FTl) - XTl

DI Rl Upcrossings

Let Z, be F, submartingale with n € N,

E(Zn|Fm) = Zm

Fix a < b and define {1 = 1 and

k=1,2,...

Cok = inf{n>2k—1|Z, > b}
Coks1 = inf{n > 2k|Z, < a}

Now define X, = max{Z,—a, 0} and note that max is a convex function, so X, is a submartin-
gale by Jensen’s Inequality. Also,

{ngk =max{Zs,—a,0}>b—a
XZarrr = Max{Zzy,, —a,0} =0

The number of Upcrossings by time N is then given by Uy = sup{k|Z2x < N}.

LU GCLINECE Doob’'s Upcrossing Inequality
E(Xn) — E(X1) < E(Xn)
(b—a) ~(b—a)

E(Un) <

m Central Limit Theorem
DELNT R Y Weak Convergence

A sequence of probabilities {Qn
to a probability Q as n — oo if

(o]

., converges weakly or, equivalently, converges in probability

Iimf Q(X)Qn(dx)=f 9(x)0Q(dx)
[Rk Rk

n—oo

for all bounded functions g : R — R. We denote converges in probability as Q, = Q. Moreover,
a sequence of random variables X, with distributions Q, converges to X with a distribution Q if

On=>0.

LGN Finite Dimensional Weak Convergence
Let {Qn}, Q be a sequence of probabilities. The following are equivalent:

1.0n=>0

Probability Theory: 664, 665
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) fdO, — fdQ for all bounded, continuous f vanishing outside a compact set.
R

fdQn — fdQ for all infintely differentiable f vanishing outside a compact set.
Rk Rk
4. For Fr(x) = Qn((—o0, x1] x ... x (—00,Xxn]) and F(x) = Q((—o0, x1] x ... x (—00,Xp]),

Fn(x) — F(x)ash — o

LTI G NEEE Lindeberg Central Limit Theorem

For each n, let Xn 1, ..., Xn,k, be independent arrays of random variables such that E(Xp,;) = O,

Kn
On,j = ([E(Xi,j))l/z < 0o, Zoglj =1 and, for all € > 0,

j=1
Kn
ALrQOle IE(X,27J1][|Xn,j|>E]) =0 (Lindeberg Condition)
Kn
Then ZX n,j converges in distribution to a standard normal distribution, N'(0, 1).
j=1

o JGIETSYMR I Classical Central Limit Theorem

Let {X;} be a sequence of random variables with E(X;) = y, 0 < 0 = VarX; < oo. Then

E i (X_ kn
= , . Equivalently, E = nu, o+ n).
(O 1/_”) yj_] =

(¢ IETSARE | yapounov Central Limit Theorem

Kn

vn, let X1,n, X2,n, ..., Xn,k, be kn independent random variables such that Z[EX,U- = U,
j=1

> VarXp; =02 > 0 and

j=1

Kn
i L 12+6 _ -
JLrQOZ[EIXnJ EXn,jl<7° =0 (Lyapounov Condition)

j=1

Kn
forsome 6 > 0. Then ZX”'/ = N(u, 02).
j=1

Probability Theory: 664, 665 m Oregon State University
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