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o E:1:1 Il Metric Spaces (MTH 511)

m Metric Spaces and Normed Vector Spaces

m Metrics

Definition 1.1

Let M be any set. A functiond : M x M — [0, c0) is a metric on M if it satisfies the following:

1.0<d(x,y) <oo,Vx,yeM
2.d(x,y)=d(y,x),Vx,yeM
3.d(x,y) =0 < x=y
4.d(x,y)<d(x, z)+d(z y)

m Discrete Metric

The discrete metric is defined by:

d(x,y) = {(1) ifj: (1.1)

EEEY vorms

Definition 1.2

Let V be a vector space. A norm on V is a function || - || : V — [0, o) satisfying the following
properties:

1.0 < ||x|| < 00, VX € V
2. |x]|=0 < x=0

3. llax|l = |allIx|

4. |Ix+yll < [Ix][ + [yl

m Common Norms

N
Ixll = Ixil (1.2)
i=1

N

Ixllz = (> bxi2) ™ (13)

=1

Real Analysis: 511, 512, 513 n Oregon State University
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N
1/p
Ixllp = (D IxilP) (1.4)
i=1
IXllo = max (Ixi) (1.5)
1<i<N

m Norms of Continuous Functions
Definition 1.3

Consider the set of all continuous function on [a, b]. The following are norms on C([a, b]).

b
IFll2 = J F(t)ldt (1.6)
2 RN
IFll2 = ( J F(t)I%dt) (17)
2 1/p
IFllp = ( J F(t)IPdt) (1.8)
Ifllo = sup (IF(D) (1.9)

te[a,b]

m {, Spaces

Definition 1.4

For p satisfying 1 < p < o0, [, is the set of all sequences of real numbers x = (X;)ien for which
the following is true:

o0
D IxilP < 0 (1.10)
i=1

Definition 1.5

! is the set of all bounded sequences of reals.

IXlleo = sup{lxi} <c
ieN (1.17)
forsomec >0

3" Remark
LgClp,Vg<p
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CHAPTER 1. METRIC SPACES (MTH 511)

LLEE IR Holder's Inequality

1 1
Let p € (1, ) and let q satisfy — + — = 1. Given x € Ip and y € Lq, we have the following
p

: : q
inequality:

(00)
> Ixiyil = 1xylley < Ixllg, 1yl (112)
i=1

Metric Spaces

The set M, equipped with the metric d defines a metric space (M, d).

Definition 1.7

Given x € (M, d) and r > 0, the Open Ball of radius r centered at x is defined by

Br(x)={yeM|d(x,y)<r} (1.13)

Definition 1.8

A C M is bounded if and only if given any x € M, 3r > 0 such that A C B/(x).

Definition 1.9

The diameter of A is defined as

diam(A) =sup{d(x,y) | x,y € A} (1.14)

Definition 1.10

A neighborhood of x € M is any set containing an open ball centered at x.

m Convergent and Cauchy Sequences
DI AL Convergence

A sequence (xn) € M converges to x € M if d(xn, X) = x as n — oo,

DISILIG AP Convergence

A sequence (xn) € M converges to x € M if, given some € > 0, AN € N such that Vn > N we
have d(xp, X) < €.

DI WA ER Convergence

A sequence (Xp) € M converges to x € M if, given some € > 0, AN € N such that {x, | n >
N} C Be(x).
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CHAPTER 1. METRIC SPACES (MTH 511)

Definition 1.14 REeENieL
A sequence (xp) is Cauchy if, given some € > 0, AN € N such that Vm,n >

> N we have
d(Xm, Xn) <E.

I=3° Remark
Every convergent sequence in (M, d) is Cauchy.

I=3" Remark
Any Cauchy sequence with a convergent subsequence in (M, d) converges in (M, d).

m Topology of Metric Spaces

m DeMorgan's Laws

Definition 1.15
(A) = JAS (1.15)
iel i€l
(LJa)* = A¢ (1.16)
iel il

m Limit Points

Definition 1.16

Let A be a subset of (M, d). x € M is a limit point of A if

(Be(X)—{x})nA#@ (1.17)

foralle > 0.

Definition 1.17

Let A be a subset of (M, d). x € M is an isolated point of A if

Be(X)—{x})nA=0 (1.18)

If x is not a limit point, it is an isolated point (and vice versa).

PRGN WAL Boundary Points

Let A be a subset of M. x € M is a boundary point of A if and only if

(Be(X)—{x})NA#D
and (1.19)
(Be(xX)—{x})nA“#@
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CHAPTER 1. METRIC SPACES (MTH 511)

m Open Sets

Definition 1.19
AsetU C (M, d)isopenif Vx € U, de > 0 such that B¢(x) c U.

=5~ Remark
Vx € M and Ve > 0, B¢(x) is an open set.

Theorem 1.2

An arbitrary union of open sets is open.

V= U Uq is open. (1.20)

a€eA

Theorem 1.3

A finite intersection of open sets is open.

N
V= ﬂ Uq is open. (1.21)
i=1

Theorem 1.4

If U is open and U C R, then U is a countable union of disjoint, open intervals.

(0]
U= (I
n=1

In = (an, bn) (1.22)
In nIm = @

n#m

Theorem 1.5

A set U is open if and only if, whenever (x,) € M — x € U, for all but finitely many n, x, € U.

Definition 1.20

let (Uy) be the set of all open sets in M. (Uy) is an open base for M if

M=) (1.23)
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m Closed Sets

Definition 1.21

A set F C (M, d) is closed if and only if F* = M — F is open.

Definition 1.22

Aset F C (M, d) is closed if and only if, given x € M, Ve > 0,

Be(X)NF#D=>x€eF (1.24)

Definition 1.23

Aset F C (M, d) is closed if and only if, given a sequence (x,) € F
(xp) > xeM=x€F. (1.25)

In other words, F is closed if it contains all its limit points.

Definition 1.24 RIalels
The interior of A is defined as

int(A) =A°={x €A |Be(x) c Aforsomee >0} (1.26)

DL WA Closure

The closure of A is defined as

cl(A)=A=(){F|Fisclosedand A C F} (1.27)
X €A <> Be(X)NA # @, Ve > 0.
Theorem 1.7

X €A < 3(x,) c Awith (x,) — X.

m Relative Metrics

IS Remark  Notation
Forx e AwithA C M:

BA(x)={y€Ald(x,y)<e}=An{yeM|d(x,y) <€} =AnBY(x) (1.28)
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Definition 1.26

A subset G C A is open relative to A if, given x € G, 3¢ > 0 such that

BAx)=AnBY(x)C G

(1.29)

Corollary 1.1

A subset G C A is open relative to A if and only if
A=GnU

for some U open in A.

(1.30)

Definition 1.27
A set F C Ais closed relative to A if F© = A — F is open in A.

Corollary 1.2

A subset F C A is closed relative to A if and only if
F=ANnV

for some V closed in A.

(1.31)

m Seperable Sets

Definition 1.28

1.XeEM=>xeD’

2.VxeMandVe >0,Bc(X)ND # 3D
3. UNnD # @ for all non-empty U in M
4. (D) =@

A subset of a metric space, D € M, is dense in M if it satisfies any of the following:

Definition 1.29

A set D is countable if there exists

f:D —N, fisinjective.

(1.32)

Definition 1.30

A subset of a metric space, D C M, is seperable if it is countable and dense in M.
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CHAPTER 1. METRIC SPACES (MTH 511)

m Continuity

m Continuous Functions
Definition 1.31

Letf : (M, d) — (N, p). f is continuous at x € M if, given € > 0, 36 > 0 such that

d(x,y) <é=p(Ff(x)—f(y)) <e. (1.33)

If f is continuous for all x € M, we say f is continuous on M.

DI WY Pre-image

For A C N, the pre-image of fis

fFl(A)={xeM|f(x) €A}. (1.34)

Theorem 1.8

Given f : (M, d) — (N, p), the following statements are equivalent:
1. f is continuous on M.

2.Vx €M, if x, — xin (M, d) then f(xx) — f(x)in (N, p)

3. If E is closed in N, f~1(E) is closed in M.

4. if Vis openin N, f~(V) is open in M.

Theorem 1.9

Letf:L—Mandg: M — N. Iffiscontinuous at x € L and g is continuous f(x) € M, fog: L — N
is continuous at x € L.

PRGN REE | ipschitz
A function f : (M, d) — (N, p) is Lipschitz continuous if 3K < oo such that p(f(x), f(y)) <
Kd(x, y) forall x, y € M.

m Homeomorphisms

Definition 1.34

The metric spaces (M, d) and (N, p) are homeomorphic if there exists a bijection f : (M, d) —
(N, p) such that f and f~* are continuous on M and N, respectively.

Definition 1.35
Two metrics d and p on M are equivalent if

d(xn, x) = 0 < p(f(xn),f(x)) = 0asn— 0. (1.35)
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Corollary 1.3

Two metrics d and p are equivalent if (M, d), (M, p) have convergent sequences which converge
to the same limit: J
Xn -5 X & Xp 2 x (1.36)

Theorem 1.10

Letf : (M, d) — (N, p) be a bijection. The following statements are equivalent:

1. f is a homeomorphism

2.Xp 5 x &> f(xn) & f(x)

3. GisopeninM <= f(E)isopeninN.

4. Eisclosedin M <= f(E)isclosedin N.
5. d(x, y) = p(f(x), f(y)) if equivalent to d.

3" Remark

m Connected Sets

Definition 1.36

A metric space M is disconnected if it can be written as the union of two non-empty, disjoint, open
sets.

M=AuUB
A#DB,B+D (1.37)
ANB=9

DEMNTTINEYA Clopen Sets

A set which is both closed and open is said to be clopen.

I3° Remark
M is disconnected <= 3A C M such that A is clopen (1.38)

> Remark
LetE Cc M.

E is a disconnected subset of M < 3U,V Cc M suchthatE=(EnU)U(ENV) (1.39)

Where U, V are open in M and satisfy:

1. (EnU) #9@
2. (ENV)#O

Oregon State University
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3. (ENU)N(ENV)=0

LLCC I RRYE Intermediate Value Theorem
A subset E C R containing more than 1 point is connected if and only if, VX, y € E satisfying x < y,
we have [x, y] C E.

Corollary 1.4

A subset E C R is connected if and only if it is an interval.

Theorem 1.12

A metric space M is disconnected if and only if there exists a continuous map fromMon ({0, 1}, d),
where d is the discrete metric.

m Completeness

Totally Bounded Sets

A set Ain (M, d) is totally bounded if and only if, given any € > 0, there exists finitely many points
X1,X2,...,Xn € M such that

AcJBetx) (1.40)
=1

Corollary 1.5

A set A in (M, d) is totally bounded if and only if, given any € > 0, there exists finitely many set
A1,Ar, ..., Ay C Awithdiam(A;) <efori=1,2,...,n such that

n
Ac|JA (1.41)
i=1

I=3° Remark
Totally bounded = bounded, but Bounded # totally bounded.

m Totally Bounded Sets vs. Cauchy Sequences
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Theorem 1.14

Let (xn) be a sequence in a metric space and let

A={xn|n=1} (1.42)

1. if (xp) is a Cauchy Sequence, A is totally bounded.
2. If A is totally bounded, (x) has a Cauchy subsequence.

m Complete Metric Spaces

(M, d) is complete if every Cauchy sequence in M converges to a point in M.

Theorem 1.15

Let (M, d) be a complete metric space and let A be a subset of M. (A, d) is complete if and only if
Ais closed in M.

LLCIE IR Nested Set Theorem
For a metric space (M, d), the following statements are equivalent:

1. (M, d) is complete

2. let (F,) be a sequence of closed, non-empty sets satisfying
FI2F;2F32... (1.43)

such that diam(F,) — 0 as n — oo. Then

ﬁ Fn# @. (1.44)
n=1

3. Every infinite, totally bounded subset of M has a limit point in M.

Theorem 1.17

/> is complete.

m Banach Spaces
Definition 1.39

A complete, normed, linear space is a Banach Space.

DI LT RV Strict Contraction
Let (M, d) be a metric space and define f : M — M. This f is a strict contraction if 3o < 1 such
that d(f(x), f(y)) < ad(x, y) forall x, y € M.
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I3” Remark
A contraction f : M — M is automatically continuous.

LLCEICT AL Banach Fixed Point
Let (M, d) be complete and f : M — M be a strict contraction. The A!x € M such that f(x) = x. X
is called a fixed point in M.

Moreover, given any x € M, the sequence (f”(xg));o

_, converges to the fixed point X = f(x) as

n — oo.

m Completions

DISILTC R Isometry

f:(M,d)— (N, p)is an isometry if it satisfies:

p(f(x). f(y)) =d(x, y). (1.45)

In other words, isometries preserve distances.

Definition 1.42

A metric space M, 8) is a completion of (M, d) if:

1. (M, 8) is complete.
2. (M, d) is isometric to a dense subset of (M, 5/).

I=>" Remark
If M is dense in M, (M, d) is a completion of (M, d).

Theorem 1.19

Every metric space (M, d) has a completion. Moreover, if (M1, 81) and (M, 82) are both comple-
tions of (M, d), then f : (M1, d1) — (M3, d>) is an isometry.

m Compactness

Definition 1.43
A metric space (M, d) is compact if it is both totally bounded and complete.

I Remark Heine-Borel
A subset K C R is compact if and only if K is closed.

Additionally, K is totally bounded if and only iff K is bounded.
So K is compact if and only if it is closed and bounded.

Theorem 1.20

(M, d) is compact if and only if every sequence in M has a subsequence that converges to a point
in M.
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Corollary 1.6

compact = closed

Corollary 1.7

compact = bounded

Corollary 1.8

Closed subsets of compact metric spaces are compact.

Theorem 1.21

Letf : (M, d) — (N, p) be continuous on M. If K is compact in M, then f(K) is compact in N.

LLCCIC MW YA Extreme Value Theorem

Let (M, d) be a complete metric space. and let f : M — R be continuous. Then f(M) is bounded
and achieves its maximum and minimum values.

Corollary 1.9

Iff:[a, b] — M is continuous, then 3c, d, € R with ¢ < d such that f([a, b]) =[c, d].

Theorem 1.23

In a metric space (M, d), the following are equivalent:

1. If G is any collection of open sets in M and M C U{G : G € G}, then there exists G1, ..., Gp
such that .
M C U G
i=1
In other words, every open cover of M has a finite subcover.

n
2. If F is any collection of closed sets in M with ﬂ Fi # @, then
i=1

([{F:Fer}#@.

Uniform Continuity

Definition 1.44
f: (M, d) — (N, p) is uniformly continuous if, given any € > 0, there exists 6 > 0 such that,
VX, y € Mwithd(x,y) <6,

p(f(x), f(y)) <e

=" Remark

€
Lipschitz functions are uniformly continuous. Given any € > 0, choose 6 < e where K is the
Lipschitz constant.
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Theorem 1.24

If f : M — N is uniformly continuous and M is totally bounded, then N is also totally bounded.
(Uniformly continuous functions map totally bounded sets to totally bounded sets).

Theorem 1.25

If M is compact and f : M — N is continuous, then f is uniformly continuous.

Theorem 1.26

T is linear, i.e. T satisfies:

T(ax + By) =aT(x) + BT(y)
for all x, y € M and for all scalars a, 3.
Then the following are equivalent:

1. T is Lipschitz:
dc > 0 such that, Vx,y € V

T =TI < clix -yl
2. T is uniformly continuous
3. T is continuous on V.
4. T is continuous at 0 € V.

5. 9c > 0 such that
T < cllx]|

Assume (V, || - ||) and (W, |lI-|ll) are normed linear spaces and consider the map T : V — W, where

Definition 1.45

Alinearmap T : (V, |- 1) — (W, ||-]l) is bounded if 3¢ > 0 such that

T O < clixi

Definition 1.46

We denote the set of all bounded, linear mappings from V to W as B(V, W).

Theorem 1.27

B(V, W) is a normed linear space.

Definition 1.47

ITllBev,wy = inf{c =0 : [ITOIIl < clix|l, Vx € V}
T
sup
xeV,Ixlzo 1]l

= sup [[TO
lIxll<1

Let T € B(V, W). We define the norm of T (known as the Operator Norm) as follows:
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I3 Remark
Forall x € V:

7O < 1T COllsev,wllX|l

m Sequences of Functions

m Pointwise vs. Uniform Convergence
Definition 1.48

Let X be a set and (Y, p) a metric space. Letf : X — Y and (fn)l?il be a sequence of functions
suchthatf, : X — Y foralln e N.
We say (f) converges to f point-wise on X if, for every X € X,

Fa(R) S £(2)

Definition 1.49

We say (f) is uniformly convergent if, given any € > 0 and x € X, there exists N € N such that,
foralln > N,

p(fn(x), f(x)) <€

for each € > 0.

Theorem 1.28

Let (X, d) and (Y, p) be metric spaces and f, : X — Y Vn € N. Asssume f, — f uniformly on X
and f is continuous at x € X Vn € N. Then f is also continuous at x.

Theorem 1.29

Suppose fp : [a, b] — R is continuous ¥Yn € N and assume f, — f uniformly on [a, b]. Then

b b
f fn—’f f

m Space of Bounded Functions

Given a set X, let B(X) denote the space of all real valued, bounded functions on X. So f € B(X)
means f : X — R and sup |[f(x)| < oo. We equip B(X) with the sup norm: [|fllaix) = lIfllc =

xeX
sup [f(x)|

xXeX

=" Remark
|| - |l¢., refers specifically to sequences.
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I3~ Remark
If fp — fin B(X),or||fn—flloo = 0 as n — o0, then, given € > 0, there exists N € N such that for

alln >N, |Ifn — flloo = sup Ifn(x) — f(x)| < €. ButthenVn > N and Vx € X, |fn(X) — f(X)| <€,

XEX
so fn — f uniformly on X.

Theorem 1.30

B(X) is complete under the sup norm. This means, given any Cauchy sequence (f,) € B(X), fn —
f € B(X). Moreover, 3¢ > 0 such that ||fn|lc < C foralln € N and ||fnllec = [Ifllo

Definition 1.51
A Cauchy sequence (fp) € B(X) is called Uniformly Cauchy.

Definition 1.52

A bounded sequence in B(X) is called Uniformly Bounded.

Theorem 1.31

Assume X is a coompact metric space. Then Cp(x) = C(x). If X is compactand f : X — R is
continuous, then f(x) is compact in R so f(x) is bounded. Therefore, C(x) = cp(X).

m Equicontinuity

3" Remark
If f € C(X) and X is compact, then f is uniformly continuous.

Definition 1.53

Let F be a collection of real valued function on a metric space X. We say 7 is equicontinuous if,
given any € > 0, there exists 6 > 0 such that, Vx, y € X with d(x, y) < 6, |f(x) —f(y)| < € for
allf e F.

Theorem 1.32

Let X be a compact set. Any finite subset of C(X) is equicontinuous.

Definition 1.54
Fix k > 0 and o > 0. Consider the set of {f € C([0, 1]) : If(X) —f(¥)| < kIx—y|% Vx,y €
[0, 1]}. We call this set Lipl‘:.

Theorem 1.33

€
Given € > 0, choose 6 = (E)“. Then Lip is equicontinuous

Definition 1.55
A collection of real valued functions 7 on X is uniformly equibounded if {f(x): x € X,f € F}is
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a bounded set in R

sup |f(xX)| =sup|lfllec < o0
XeX,feF fer

m Arzela-Ascoli Theorem
PELNTTNETN Uniformly Bounded

A collection of real values functions F on a set X is is Uniformly Bounded if

{f(xX):xeX, feF}

or

fei‘L,lxpeX FeAl = ?Sﬁ’ Iflleo < 0
or

AC > 0 such that ||f||ec < C
VfeF

I3 Remark

For 7 C C(X), where C(X) is equipped with || - ||co, F is uniformly bounded if and only if F is a
bounded subset of C(X).

LRGN Arzela-Ascoli

Let X be a compact metric space andlet 7 C C(X). F is compactif and only if F is closed, uniformly
bounded, and equicontinuous.

Corollary 1.10

Let X be a compact metric space. If (fn) is uniformly bounded and equicontinuous on C(X), then
there exists a subsequence of (f,) that converges uniformly on X.
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m Riemann Integral

Definition 2.1

Let P be a partition of [ q, b],
P=Xx0o,X1,...,Xn

such that
Aa=X9g<X1<..<Xp=b

Definition 2.2

Assumef :[a, b] — Ris bounded.

L, P la b =D ( _inf fO)0G—x1)
j=1

Xj-1,X;

is the Lower Riemann Sum of f.

Definition 2.3

Assume f : [a, b] — Ris bounded.

U, PLa,b]) =D ( sup f(x))(x—xj-1)

j=1 X€[xj-1,xj]

is the Upper Riemann Sum of f.

Definition 2.4
L(f,[a, b]) =supL(f,P.[a, b])
P

is the Lower Riemann Integral of f.

U(f,[a, b]) = ing(f,P, [a, b])

is the Upper Riemann Integral of f.

Definition 2.6

A bounded function f : [a, b] — R is Riemann Integrable on [a, b] if

L(f,[a, b]) =U(f, [a, b])

Theorem 2.1

Iff:[a, b] — Ris continuous, f is Riemann Integrable.
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m Measures
m Outer Measures

Definition 2.7

If I is an open interval in R witha < b (i.e. I = (a, b),I = (—o0, a),I = (a, ), or I = (—0o0, )).
The length of I is given by

b—a,I=(a,b)
LI)=100,I=(—,qa),]I =(a, ), =(—00, )
0,I=09

Definition 2.8

For A C R, the Outer Measure of A is
o0 (0 0)
Al=inf{> L) :AS I}

Where {Ik},‘f=1 is a collection of open intervals and |A| is the infimum over all such collections.

Theorem 2.2

The outer measure of any countable subset of R is 0.

Theorem 2.3

Suppose A C B C R, then |A| < |B].

Theorem 2.4

Assumet € Rand A C R, then |t + A| = |A|, where

t+A={t+a:ae€A}

Theorem 2.5

Suppose {A1, Ay, As, ...} is a countable collection of subsets of R. Then

o0 o0
| Al < D] 1A
k=1

k=1

=" Remark
JA1, A € Rwith Ap ﬂAz = @ such that

A1 UA2| # |A1] + |A2]

Theorem 2.6
Leta,beR a<b. Then

I[a,b]|=b—a
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Theorem 2.7

A a function u with all the following properties:

1. 1 maps all subsets of Rto [0, co].
2. u(I) = L(I) for all open intervals I € R.

(0] (0.0]
3. IJ( kL—JlAk) = kZ;IJ(Ak) forall {Ax}y. | (pairwise disjoint).

4. u(t+A)=u(A)forallte R ACR

M o-algebras

PELNTIWAM o-algebra

Let X be a set and . be a collection of subsets of X. Then . is a o-algebra on X if:
1.0€

2 IfEe YthenX—E €Y

3. If {Ek},‘f=1 is a collection in .# then

(e ¢]
|JExes
k=1
=5~ Remark
Suppose .7 is a o-algebra on X, then
1.Xe

2D Ee Y=>DnEe. YandDUEe€ ¥YandD—E € .¥

(0 0)
3.If {Ek},‘f=1 is a countable collection in .7, then ﬂ Exe.”
k=1

m Measurable Spaces

Definition 2.10

A measurable space is an ordered pair (X, .’), where X is a set and . is a 0-algebra on X. An
element of .7 is said to be . measurable.

> Remark
Consider X = R. Let .# be the collection of all sets E such that E or X — E is countable.

1. Q is .¥ measurable
2. R— Qis . measurable
3.(0, 1) is not . measurable
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M Borel Subsets

Theorem 2.8

Let X be a set and let <7 be a collection of subsets of X. Then the intersection of all o-algebras on
X which contain </ is also a o-algebra containing <. Furthermore, the intersection is the smallest
possible o-algebra containing <7

Definition 2.11

The smallest o-algebra on R containing all open subsets of R is called the collection of Borel
Subsets. An element of this o-algebra is called a Borel Set.

I=3° Remark
1. Open sets are Borel Sets

2. Closed sets are Borel Sets

3.[a, b),(a, b] are Borel Sets

4. X is a Borel Set

5. Countable subsets of R are Borel Sets
6. Q and R — () are Borel Sets

7. Any countable union of countable intersection of (1)-(7) is a Borel Set

m Measures

Definition 2.12

let X be a set and . be a o-algebra on X, then (X, .”) is a measurable space. A measure on
(X, ) isafunctionu : ¥ — [0, co] such that:

1.

H(D)=0
2.
o0 (0 0]
IJ( U Ek) = > M(Ek)
k=1 =1
I=>" Remark
Let X = R and .¥ = P(X), then (X, .#) is a measurable space but u = | - | is not a measure on

(X, ) because (2) fails.

DI WA ER Counting Measure

Let X be a set and . = P(X). Defineu : . — [0, 0] as

+00, E €.7isinfinite.
M(E) = L
n, E € .7 is finite.

where n is the number of elements in .#.
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I3~ Remark
Consider theset X = {1, 2,3,4,...,N—1,N} and .¥ = P(X) and let u be a counting measure

on (X, .”). Consider a sum of real numbers a; + a, + a3+ as + ... + ay. Let f(k) = ak for each
1<k<N(:X—R).Then

N
ak =Y. f(k)
k=1

f(k)-u({k})

Kk
= f f-du
X
Definition 2.14

A Measure Space (X, .7, 1) is a measurable space with a measure on it.
Theorem 2.9
Suppose (X, ., 1) is a measure space. Let D, E € . such that D C E, then

1. u(D) < u(E)
2. u(D—E) = pu(D)— u(E)

LLCIE WA Countable Subadditivity

Let (X, ., u) be a measure space and E1, E», E3, ... € .7 (not necessarily disjoint), then

(0.¢]

N( k[jl Ek) . k

H(Ek)
1

Theorem 2.11

Let (X, .7, u) be a measurable space. Let E; C E; C E3 C ... be a nested sequence of sets in .7,
then

u( G Ex) = lim p(Ex)
k=1

Theorem 2.12

Let (X, .7, u) be ameasurable space. Let (X, .7, u) be ameasurable space. LetE; 2 E; 2 E3 2 ...
be a nested sequence of sets in . and u(E1) < oo, then

u( () Ex) = Jlim u(E)
k=1

Theorem 2.13

Assume (X, ., 1) is a measure space and D, E € . with u(D UE) < oo. Then u(DU)E = u(D) +
H(E)— (D NE).
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m Lebesgue Measure

5" Remark
In constructing the Lebesgue Measure, the idea is to show that the outer measure, when restricted

to (R, B) where B is the Borel Set of R, is a measure. In other words, (R, B, |-|) is a measure space.

Theorem 2.14

LetA,GCS R ANG=@andGopen. Then |AUG| = |A| + |G|.

Theorem 2.15

LetA,FC R ANG=@andF open. Then |[AUF| = |A| + |F]|.

Theorem 2.16

Let B C R be a Borel set. The Ve > 0, there exists a closed set F C B such that |B— F| < €.

Theorem 2.17

Suppose A,BC R, AnB =@, and B is a Borel Set. Then

|JAUB| = |A] + |B|

Theorem 2.18

Outer Measure is a measure on the measurable space (R, &) where 4 is the set of all Borel Sets.
So (R, 4, |- |) is a measure space.

DRGNP LR | ebesgue Measure

Lebesque Measure is the measure on (R, B) which assigns to each Borel set its outer measure.

M Lebesgue Measurable Sets
Definition 2.16

If A C R, A is Lebesgue Measurable if 3 a Borel set B C A such that |[A—B| =@.

Definition 2.17

Let A C R. The following statements are equivalent:

1. A is Lebesgue Measurable.
2.Ve > 0,3F closed in A suchthat |[A—F| < €.

3. d sequence of closed sets F1, F», F3,... € A such that

(00
A= UF
i=1

4.VYe > 0,3G open with G 2 A suchthat |G—A| <e€.
5. 3 sequence of open sets G1, G, G3, ... 2 A such that

’(iéGi)—A‘=O

=0
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6. 1 aBorel set B2 Asuchthat|B—A|=0

Theorem 2.19

Outer Measure is a measure on (R, £), where L is the 0-algebra of Lebesgue measurable sets.

DEGNTTIWALE Alternative Definition of Lebesgue Measure
Lebesgue Measure is the measure on (R, £) which assigns to each A € L its outer measure.

3" Remark
The two definitions of Lebesgue Measure are not equivalent, however
VA e,
A=BU(A—-B)

where B is Borel and |A — B| = 0. So, in practice, the difference in definition doesn’t matter.

Theorem 2.20

Every set A with |A| = 0 is Lebesgue measurable.

3" Remark
For any Lebesgue measurable set A,

A=BU(A—B)

where B is Borel and |A— B| = 0. So L is the smallest o-algebra containing the Borel sets and the
sets of outer measure 0. (Note: non-Borel sets of outer measure 0 do exists, but they don’t really
matter for any reason.)

m Measurable Functions

Definition 2.19

Suppose (X, .#) is ameasurable space. A function f : X — R is a measurable functionif f~1(B)
< for all B € B.

m Characteristic Functions
Definition 2.20

Let X be a set and E C X. The characteristic function of £, xg : X — R, is defined by:

1, xeE

Xe(x) = {0, X E
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Theorem 2.21

Suppose (X, .7) is a measurable space. If E C X, then chig is measurable iff E C ./ (i.e. E is ./
measurable).

Definition 2.21
Suppose X C R, then f : X — R is Borel Measurable if f~1(B) is a Borel set VB € B.

Definition 2.22

Suppose A C R. Then f : A — R is Lebesgue Measurable if f~1(B) is Lebesgue Measurable for
all Borel sets.

Theorem 2.22

Suppose (X, .7) is a measurable space and f : X — R, then f is measurable iff f~1(A) € . for all
open sets A C R.

Theorem 2.23

Suppose (X, .”) is a measurable space and f : X — R, then f is measurable iff f‘l((a, o)) € .¥
foralla € R.

Theorem 2.24

Suppose (X, .”) is a measurable space and let f1, f>, f3, ... be a sequence of measurable functions
with fi : X — R for all k. Suppose, for all x € X, klim frk(x) exists. Let
— 00

f= Iergo fr(x)

forall x € X. Then f is also measurable.

Corollary 2.1
Suppose (X, .”) is a measurable space and let f1, f>, f3, ... be a sequence of measurable functions
with fi : X — R for all k. Suppose, for all x € X, klim fk(x) exists. Then forany a € R
— 00

s

(o] (o] 1
T a, ) =J U N a+ 7 ©)) € .7

1 m=1m=k

J

Theorem 2.25

If f : X — R is continuous with X C R, then f is both Borel and Lebesgue measurable.

m Composition of Measurable Functions

Theorem 2.26

Let (X,.”) be a measurable space and f : X — R be . measurable. Assume Y C f(X) and let
g : Y — R be Borel measurable. then g o f : X — R is . measurable.
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1
Assume f is . measurable. Then f?, Ef' —f, |f| are .’ measurable.

Theorem 2.27

Suppose (X, .7) is a measurable set. Let f,g : X — R be . measurable. Then the following are
also . measurable:

1.f+g

2.f—g

3. fg

4.f/g (Ifg(x) #0,Vx € X)

m Convergence of Measurable Functions

Theorem 2.28 Rl
Suppose (X, ., 1) is a measure space with u(x) < oo. Let {fx} be a sequence of measurable
functions fi : X — R for all k, with fix — f for all x € X (pointwise). Then Ve > 0, 3E € .¥ such
that u(X — E) < € and fx — f uniformly on E.

I=3° Remark
We can assume fx — f pointwise "almost everywhere", meaning everywhere except on a subset

A C X with u(A) = 0.
m Simple Functions

Definition 2.23
A subset A C [—o00, o] is called a Borel Set if AN R is a Borel set of R.

=3~ Remark
The set of Borel Sets of [—o0, o] is a g-algebra on [—00, c0].

Definition 2.24

Let (X,.#) be a measurable space. Then f : X — [—o0, co] is . measurable if f~1(B) € . for
all Borel Sets B in [—00, c0].

Theorem 2.29

Suppose (X.) is a measurable space. Then f : X — [—o0, o] is . measurable if and only if
f~1((a, ©]) € .7 forall a € R.

Definition 2.25

A function if called simple if it takes on finitely many values in R
Let (X, .s) be a measurable space. Let f : X — R be a simple function on the non-zero values
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C1,C2,C3,...,Ch. Then

f=CiXe, + C2XE, + C3XE3 + ... + CnXE,

Where Ex = f~1({ck}) forall1 < k < n.
Note that if f is . measurable, then Ex =f_1({ck}) € .7 forall k. If Ex € .7 for all k then &g, is
. measurable, so

n
f= Z CkXEx
k=1

is . measurable. fo f is . measurable if and only if Ex € . forall1 <k <n

m Approximation by Simple Functions

Let (X,.) be a measurable space and f : X — [—00, 0] be .“-measurable. Then 3 a sequence
f1,f2, ..., fk : X = R for all k such that

1. Each fy is a simple function
2. Ifk)| £ Ifk+1()| L If(X)| forall x e Xand k e N

3. lergo fk(x) =f(x)
4. If f is bounded, the fx — f uniformly on X.

LU GRS Lusin's Theorem
Suppose g : R — R js Borel measurable. Then given € > 0, I closed F C R such that |R— F| < €
and g|r is continuous.

Theorem 2.32

Iff: R — Ris Lebesgue Measurable, there exists a Borel Measurable g : R — R such that

[{x:9(x) #f(x)}| =0

Theorem 2.33

Let (X.) be a measurable space, f1, f2, ... be a sequence of .-measurable functions with fi :
R — Rforallk € N, then {x € X : klim fi(x) exists in R}
— 00

Theorem 2.34

Iff,g: X — [—o0, o] satisfy
HH{XxeX: f(X)#9(x)}) =0

where L is the Lebesgue measure, then we say f and g are equal almost everywhere.

Oregon State University
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m Lebesgue Integration

I=3° Remark
By convention, let

0ox0=0x00=0

Definition 2.26

Let . be a o-algebra on X, then an .”-partition on X is a finite collection of disjoint sets
A1,A>, ..., A;in . such that
n
Ai=X
=1

J

Definition 2.27

Suppose (X, ., 1) is a measure space and let f : X — [0, o] be .-measurable. Let P =
{A1,A2, ..., Ap} be an .7-partition on X. Then the Lower Lebesgue Sum is defined to be

L(f, P) = ;u(Aj) Inf 00

J

Definition 2.28

Suppose (X, ., 1) is a measure space and let f : X — [0, co] be .#-measurable. The Integral
With Respect To v (i.e. Lebesgue Integration is defined to be

f fdu =sup{L(f, P) : Pis a partition on X}
X

3" Remark
Suppose (X, .7, 1) is a measure space and E € .. Then

J Xedu = U(E)
X

m Integrals of Simple Functions
Theorem 2.35

Suppose (X, ., ) is a measure space and Ei1,E>, .., E, is a disjoint collection in .&#. Let
C1,C2,...,Ch €[0,0]. Then

n n
f > ckxedu = cku(Ex)
X k=1 k=1

LLCCIG P2 Preservation of Order

Suppose (X, .7, u) is a measure space. Letf,g : X — [0, co] be .“-measurable. Assume f(x) <
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dellSJ gdu
X X

Suppose (X, ., 1) is a measure space and f : X — [0, co] is .-measurable. Then

g(x) forall x € X. Then

n
f fdu = sup ({Z CjH(Aj) : {A1, A2, ..., An} is a disjoint collection of sets in .7,
X j=1

m
€1, C2, ..., Cn €[0, ) and f(X) > > cjxa,(X)Vx € X})
j=1

E Monotone Convergence
LG E WA Monotone Convergence Theorem

Suppose (X, .7, 1) is a measure space. Let {fk }I‘f:l be a sequence of functions such that fy : X —
[0, o] is .”-measurable for all k € N and

0<fis<fr<..

forall x € X. Let f(x) = klim fk(x). Then

I|m J frdu = J lim fkdu=deu
- X

Theorem 2.39

Suppose (X, .7, 1) is a measure space and E1,E>, ..., En € ¥ are not necessarily disjoint and
C1,C2,...,Ch €[0, 0]. Then

| > e d= Y cupi(EQ)
X

k=1 k=1

Theorem 2.40

Suppose (X,.”, ) is a measure space. Assume Qi,d,...,am,b1,b2,...,bp € [0, 0],
A1,A>,...,Am, B1,B>, ..., Bh € .7 such that

m n
D ajxa = D bkxs,
j=1 k=1

Then
Za,u(A,) = Z bii(Bk)

Jj=1
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Theorem 2.41

Suppose (X, ., 1) is a measure space. Letf,g : X — [0, co] be .”-measurable. Then

f(f+g)du=ffdu+J gdu
X X X

Let f : X — [—o0, co]. Define:

fT:X—1[0,00]
and
f7:X—[0,00]
as
fx), fx)=0
fre0= {O, f(x)<O0
_ 0 f(x)=0

s {—f(X) <0
SO
f* =1Xr110,00]

m =—fXf1[-w,0]

I=3° Remark
If f: X —» [—o00, 0] is.7-measurable, f* and f~ are also .#-measurable.

Definition 2.30

Given measurable space (X, ., u) and .¥-measurable function : X — [ 00, co] such that either

Jf*du<°°
X

or

Jf_d,u<oo
X

ffd/usz*du—ff‘du
X X X

(Note: otherwise, deu = 00 — oo (undefined))

Then
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I3 Remark
Note that

J Ifldu=f (f++f_)dl~l=ff+du+Jf_du
X X X X

Thereforef Ifldu < o0 f ftdu < oo and J frdu <o
X X X

m Properties of the Integral

Letf : X - [—o0, o] be an .”-measurable function and J fdu be defined. The Vc € R,
X

f cfdu = cf fdu
X X

Suppose f : X — [—00, c0] such thatJ If|du < oo. Then

deu] SJlfIdu

m Limits of Integrals and Integrals of Limits

LetE €. and f : x —» [—o0, 0] be .#-measurable. Define

J fdu= f Xefdu
E X

LU GCLWEZ Bounded Convergence Theorem

Assume U(X) < oo. Let f1, f2, f3, ... be a sequence of .“-measurable functions such that fx — f
pointwise on X and fix : X — R forall k e Nand f : X — R. Suppose 3¢ > 0 such that |fx(x)| < ¢

Vx € X and Vk € N. Then
klim ffkdll = ffdu
Theorem 2.45

LetE € .. Assumef : X — [—00, o] such thatf |f|du < co. Then

)f fdu| < (X~ E) sup I 00)
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Theorem 2.46

Letee . andg : X — [0, oo] be .“-measurable and assumef gdu < oo. ThenVe > 0,36 >0

X
such that whenever U(E) < 6,
J gdu<e
E

Definition 2.32

Letf,g: X — [—o0, o] be .”-measurable and assume

H({xeX: f(x)#9g(x)})=0

Then we say f = g almost everywhere on X or f = g a.e. on X.

Theorem 2.47

If f =ga.e. on X, then
J fdu= f gdu
X X

Theorem 2.48

Letg : X — [0, o] be .“-measurable and assume f |g| < . Then Ve > 0, dE € .7 with
X

J gdu<e
—E

In other words: Integrable functions live mostly on sets of finite measure.

LU GCLWR P Dominated Convergence Theorem

Letf: X — [0, o] be .“-measurable. Let f1, f>, f3, ... be a sequence of .”-measurable functions
such that

U(E) < co and

lim fi(x) — f(x) a.e. on X
k— o0
Assume g : X — [0, o] also .-measurable such that:
1) | gdu<
X
2) Ifk(x)] < g(x) forall k € N a.e. on X

Then
lim f frdu = f fdu
k—o00 X X

m Approximation by Nice Functions

Definition 2.33
Letf : X — [—o00, c0] be .-measurable. Set

IIfII1=f [fldu
X
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Then define 1 (u) to be

L) = {f : X = [—00, 0] 1f [fldu < oo}
X

2% is referred to as the Lebesgue Space.

Theorem 2.50

Assume f, g € Z(u). Then

1 |Ifll.=0

2 |fli=0 < f(x)=0forae xeX
3. |lcfllr = |cllIf|l1 forall c € R

4. If + 9l < Ifllx + llgllx
Note: by (3) and (4), #* satisfies the properties of a vector space. However, by (2), || - ||1 is not a

norm.

Theorem 2.51

Consider the measure space (R, %, A). Let f € #Y(\). Then Ve > 0, 3g : R — R such that g is
continuous, {x € R: g(x) # 0} is bounded and ||f — g||1 < €.

Definition 2.34

The support of a function f : X — [—0o0, o] is the closure of the non-zero domain

{xeX:f(x)#0}

The set of all continuous function on R with compact support is denoted C(R)

3" Remark
Cc(R) is dense in £1(\)

vy Product Measures

Definition 2.35

The Cartesian Product of X and Y is defined as

XxY={(x,y): xeX,yeY}

Definition 2.36

Let X, Y be sets. Arectanglein X x YisasetAx BwithAC X,BC Y.

Definition 2.37

Given (X, .7, u),(Y, 7, v) The product . ® .7 is defined to be the smallest o-algebra containing

m Oregon State University
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all the rectangles generated by .77,.7:

{AxB:Ae.¥,BeJ}

A measurable rectangle in .7 ® .7 is a set of the form A x Bwhere A€ . andB € 7.

Definition 2.38

Let X,Y be sets. Let E C X x Y. Then for a € X, b € Y the cross sections [E], and [E]? are
defined as:

[Ela={yeY:(ay)€E}
[E]°P={xeX:(x, b)eE}

Theorem 2.52

Let (X,.), (Y, ) be measurable spaces. IfE € .¥/ ® 7,thenVa € X, [E]lq € 7 and Vb €Y,
[E]° €.7.

Definition 2.39

Let X,Y be sets. Letf : X x Y — R. Fora € X, b €Y, the cross section functions [f], : Y — R
and [f]1? : X — R are defined to be

[fla(y) =f(a, y)
[f1°(x) = f(b, x)

Note: [f]q is .7-measurable and [f]? is .#-measurable if f is .# ® .7-measurable.

Definition 2.40

A measure U on (X, .7) is finite if u(X) < oo.

Definition 2.41

U is o-finite if 3 countably many sets X1, X2, X3, ... €. such that u(Xx) < oo for all k € N and

o0
X = U Xk
k=1

Definition 2.42

Let (X, ., u) and (Y, .7, v) be measure spacesand g : X x Y :— [—00, c0].

J g(x, y)d(u x v) =f f g(x, y)du(x)dv(y)
XxY Y JX

Note that

ff 9(x, Y)du()dv(y) = f ( f [91°du(x))dv(y)
Y JX Y X
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Theorem 2.53

The Riemann and Lebesgue integrals agree on [ a, b] if f is Riemann integrable on [ a, b]:

b
f fdx = fdA
a [a,b]

Theorem 2.54

Let (X, ., u) and (Y, 7, v) be o-finite. IfE € .¥ ® 7,

1. X — V([ Elx) is .-measurable
2.y — U([EYY) is 7-measurable

Definition 2.43

Let (X, ., u) and (Y, .7, v) be o-finite.

(u x V)(E) =f f Xe(X, y)dv(y)du(x)
xJy

IS” Remark Measure of a rectangle
LetAe ./, Be T

(ux V)(AxB) =J J Xaxs(X, y)dv(y)du(x)
XJY
=f f Xaxsdv(y)du(x)
XJY

= f XxV(B)du(x)
X

= u(A)v(B)

Theorem 2.55 REHEIES
Let (X,., 1) and (Y, 7, v) be measure spaces. Letf : X xY — [0,00] be .¥ ® 7 be ¥ ® 7-
measurable. Then

1. X — J f(x, y)dv(y) is -measurable
Y

2.y — J f(x, y)du(x) is 7-measurable
X

3. fd(uxv)= f f f(x, y)dv(y)du(x) =f f f(x, y)du(x)du(y)
XJY Y JX

XxY
Theorem 2.56
If {Xj k}jen,ken are Xj k = 0 for all j, k, then
(0.0} (o0) (o0) (o0)
DXk = DD Xk
j=1k=1 k=1j=1
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Theorem 2.57

Suppose (X, ., u) and (Y, 7, V) are o-finiteand f : X x Y — [—o00, 0] is . ® .7-measurable.
Assume f € £(u x V). Then

1. f If(x, y)|dv(y) < oo fora.e. x € X
Y

2. L If(x, Y)|du(x) < oo forae. y €Y

3 X JY f(x, y)dv(y) is .”-measurable

4.y — JX f(x, y)du(x) is .7-measurable

5. fd(uxv)= JX Jyf(x’ y)dv(y)du(x) = fY LJ‘(X, y)du(x)du(y)

XxY

m Lebesgue Integration on R"
Definition 2.44

If x e R", 6§ > 0, we define

B(x,6)={yeR":|ly— x|l <6}

to be the open cube.

Definition 2.45

A set G C R" is open if Vx € G there exists § > 0 such that B(x, ) C G.

I5° Remark
B(x,6) € R™ x B(y, §) € R" = B((x, y), §) € R™*"

5" Remark
Let G1 € R™ open and G, C R" open. Then

G1 x G = RMtN

Definition 2.46

Borel Set in R is an element of the smallest g-algebra on R” which contains all open subsets of
R". Denote this o-algebra B,

Theorem 2.58

G CR" isopen < G is a countable union of open cubes in R"

I3 Remark
B, is the smallest o-algebra containing all the open cubes in R”
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Theorem 2.59

Bm+n — |Bn ® [Bm

Definition 2.47
(R2, By, A2) = (R, B, A) x (R, B, \)

Lebesgue Measure on R" is denoted A, and defined as

An=Ap—1%X A1

5" Remark
Let (R, B, An) be a measure space. Then

By = Bpr—1 x B

So for E € B,
An(E) = f Xe(X)dAn(X)
Rn

=J JXE(Xl,Xz)d)\(Xl)d)\n—l(XZ)
R-1JR

=J f J XeE(X1, X2, ..., Xp)dA(X1)dA(X2)...dA(Xxn)
RJR R

Oregon State University
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Definition 3.1

The set of all complex numbers C is given by

C={z=a+bi:abeR, i¢=-1}

Definition 3.2

Given z € C where z = a + bi, the Real and Imaginary parts of z are given by
R(z)=a
3(2)=0>b

Note that both R(z), 3(z) — Rand z = R(z) + 3(2)i

Definition 3.3

The modulus of z € C is given by

|Z| — (a2 + b2)1/2

Definition 3.4

The complex conjugate of z € C is given by

z =R(2)— 3(2)i

Theorem 3.1

Properties of complex conjugates:

¢ products:
zz=|z|?

< sums and differences

z+z=2%R(2)

z—z=23(2)i

€ multiplicativity and additivity

$¢ conjugates of conjugates

Oregon State University
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<¢ absolute value
1z| = |z|

f fdu= ffdu
Definition 3.5
Let (X,.”) be a measurable space. f : X — C is .-measurable if both R(f) : X — R and
3(f) : X — R are .”-measurable.

Theorem 3.2

Suppose (X, .7) is a measurable space, f : X — C is .”-measurable, and 0 < p < oo. Then |f|P is
also .-measurable.

Definition 3.6

Suppose (X, .7, /mu) is a measure space and f : X — C is .#-measurable. Assume f € £ (u).
We define

¢ integral of conjugate function

ffdll=f SR(f)d,lH‘if S(f)du
X X X

I=3° Remark
If f, g : X — C are .”-measurable and f, g € Z*(u), then

1.f(f+g)du=ffdu+fgdu
2.fafdu=affd/,l,‘v’ae€

Theorem 3.3

Suppose (X, ., 1) is a measure space and f : X — C is .#-measurable. Assume f € #*(u). Then

|fxfdu\ < J IFldu

m Bounded Linear Operators
Definition 3.7

For notation, we let the field F denote either R or C
Definition 3.8
Let V, W be vector spaces. A function T : V — W is a linear operator or linear map if

1.T(f+9)=Tf+Tg,Vf,geV
2. T(af)=aTf,VaeFandVf eV
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Definition 3.9

Let (V, |- llv), (W, || - |lw) be NLSand T : V — W. Recall that the Operator Norm on T is given by

7 = | sup {lITfllw}

Ifllv<1

= sup {lITfllw}
IFllv=1

I TfIlw
: 0
T Ifllv #0}

If |[T]l]| < oo, then T is a bounded linear operator. The set of all bounded linear operators T : V —
W is denoted

= sup{

B(V, W)

and we sometimes write
T = [ITllsev,w)

=3 Remark
B(V, W) is a vector space. Moreover, || T||| is a norm on B(V, W) so

(B(V, W), IITllaev,w))

is a NLS.

Theorem 3.4

Suppose (V, || - llv), (W, || - [lw) are NLSs and T : V — W is a bounded linear operator. T is not a
bounded function.

Proof. Leta € F and f € V such that Tf # O.

IT(af)llw = llaTfllw
= |a|lITfllw — oo

as |a| — oo

So AR > 0 such that ||Tf|lw < R, Vf € V. Therefore T is not a bounded function. ]

Theorem 3.5

Let C[a, b] be the set of all continuous functions on [a, b] and let C1[a, b] be the set of all func-
tions with continuous first order derivatives on [ a, b]. If we define the norms

Ifllcrra,b1 = Iflleo + I lleo

and

Ifllcra, 61 = IIf lloo

then T : (Cl[a, b], ”f”c*l[a,b]) — (C[a, b], |[f||c[a,b]), where Tf = f’, is a bounded linear opera-
tor.

Oregon State University
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Theorem 3.6

Suppose (V, || - V), (W, || - llw) are NLSs with V # {0} and T : V — W is a linear map. Then

-
I = sup {IITfllw = sup{ - %
il 70 Ifllv

}

So we can write the inequality

ITfllw < Tl

This shows that ||| T||| can be thought of as the smallest value such that the above inequality holds.

Theorem 3.7

If (W, || - |lw) is a Banach Space and (V, || - ||v) is any NLS (not necessarily complete) then B(V, W)
is also a Banach Space.

Theorem 3.8

Let (V, || - llv) and (W, || - |lw) be NLS. A linear map T : V — W is continuous if and only if it is
bounded.

m Baire Category Theorem

Definition 3.10
Let U C V where V is a metric space. Recall that the interior of U is

int(U)={feU:3r>0s.t B(f) C U}

=5~ Remark
int(U) isopenin V.

Definition 3.11

Recall that U is dense in V:

= U=V

<= fisalimit pointof U forall f € V.
< VfeVandVr>0,B(f)nU#?

Definition 3.12

A subset E C V is nowhere dense in V
< V—UisdenseinV

— V—E=V
— int(E) =D

% Z isnowheredenseinR(R—Z=R—Z
£ A line is nowhere dense in R?

€t A line or a plane is nowhere dense in R3
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LLCE IR Baire Category Theorem

(a) A complete metric space is not the countable union of closed subsets with empty interiors.

(b) The countable intersection of dense, open subsets of a complete metric space is non-empty.

I Remark

(a) says that a complete metric space is not the countable union of nowhere dense sets. So, for
example, we cannot represent R as the countable union of planes.

(a) also implies that, if X is a complete metric space and the countable union of closed sets G,
then at least one G is non-empty, so that G contains a non-empty open set.

Uniform Boundedness Principle
Theorem 3.10

Assume V is a Banach Space and W is any NLS. Let .«7 be the set of bounded linear maps from
V — W such that

sup{llTfllw:Te «} < oo

Then sup{||T|l : T € &} < oo (i.e. the Ts are uniformly bounded).

m Open Mapping Theorem

Let V, W be Banach Spaces and T be a bounded linear surjection. If G is open in V, then T(G) is
openin W.

Let V, W be Banach Spaces and T be a bounded linear bijection, then T~ is a bounded linear map.
(ie. T-1 : W — V is continuous).

m LP Spaces
m £P Spaces

Definition 3.13

Let (X, .7, u) be a measure space, fix p € (0, 00) and let f : X — [ be .¥“-measurable. Then the

p-norm of f is
171l = ( JX FIPdu)”*

Definition 3.14

The essential supremum of f is

Ifllo = inf{t >0 :|f(x)| < tae.}

Real Analysis: 511, 512, 513 | 42 |
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In other words, the smallest upper bound of the function on all sets, except those of measure 0.

IS Remark  Motivation for 1/p in p-norm definition
Consider 0 < p < oo and a € F. Take some f : X — [F. Then

lofll = (f jaf1Pa)
X
=( J |alPIfIPd
X

= latl?( L FPdu)”"
= lalllfll,

)1/p

But without the exponent 1/p, we get ||afllp = |a|P|[f]lp, which violates the definition of a norm!
So we really do need the 1/p to make ||f||, a norm on f.

Definition 3.15

Let (X, .7, u) be a measure space and 0 < p < oo. Lebesgue Space, " (u) is the set of all
-measurable functions f : X — [ such that

Ifllp < o

- Intuition for || - ||,

I=>" Remark
1. What does [|f||, tell us about f locally?

Say the function f : X — [ blows up (i.e. grows unbounded) near some x € X. Then f is
not Riemann integrable, but f may be integrable in some .#P space. For example, consider the
function

1
fx)=—

x|
Where f : B(0,1) - Rand B(0, 1) € R2. Note that as x — 0, f — oo. However we can show

that
Ifll. = f [fldA
B(0,1)

(by change of coordinates)

11
=2nl<f r—dr
0 r

= 2Tk < 00

Now consider the following:

1
3/2 — dxa
7122 JB(M) —
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(by change of coordinates)

11
= 27TI<JO rr37dr< (0]
In fact, we can show that f € P forall p < 2, but f € #P forp > 2
Take away: Given f € P, the larger p is, the slower the localized function grows unbounded.
So if f € .#%, then the function grows unbounded rapidly, but if f € #2290, the function grows
unbounded much slower!

2. What does |[|f||, tell us about how the function decays as |x| — c0?
Consider some p € [1, o). In order for f € #P to hold, we need the function to decay (i.e.
approach 0) as |x| — co. But when we take

fVWm
X

raising the function the p-th power results in even faster decay at x = oo.
Take Away: Given f € P (R™), then the smaller p is, the faster f decays at co because it needs
less help from the power of p to make the norm finite!

Definition 3.16

Let 1 < p < oo. Then the dual exponent of p, denoted g (or sometimes p’) is the number that
satisfies

1
—+-=1
P q

Note: forp =00,q = 1.

LU CLIEER VA Young's Inequality

Let p € (0, o) and q be the dual exponent of p. ThenVa, b > 0O,

aP b9
ab< —+ —
p q

LLEIENER KR H'older's Inequality

Letp € [0, oo], (X, ., u) be ameasure space, and f, g : X — [F be .“-measurable functions. Then
Ifallr < Ifllpllgllq
1/p 1/q
J Fgldu < J F1Pau ]| J l91%du]
X X X

Theorem 3.14

Let (X, .7, 1) be a finite measure space (u(X) < ) and 0 < p < s < oo (note: s not necessarily
the dual exponent of p). Then

Fllo < HOO P IIflls
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This implies that when u(X) < o andp < s,

fes* =>fesP
S0,
£ c yP

Furthermore, consider the case where 0 < p < s = oo. Then

IFllp = [ fx FPdu] ™ < fx WFllood ]

Recall that ||f||o = inf({M f(xX)| £ Ma.e.}. So,
Xe

[JX ||f||de]1/p = ”f”oo(f 1d[,l)1/p = |lf||oo'u(x)1/P_

X

Therefore, if u(X) < oo,
() € ZP(u), ¥p < oo

m LP Spaces
Definition 3.17

Let (X, .7, u) be a measure spaceand 0 < p < 0.

(i) Z(u) is the set of all .-measurable functions X — [ which are equal almost everywhere on
X

(ii) For f € LP(u), let f denote the subset of P (),

f={f+z:z€Z(W)} =f+2Z(u)

=3 Remark
Let f1, f> € f. Then 321, z2 € Z(u) such that
h=f+2z
fL=f+2z
f1—f2 =2Z1—2p = 0a.e.
Sofi1=f,ae.
=" Remark

Suppose f = §. Thenf + Z(u) = g+ Z(u), sof = f+ 0 € g + Z(1) = Iz € Z(u) such that
f=9+ z Thereforef =g a.e.
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Definition 3.18 kI

LetO<p <
LP(u) = {f : f € 2P(u)}

Definition 3.19

Let 0 < p < co. We define || - ||p on LP(u) by

IFllp = Ifllp, ¥f € 2P (1)

If we restrict p € [1, 0], then || - ||, is @ norm on LP(u).

= RemaNrk )
Consider f = g. Then [[fllp = I9]lp-

E Dual of LP

Let (X, .7, u) be a measure space, p € [ 1, ), q be the dual exponent of p, and f € LP(u). Then

IFllo = sup<| J fhau|: h e 29, lihllg < 1}
X

=5 Remark
The above holds for p = 00 < u is o-finite.

I5° Remark
Recall that the dual space of an NLS X, denoted X * is defined as the the set of all bounded linear

functionals on X
X*={f:f: X>F}

Theorem 3.16

Let (X, .7, u) be a measure space, 1 < p < o0, and g be the dual exponent of p. For h € L9(u),
define ¢p : LP(u) — F by

¢on(f) = fo hdu
Note the following are true:
(i) h — ¢n is 1:1, linear, and maps L9(h) into (LP(u))*
(i) Ngnll = lIhllg, Vh € LI(1)
In fact, since L9(u) has a 1:1 correspondence with (LP(u))*, we can show that L9(u) = (LP(u))*.

Theorem 3.17

Let T(h) = ¢n. We can show that T is linear and h L ®n is 1:1, so (LP(u), || - llp) is an NLS.
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Furthermore, for 1 < p < oo, (LP(u), || - |Ip) is complete, therefore

(LP(u), Il - lIp) is a Banach Space.

I=3° Remark
Let (X, .7, 1) be a measure space. Recall that for f € #P(u), Ve > 0, 3¢ € Z(u), where ¢ is a

simple function, such that

If —¢llr <€
The above also holds for LP(u), V1 < p < .
Theorem 3.19

Let f € L*(u) and € > 0. There exists ¢ € L*°(u) where ¢ is simple and

”f_g”oo

Theorem 3.20

Suppose f € LP(R) and 0 < p < oo. Then Ve > 0 3 a step function g € LP(R) such that

If —9gllp <€

m Hilbert Spaces

m Inner Product Spaces
Definition 3.20

Let V be a vector space over [F. An inner product on V is a function (-, -) : V x V — F such that
@) (f,f) € [0, o)

(i) (f,f)=0 < f=0

(iii) (f + 9. h) = (f, h) + (9, h)

(iv) (af, 9) = aff, 9)

W) {f. 9) = (9. 1)

An Inner Product Space (IPS) is a vector space with an inner product.

I=>" Remark
Let f, g € L%(u) and define
r.9)= | o
X
Then LZ(/J) is an IPS.
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Theorem 3.21

Suppose V is an IPS. Then the following properties also hold:
(@ (0, g) = (9, 0)
) {f, g+ h) =(f,g) + (f, h)
() {f, ag) = alf, 9)
Definition 3.22

Let V be an IPS. We can induce a norm on V ny

Ifll = v {f. f)

LAWY Properties of || - ||

LIfll=v{f.flz0VfeV
2.Ifll=v{.f)=0 < f=0
3. [lafll = allfll

Definition 3.23

Let VbeanIPSand x, y € V. x, y are orthogonal if (x, y) = 0. We write this x L y.

LLCIENEVER Pythagorean Theorem

Assume V is an IPS and f, g € V with (f, g) = 0. Then

If + glli> = IFII° + ligll®

LLEE LWL Cauchy Schwarz

LetV beanIPSandf,g e V. Then
I{f, ) < IIfIllgll

Theorem 3.25

LetV beanIPSandf,g € V. Then

If + gll < IIFIl + ligll

m Angles in an IPS

Definition 3.24
Define the angle 6 between f, g in an IPS by

{f. g)
IFlllall

cosf = €[—1,1]
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LG RN | aw of Cosines

Leta=|fll, b=1llgll. c=If—gll

c?=a?+b?—2abcoso

UL EWEWIE Parallelogram Equality

LetV beanIPSandf,g € V. Then

If + gll* + IIf — glI* = 2IIfI* + 2llgll*

m Orthogonality

DRGNP Hilbert Space

A Hilbert Space is any IPS that is complete under the norm induced by the inner product.

Definition 3.26

Suppose U is a non-empty subset of an NVS V and f € V. The distance from f to U is

distance(f, U) = inf{||f—9gll: g€ U}

=" Remark
If U is open, then

inf{|[f—gll:g €U} #min{|lf—gll: g€ U}

I=>" Remark
distance(f, U) =0 < feU

Definition 3.27
Suppose V is a vector space and U C V. U is convex if Vf,g, e Uand t € [0, 1]

(1-t)f+tgeU

I=3" Remark
Every vector space is convex since it is closed under linear combination

m Orthogonal Projection

let V be a Hilbert Space, U C V be closed, convex, and non-empty, and f € V. Then 3!g € U such
that

IIf — gl| = distance(f, U)

Definition 3.28

Suppose Vis aHilbert Space and U € V is a closed, non-empty, convex subset of V. The orthogonal
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projection of V onto U is the function
Py:V->U

where Pyf is the unique element of U that best approximates f € V.

> Remark

@Puf=0 < feU
(b) PyoPy=P? =Py

Theorem 3.29

Suppose U is a closed subspace of a Hilbert Space V. Forf € V:
(@ f—Puf LgVgeU
(b)IfheUandf—h L gVgeU h=Pyh
(c) Py :V — Uis alinear map
(@d) Vf €V, IPufll < lIfll and IPufll = IIfll &= feU

Recall

o0
12 ={a=(a1,az...), a;j €T, Z:lajl2 < oo}
j=1

So Vx, y € 12,
(X, y) = > X}y
j=1
Consider the subset
U={ael’:a=(a1,0,a3,0,as,0,..)}

So, given x € 1?
Pux =(x1,0,x3,0,x5,0,...)
Then we have
X —Pyx =(0,x>,0,x4,0,X6...)

SO

(x,x—Py) = Z(x,-)(x,- —Pyx;j)=0
j=1

=X 1 x—Pyx

Definition 3.29

Ut={heU:(h g)=0VgeU}

Suppose U is a subset of an IPS V. The orthogonal complement of U in V is
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LetVbeanIPSand U C V
IfU=V= U+={0}.

(x,y) =0VyeUt

h
heVt= (x, h)=(x, IIhllm)

A1 k )=0
= X’ _—) =
1Al

h
Since — € B(0, 1).
1Al

Suppose U=B(0,1)={geV:|lgll=1}. Then U+ = {0} because for x € U™,

m Properties of Orthogonal Projections

Theorem 3.30

Let V bean IPS and U C V. Then

(a) Ut is a closed subspace of V

(b) Un UL = {0} if 0 € U, otherwise @. So U n U+subseteq{0}
(c)IfWc U Utcwt

(d) UL = Ut

(e) U C (UH)*

LG G RCI I Orthogonal Decomposition

f=9g+h

where g € U and h € U+

Let U be a closed subspace of a Hilbert Space V. Then any f € V can be written as

LG GCLERYA Range and Null Space of Py

(a) Range(Py) = U, Null(Py) = U+
(b) Range(Py.) = UL, Null(PyL) = U
(c) PyL =1— Py where 1 is the identity function

Suppose U is a closed subspace of a Hilbert Space V. Then the following are true:

Example 3.4

Let
U={fel’®):f(x)=0a.e.x<0}

We can show that U is a closed subspace of L2. So

Ut={fel’®):f(x)=0ae. x>0}
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Riesz Representation Theorem
Let V be a Hilbert Space. Suppose ¢ € V*. Then 3'h € V such that ¢(g) = (g9, h) Vge V,so ¢ h
and ||¢]l = |l

m Orthonormal Bases

Definition 3.30

Let V be an NLS and consider { ek }ker C V where

r=4{1,2,3,....,n}
or
MN=N

A family {ek }ker in an IPS is an orthonormal family if

e =1 1=~
ej, ex) =
! 0, j#k
| Example 3.5 [ERTNEEY
. = .
e = 0 €y = 0 ... Eq =
0] 0] ||

{ €k }ker is an orthonormal family.

Example 3.6

Example: £2(F)]

e«=(0,0,0,...,0,10,...,0,0,0)

where the k-th element is 1. {€ek } ker is an orthonormal family.

Basis of a Hilbert Space

Recall: A metric space is seperable if it has a countable, dense subset.

Theorem 3.34

Every seperable Hilbert Space has a countable orthonormal basis. Moreover, if V is an infinite dimen-
sional Hilbert Space, then there exists a countable orthonormal family { e} ken such that Vf € V,
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3! sequence {Ck }ken, Ck € I, such that

N
IlF = > ckexll = 0
k=1

o0
asN —o00.Sof = chek
k=1

Example 3.7

Example: R?] Let {g1, g2} be an orthonormal family in R? and f € R?. Then

f={aq1)+{f.q92)q2

DGR Fxample: R?

Let {gk}1<k<n be an orthonormal family in R" and f € R". Then 3! collection {c1, ¢2,...,cn}
such that

n
f=> ckax
k=1

What are the cxs?

(f, ak) = (O ciaj. gx)
j=1

ci(aj, qk)

M-

Il
=

J
= k(1)
= Ck

sof = D (f, k).
k=1

Sl R M Fxample: Infinite Dimensional Hilbert Space

Let V be an infinite dimensional, seperable, Hilbert Space. Let { e } ken be an orthonormal family
in V. Moreover, assume { ek }ken is an orthonormal basis for V. So, given f € V:

(0.0]
f=D, ckex
k=1
for some {ck }ken. It can be shown that

{ck}ken = {{f, €1), (f. €2), {f, €3),.... {f, en) }
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m Bessel's Inequality

Theorem 3.35

Let {ex} be an orthonormal family in a Hilbert Space V. then Vf € V and Vn € N,

IFI2 = D 1(F, )12
=1

J

Furthermore,

=N AR

j=1

m Parceval’s Identity

Theorem 3.36

Suppose { ek} ken is an orthonormal basis for a seperable Hilbert Space V. let f € V. Then

I =D I{F, )2
=1

J

m Linear Maps on Hilbert Spaces
Definition 3.32

Let V, W be Hilbert Spacesand T : V — W be a bounded linear map. The adjointof 7, 7* : W — V
is defined as

(Tf,9)= (. T*9)
VfeV,VgeW.

I Remark Intuition:
Fix g € W. Consider a linear functional ¢; € V defined by

¢, (1) =(Tf.9)
(Note: since T is linear and (-, -) is linear in the first slot, gb; is linear).

16,1 = KTF, o) < ITfNlllgll < ITHIFlgll

so /1l < IITllllgll, which implies ¢} € V*.
Now, by the Riesz Representation Theorem, 3!'h € V such that

¢;(f) = (f. h)
Vf € V. So for g € W, set T *g = h where h is the unique element of V given by the RRT.

Example: Let (X,.7, 1) be a measure space and h € L®(u). Define My, : L?(u) — L%(u) by
Mn(f) =fh
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Vf € L?(u). Then
IMafll2 < IIFAIl2 < IIfI211ATle

which implies [|[My|| < ||h||oo, SO M}, is a bounded linear functional. Therefore,

(Mrf, 9) = Lf hgdu

= J fhgdu
X
= (f, hg)
= (f, Mpg)
So M; — MH'
Theorem 3.37

Suppose V, W are Hilbert Spaces and let T € %(V, W). Then the following are true:
1.T* € B(W, V)

2. (T*)*=T

3 NT* law,vy = 1Tl zw,w)

Definition 3.33

Let T € (V) where V is a Hilbert Space. Then T is self adjointif T=T%,ie,Vf,geV

(Tf,9)=(f,Tg)

Theorem 3.38

Let V be a Hilbert Space and T € #(V). Assume (Tf,f) =0, Vfe V.

1.IfF=C
2. IfF =R and T is self-adjoint, T = 0.

Theorem 3.39

Let T € #(V), where V is a Hilbert Space over C. Then T is self-adjoint if and only if (Tf, f) €
R, Vf € V.

m Operators

Definition 3.34
Let V be an NLS. A function T : V — V is called an operator.
If T is bounded, we write T € %(V, V), or, more succinctly, T € (V).
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Definition 3.35
An operator T is invertible if it is 1:1 and onto. We define the inverse as
T-l:vov
and

ToT l=1:V>V

Note: Since T is linear, T—1is also linear.

Definition 3.36

Let T € (V) where V is a Hilbert Space.

1. T is left invertible iff 3S such that ST =1
2. T is right invertible iff 35S such that TS =1

3.if T is left and right invertible, T is invertible.
(Suppose S1T =Iand TS =1, then

S1T=I1=>51T5,=5,=2>51I=5,=51=5))

Theorem 3.40

Let T € (V) where V is a Hilbert Space. T is left invertible iff Aa € (0, 00) such that Vf € V,

IfIl < all T£Il (3.1)

Theorem 3.41

Let T € (V) where V is a Hilbert Space. If T is left invertible, T* is right invertible.

I=3" Remark
Let T € #(V) be invertible. Let V be a Banach Space. By the Open Mapping Theorem, T is an

open map. Therefore T~1 is continuous, so T~ € Z(V).

I3° Remark
By convention, we write:

1.T:V-oV
2.ToT=TT=T2:V>V
3.To(ToT)=TTT=T3:V>V

Theorem 3.42
LetU,V,WbeanNLSand T € (U, V), S € 4(V, W). Then

ISTI < ISTHITI
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Theorem 3.43

LetTK=ToToTo...oT (k times). Then

IT N < T

Theorem 3.44

Let T € (V) where V is a Banach Space. Assume ||T|| < 1. ThenI—T :V — V is invertible and
o0
-7)yt=> Tk
k=0

Note: this is similar to the fact that for z € C with |z| < 1,

1 s «
1—z=kZ(:)Z

Theorem 3.45

Let V be an NLS. Then V is a Banach Space if and only if, for every {g«} satisfying
(0.0}
> gl < oo
k=1

(0]
Z gk converges in V.
k=1

Corollary 3.2

Suppose V is a Banach Space. The set of all invertible operators:

o = {T € B(V) : T isinvertible}

is an open set in (V).
Note: this implies the set of non-invertible operators in (V) is closed, so a sequence of non-
invertible operators converges.

m Spectrum of an Operator

Let T € B(V).

1. a € [F is an eigenvalue of T if T — al is not injective. (i.e. (T—al) =0, f # 0 implies Tf = af.
2. f € V with f # 0 is an eigenvector of T corresponding to an eigenvalue of f, a'if Tf = af
3. The spectrum of T is denoted sp(T):

sp(T)={a el : T—alisnotinjective}
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I Remark ©N T
T — al is injective if and only if null(T — aI) = {0}. In other words, T — al is not injective if and

only if 3z € V with z # 0 and z € null(T — al). Therefore, (T—al)z=0=>Tz=az.

m Compact Operator

Definition 3.38

An operator T : V — V, where V is a Hilbert Space, is compact if for all bounded sequences
{fk}/io=1 inV, {Tfk}l‘f=1 has a convergent subsequence.
We denote the set of compact operators on V as C(V).

Theorem 3.46

Every compact operator on Hilbert Space is bounded, and therefore continuous.

m Spectrum of A Compact Operator

Theorem 3.47
If T : V — Vis compact on an infinite dimensional Hilbert Space V, then 0 € sp(T).

I=3° Remark
The above implies that T = T — OI is not invertible, so T is not invertible.

Theorem 3.48

Let T € C(V) then Range(T) cannot contain an infinite dimensional, closed subspace of V.

Example 3.10

Consider the measure space ([0, 1]), B, A). and define T : L2([0, 1]) — L?([ 0, 1]) by
1

Tf(x)= f K(x, y)f(y)dy
0

where K € C([0, 1] x [0, 1]) is a fixed kernel function. We claim that T is a compact operator.

Proof. First, note that

)1/2

1
ITfll2 = ( fo ITF(0)2dx

1
< ||Tf||Loo(f 1dx) "

0
= ITfllLe

Also note that, Vx € [0, 1],

1
ITFCAI = )fo K, Y)f()dy|

1
< K(x, y)J lf(y)ldy
0
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< K, WIFIl2

So we have || Tf||L=0,17) < KO WIIfIli2(go,17), therefore

TSIl 20,17 < NTFNlLero,17) < KOG YINFll2 o1y

So T is bounded, linear (by linearity of the integral), and maps L2([0, 1]) to L2([ 0, 1]), which
means T is bounded operator.

Now let {fn},‘f=1 be a bounded sequence in L?([ 0, 1]). We want to show that {Tf,} has a con-
vergent subsequence. In order to do this, we can show that Arzela-Ascoli applies:

Note that ||f||2 < |[f]|lw. Now, by the fact that K € C([0, 1] x [0, 1]), given € > 0, there exists
6 > 0suchthatVx, y,ze€ [0, 1], whenever |[x—z| < §, |K(x, y)—K(z, y)| < €. So

1

ITfn(X) = Tfn(2)| < J IK(x, y)—K(z, V)Ilfn(y)ldy

0
1
<€f [fn()ldy
0

< €llfnll2o,17
< Ce

which implies that {Tf,} is equicontinuous. We have already shown that |Tf,(x)| <
1

||K||L°°([O,1]x[0,1])f Ifn(W)Idy < K(x, Y)Ifnlli2(ro,17) S0 {Tfn} is equibounded.

0
So, by Arzela-Ascoli, 3 some subsequence of {Tf, } that converges uniformly to some g. But then

1
1/2
ITfre — glli2o,17) = ( f | Tfn— al)
0

1 1/2
<Tfn, — gIIL°°([o,1])( 1dy)
0

= |ITfne — 9llLeo,17y = O

So T is compact. |
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