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Chapter 1 Metric Spaces (MTH 511)

1.1 Metric Spaces and Normed Vector Spaces

1.1.1 Metrics

Definition 1.1
Let M be any set. A function d : M × M→ [0,∞) is a metric on M if it satisfies the following:

1. 0 ≤ d(, y) <∞, ∀, y ∈ M

2. d(, y) = d(y, ), ∀, y ∈ M

3. d(, y) = 0 ⇐⇒  = y

4. d(, y) ≤ d(, z) + d(z, y)

1.1.2 Discrete Metric

Example 1.1
The discrete metric is defined by:

d(, y) =

(

1  ̸= y

0  = y
(1.1)

1.1.3 Norms

Definition 1.2
Let V be a vector space. A norm on V is a function ∥ · ∥ : V → [0,∞) satisfying the following
properties:

1. 0 ≤ ∥x∥ <∞, ∀x ∈ V

2. ∥x∥ = 0 ⇐⇒ x = 0

3. ∥αx∥ = |α|∥x∥

4. ∥x + y∥ ≤ ∥x∥ + ∥y∥

1.1.4 Common Norms
Example 1.2

∥x∥1 =
N
∑

=1

|| (1.2)

∥x∥2 =
�

N
∑

=1

||2
�1/2

(1.3)
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∥x∥p =
�

N
∑

=1

||p
�1/p

(1.4)

∥x∥∞ = mx
1≤≤N

(||) (1.5)

1.1.5 Norms of Continuous Functions

Definition 1.3
Consider the set of all continuous function on [, b]. The following are norms on C([, b]).

∥ƒ∥1 =
∫ b



|ƒ (t)|dt (1.6)

∥ƒ∥2 =
�

∫ b



|ƒ (t)|2dt
�1/2

(1.7)

∥ƒ∥p =
�

∫ b



|ƒ (t)|pdt
�1/p

(1.8)

∥ƒ∥∞ = sp
t∈[,b]

(|ƒ (t)|) (1.9)

1.1.6 ℓp Spaces

Definition 1.4
For p satisfying 1 ≤ p <∞, ℓp is the set of all sequences of real numbers  = ()∈N for which
the following is true:

∞
∑

=1

||p <∞ (1.10)

Definition 1.5
ℓ∞ is the set of all bounded sequences of reals.

∥∥∞ = sp
∈N

{||} < c

for some c > 0
(1.11)

☞ Remark
ℓq ⊆ ℓp, ∀q ≤ p
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Theorem 1.1 Hölder’s Inequality

Let p ∈ (1,∞) and let q satisfy
1

p
+
1

q
= 1. Given  ∈ ℓp and y ∈ ℓq, we have the following

inequality:
∞
∑

=1

|y| = ∥y∥ℓ1 ≤ ∥∥ℓp∥y∥ℓq (1.12)

1.1.7 Metric Spaces

Definition 1.6
The set M, equipped with the metric d defines a metric space (M,d).

Definition 1.7
Given  ∈ (M,d) and r > 0, the Open Ball of radius r centered at  is defined by

Br() = {y ∈ M | d(, y) < r} (1.13)

Definition 1.8
A ⊆ M is bounded if and only if given any  ∈ M, ∃r > 0 such that A ⊆ Br().

Definition 1.9
The diameter of A is defined as

diam(A) = sp{d(, y) | , y ∈ A} (1.14)

Definition 1.10
A neighborhood of  ∈ M is any set containing an open ball centered at .

1.1.8 Convergent and Cauchy Sequences

Definition 1.11 Convergence
A sequence (n) ∈ M converges to  ∈ M if d(n, )→  as n→∞.

Definition 1.12 Convergence
A sequence (n) ∈ M converges to  ∈ M if, given some ε > 0, ∃N ∈ N such that ∀n ≥ N we
have d(n, ) < ε.

Definition 1.13 Convergence
A sequence (n) ∈ M converges to  ∈ M if, given some ε > 0, ∃N ∈ N such that {n | n ≥
N} ⊆ Bε().
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Definition 1.14 Cauchy
A sequence (n) is Cauchy if, given some ε > 0, ∃N ∈ N such that ∀m,n ≥ N we have
d(m, n) < ε.

☞ Remark
Every convergent sequence in (M,d) is Cauchy.

☞ Remark
Any Cauchy sequence with a convergent subsequence in (M,d) converges in (M,d).

1.2 Topology of Metric Spaces

1.2.1 DeMorgan’s Laws

Definition 1.15
�
⋂

∈I
A
�c =
⋃

∈I
Ac


(1.15)

�
⋃

∈I
A
�c =
⋂

∈I
Ac


(1.16)

1.2.2 Limit Points

Definition 1.16
Let A be a subset of (M,d).  ∈ M is a limit point of A if

�

Bε() − {}
�

∩ A ̸= ∅ (1.17)

for all ε > 0.

Definition 1.17
Let A be a subset of (M,d).  ∈ M is an isolated point of A if

(Bε() − {}) ∩ A = ∅ (1.18)

If x is not a limit point, it is an isolated point (and vice versa).

Definition 1.18 Boundary Points
Let A be a subset of M.  ∈ M is a boundary point of A if and only if

(Bε() − {}) ∩ A ̸= ∅

and

(Bε() − {}) ∩ Ac ̸= ∅

(1.19)
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1.2.3 Open Sets

Definition 1.19
A set U ⊆ (M,d) is open if ∀ ∈ U, ∃ε > 0 such that Bε() ⊂ U.

☞ Remark
∀ ∈ M and ∀ε > 0, Bε() is an open set.

Theorem 1.2
An arbitrary union of open sets is open.

V =
⋃

α∈A
Uα is open. (1.20)

Theorem 1.3
A finite intersection of open sets is open.

V =
N
⋂

=1
Uα is open. (1.21)

Theorem 1.4
If U is open and U ⊂ R, then U is a countable union of disjoint, open intervals.

U =
∞
⋂

n=1
n

n = (n, bn)

n ∩ m = ∅

n ̸=m

(1.22)

Theorem 1.5
A set U is open if and only if, whenever (n) ∈ M→  ∈ U, for all but finitely many n, n ∈ U.

Definition 1.20
let (Uα) be the set of all open sets in M. (Uα) is an open base for M if

M =
⋃

(Uα) (1.23)
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1.2.4 Closed Sets

Definition 1.21
A set F ⊆ (M,d) is closed if and only if Fc = M − F is open.

Definition 1.22
A set F ⊆ (M,d) is closed if and only if, given  ∈ M, ∀ε > 0,

Bε() ∩ F ̸= ∅⇒  ∈ F (1.24)

Definition 1.23
A set F ⊆ (M,d) is closed if and only if, given a sequence (n) ⊆ F

(n)→  ∈ M⇒  ∈ F. (1.25)

In other words, F is closed if it contains all its limit points.

Definition 1.24 Interior
The interior of A is defined as

int(A) = A◦ = { ∈ A | Bε() ⊂ A for some ε > 0} (1.26)

Definition 1.25 Closure
The closure of A is defined as

cl(A) = A =
⋂

{F | F is closed and A ⊆ F} (1.27)

Theorem 1.6

 ∈ A ⇐⇒ Bε() ∩ A ̸= ∅, ∀ε > 0.

Theorem 1.7

 ∈ A ⇐⇒ ∃(n) ⊂ A with (n)→ .

1.2.5 Relative Metrics

☞ Remark Notation
For  ∈ A with A ⊆ M:

BA
ε
() = {y ∈ A | d(, y) < ε} = A ∩ {y ∈ M | d(, y) < ε} = A ∩ BM

ε
() (1.28)
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Definition 1.26
A subset G ⊆ A is open relative to A if, given  ∈ G, ∃ε > 0 such that

BA
ε
() = A ∩ BM

ε
() ⊆ G (1.29)

Corollary 1.1
A subset G ⊆ A is open relative to A if and only if

A = G ∩ U (1.30)

for some U open in A.

Definition 1.27
A set F ⊆ A is closed relative to A if Fc = A − F is open in A.

Corollary 1.2
A subset F ⊆ A is closed relative to A if and only if

F = A ∩ V (1.31)

for some V closed in A.

1.2.6 Seperable Sets

Definition 1.28
A subset of a metric space, D ⊆ M, is dense in M if it satisfies any of the following:

1.  ∈ M⇒  ∈ D′

2. ∀ ∈ M and ∀ε > 0, Bε() ∩D ̸= ∅

3. U ∩D ̸= ∅ for all non-empty U in M

4. (Dc)◦ = ∅

Definition 1.29
A set D is countable if there exists

ƒ : D→ N, ƒ is injective. (1.32)

Definition 1.30
A subset of a metric space, D ⊆ M, is seperable if it is countable and dense in M.
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1.3 Continuity

1.3.1 Continuous Functions
Definition 1.31
Let ƒ : (M,d)→ (N,ρ). ƒ is continuous at  ∈ M if, given ε > 0, ∃δ > 0 such that

d(, y) < δ⇒ ρ(ƒ () − ƒ (y)) < ε. (1.33)

If ƒ is continuous for all  ∈ M, we say ƒ is continuous on M.

Definition 1.32 Pre-Image
For A ⊆ N, the pre-image of f is

ƒ−1(A) = { ∈ M | ƒ () ∈ A}. (1.34)

Theorem 1.8
Given ƒ : (M,d)→ (N,ρ), the following statements are equivalent:

1. ƒ is continuous onM.

2. ∀ ∈ M, if n →  in (M,d) then ƒ ()→ ƒ () in (N,ρ)

3. If E is closed in N, ƒ−1(E) is closed inM.

4. if V is open in N, ƒ−1(V) is open inM.

Theorem 1.9
Let ƒ : L→ M and g : M→ N. If ƒ is continuous at  ∈ L and g is continuous ƒ () ∈ M, ƒ ◦g : L→ N

is continuous at  ∈ L.

Definition 1.33 Lipschitz
A function ƒ : (M,d) → (N,ρ) is Lipschitz continuous if ∃K < ∞ such that ρ(ƒ (), ƒ (y)) ≤
Kd(, y) for all , y ∈ M.

1.3.2 Homeomorphisms

Definition 1.34
The metric spaces (M,d) and (N,ρ) are homeomorphic if there exists a bijection ƒ : (M,d) →
(N,ρ) such that ƒ and ƒ−1 are continuous on M and N, respectively.

Definition 1.35
Two metrics d and ρ on M are equivalent if

d(n, )→ 0 ⇐⇒ ρ(ƒ (n), ƒ ())→ 0 as n→ 0. (1.35)
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Corollary 1.3
Two metrics d and ρ are equivalent if (M,d), (M,ρ) have convergent sequences which converge
to the same limit:

n
d−→  ⇐⇒ n

ρ
−→  (1.36)

Theorem 1.10
Let ƒ : (M,d)→ (N,ρ) be a bijection. The following statements are equivalent:

1. ƒ is a homeomorphism

2. n
d−→  ⇐⇒ ƒ (n)

ρ
−→ ƒ ()

3. G is open inM ⇐⇒ ƒ (E) is open in N.

4. E is closed inM ⇐⇒ ƒ (E) is closed in N.

5. d̂(, y) = ρ(ƒ (), ƒ (y)) if equivalent to d.

☞ Remark
(R, ∥ · ∥1), (R, ∥ · ∥2),(R, ∥ · ∥∞) are all homeomorphic.

1.4 Connected Sets

Definition 1.36
Ametric spaceM is disconnected if it can be written as the union of two non-empty, disjoint, open
sets.

M = A ∪ B

A ̸= ∅, B ̸= ∅

A ∩ B = ∅

(1.37)

Definition 1.37 Clopen Sets
A set which is both closed and open is said to be clopen.

☞ Remark

M is disconnected ⇐⇒ ∃A ⊂ M such that A is clopen (1.38)

☞ Remark
Let E ⊂ M.

E is a disconnected subset of M ⇐⇒ ∃U,V ⊂ M such that E = (E ∩ U) ∪ (E ∩ V) (1.39)

Where U,V are open in M and satisfy:

1. (E ∩ U) ̸= ∅

2. (E ∩ V) ̸= ∅
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3. (E ∩ U) ∩ (E ∩ V) = ∅

Theorem 1.11 Intermediate Value Theorem
A subset E ⊆ R containing more than 1 point is connected if and only if, ∀, y ∈ E satisfying  < y,
we have [, y] ⊆ E.

Corollary 1.4
A subset E ⊆ R is connected if and only if it is an interval.

Theorem 1.12
Ametric spaceM is disconnected if and only if there exists a continuousmap fromM on ({0,1}, d),
where d is the discrete metric.

1.5 Completeness

1.5.1 Totally Bounded Sets

Theorem 1.13
A set A in (M,d) is totally bounded if and only if, given any ε > 0, there exists finitely many points
1, 2, ..., n ∈ M such that

A ⊆
n
⋃

=1
Bε() (1.40)

Corollary 1.5
A set A in (M,d) is totally bounded if and only if, given any ε > 0, there exists finitely many set
A1, A2, ..., An ⊆ A with diam(A) < ε for  = 1,2, ..., n such that

A ⊆
n
⋃

=1
A (1.41)

☞ Remark
Totally bounded⇒ bounded, but Bounded ̸⇒ totally bounded.

1.5.2 Totally Bounded Sets vs. Cauchy Sequences
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Theorem 1.14
Let (n) be a sequence in a metric space and let

A = {n | n ≥ 1} (1.42)

1. if (n) is a Cauchy Sequence, A is totally bounded.

2. If A is totally bounded, (n) has a Cauchy subsequence.

1.5.3 Complete Metric Spaces

Definition 1.38
(M,d) is complete if every Cauchy sequence in M converges to a point in M.

Theorem 1.15
Let (M,d) be a complete metric space and let A be a subset of M. (A, d) is complete if and only if
A is closed inM.

Theorem 1.16 Nested Set Theorem
For a metric space (M,d), the following statements are equivalent:

1. (M,d) is complete

2. let (Fn) be a sequence of closed, non-empty sets satisfying

F1 ⊇ F2 ⊇ F3 ⊇ ... (1.43)

such that diam(Fn)→ 0 as n→∞. Then

∞
⋂

n=1
Fn ̸= ∅. (1.44)

3. Every infinite, totally bounded subset ofM has a limit point inM.

Theorem 1.17
ℓ2 is complete.

1.5.4 Banach Spaces

Definition 1.39
A complete, normed, linear space is a Banach Space.

Definition 1.40 Strict Contraction
Let (M,d) be a metric space and define ƒ : M→ M. This ƒ is a strict contraction if ∃α < 1 such
that d(ƒ (), ƒ (y)) ≤ αd(, y) for all , y ∈ M.
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☞ Remark
A contraction ƒ : M→ M is automatically continuous.

Theorem 1.18 Banach Fixed Point
Let (M,d) be complete and ƒ : M→ M be a strict contraction. The ∃! ∈ M such that ƒ () = . 
is called a fixed point inM.
Moreover, given any  ∈ M, the sequence

�

ƒn(◦)
�∞
n=1 converges to the fixed point  = ƒ () as

n→∞.

1.5.5 Completions

Definition 1.41 Isometry
ƒ : (M,d)→ (N,ρ) is an isometry if it satisfies:

ρ(ƒ (), ƒ (y)) = d(, y). (1.45)

In other words, isometries preserve distances.

Definition 1.42

A metric space (M̂, d̂) is a completion of (M,d) if:

1. (M̂, d̂) is complete.

2. (M,d) is isometric to a dense subset of (M̂, d̂).

☞ Remark
If M is dense in M̂, (M̂, d̂) is a completion of (M,d).

Theorem 1.19

Every metric space (M,d) has a completion. Moreover, if (M̂1, d̂1) and (M̂2, d̂2) are both comple-
tions of (M,d), then ƒ : (M̂1, d̂1)→ (M̂2, d̂2) is an isometry.

1.6 Compactness

Definition 1.43
A metric space (M,d) is compact if it is both totally bounded and complete.

☞ Remark Heine-Borel
A subset K ⊆ R is compact if and only if K is closed.
Additionally, K is totally bounded if and only iff K is bounded.
So K is compact if and only if it is closed and bounded.

Theorem 1.20
(M,d) is compact if and only if every sequence in M has a subsequence that converges to a point
inM.
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Corollary 1.6
compact⇒ closed

Corollary 1.7
compact⇒ bounded

Corollary 1.8
Closed subsets of compact metric spaces are compact.

Theorem 1.21
Let ƒ : (M,d)→ (N,ρ) be continuous onM. If K is compact inM, then ƒ (K) is compact in N.

Theorem 1.22 Extreme Value Theorem
Let (M,d) be a complete metric space. and let ƒ : M → R be continuous. Then ƒ (M) is bounded
and achieves its maximum and minimum values.

Corollary 1.9
If ƒ : [, b] → M is continuous, then ∃c, d,∈ R with c < d such that ƒ ([, b]) = [c, d].

Theorem 1.23
In a metric space (M,d), the following are equivalent:

1. If G is any collection of open sets in M and M ⊆
⋃

{G : G ∈ G}, then there exists G1, ..., Gn

such that

M ⊆
n
⋃

=1
G

In other words, every open cover ofM has a finite subcover.

2. If F is any collection of closed sets inM with
n
⋂

=1
F ̸= ∅, then

⋂

{F : F ∈ F} ̸= ∅.

1.7 Uniform Continuity

Definition 1.44
ƒ : (M,d) → (N,ρ) is uniformly continuous if, given any ε > 0, there exists δ > 0 such that,
∀, y ∈ M with d(, y) < δ,

ρ(ƒ (), ƒ (y)) < ε

☞ Remark

Lipschitz functions are uniformly continuous. Given any ε > 0, choose δ <
ε

K
where K is the

Lipschitz constant.
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Theorem 1.24
If ƒ : M→ N is uniformly continuous andM is totally bounded, then N is also totally bounded.
(Uniformly continuous functions map totally bounded sets to totally bounded sets).

Theorem 1.25
IfM is compact and ƒ : M→ N is continuous, then ƒ is uniformly continuous.

Theorem 1.26
Assume (V, ∥ · ∥) and (W, |||·|||) are normed linear spaces and consider the map T : V →W, where
T is linear, i.e. T satisfies:

T(α + βy) = αT() + βT(y)

for all , y ∈ M and for all scalars α, β.
Then the following are equivalent:

1. T is Lipschitz:
∃c > 0 such that, ∀, y ∈ V

|||T() − T(y)||| ≤ c∥ − y∥

2. T is uniformly continuous

3. T is continuous on V.

4. T is continuous at 0 ∈ V.

5. ∃c > 0 such that
|||T()||| ≤ c∥∥

Definition 1.45
A linear map T : (V, ∥ · ∥)→ (W, |||·|||) is bounded if ∃c > 0 such that

|||T()||| ≤ c∥∥

Definition 1.46
We denote the set of all bounded, linear mappings from V toW as B(V,W).

Theorem 1.27
B(V,W) is a normed linear space.

Definition 1.47
Let T ∈ B(V,W). We define the norm of T (known as the Operator Norm) as follows:

∥T∥B(V,W) = inf{c ≥ 0 : |||T()||| ≤ c∥∥,∀ ∈ V}

= sp
∈V,∥∦=0

|||T()|||

∥∥

= sp
∥∥≤1

|||T()|||
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☞ Remark
For all  ∈ V:

|||T()||| ≤ ∥T()∥B(V,W∥∥

1.8 Sequences of Functions

1.8.1 Pointwise vs. Uniform Convergence

Definition 1.48
Let X be a set and (Y, ρ) a metric space. Let ƒ : X → Y and (ƒn)∞=1 be a sequence of functions
such that ƒn : X→ Y for all n ∈ N.
We say (ƒn) converges to ƒ point-wise on X if, for every ̂ ∈ X,

ƒn(̂)
ρ
−→ ƒ (̂)

Definition 1.49
We say (ƒn) is uniformly convergent if, given any ε > 0 and  ∈ X, there exists N ∈ N such that,
for all n ≥ N,

ρ(ƒn(), ƒ ()) < ε

for each ε > 0.

Theorem 1.28
Let (X, d) and (Y, ρ) be metric spaces and ƒn : X → Y ∀n ∈ N. Asssume ƒn → ƒ uniformly on X
and ƒn is continuous at  ∈ X ∀n ∈ N. Then ƒ is also continuous at .

Theorem 1.29
Suppose ƒn : [, b] → R is continuous ∀n ∈ N and assume ƒn → ƒ uniformly on [, b]. Then

∫ b



ƒn →
∫ b



ƒ

1.8.2 Space of Bounded Functions

Definition 1.50
Given a set X, let B(X) denote the space of all real valued, bounded functions on X. So ƒ ∈ B(X)
means ƒ : X → R and sp

∈X
|ƒ ()| < ∞. We equip B(X) with the sup norm: ∥ƒ∥B(X) = ∥ƒ∥∞ =

sp
∈X
|ƒ ()|

☞ Remark
∥ · ∥ℓ∞ refers specifically to sequences.
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☞ Remark
If ƒn → ƒ in B(X), or ∥ƒn − ƒ∥∞ → 0 as n→∞, then, given ε > 0, there exists N ∈ N such that for
all n ≥ N, ∥ƒn − ƒ∥∞ = sp

∈X
|ƒn() − ƒ ()| < ε. But then ∀n ≥ N and ∀ ∈ X, |ƒn() − ƒ ()| < ε,

so ƒn → ƒ uniformly on X.

Theorem 1.30
B(X) is complete under the sup norm. This means, given any Cauchy sequence (ƒn) ∈ B(X), ƒn →
ƒ ∈ B(X). Moreover, ∃c > 0 such that ∥ƒn∥∞ ≤ C for all n ∈ N and ∥ƒn∥∞ → ∥ƒ∥∞

Definition 1.51
A Cauchy sequence (ƒn) ∈ B(X) is called Uniformly Cauchy.

Definition 1.52
A bounded sequence in B(X) is called Uniformly Bounded.

Theorem 1.31
Assume X is a coompact metric space. Then Cb() = C(). If X is compact and ƒ : X → R is
continuous, then ƒ () is compact in R so ƒ () is bounded. Therefore, C() = cb().

1.9 Equicontinuity

☞ Remark
If ƒ ∈ C(X) and X is compact, then ƒ is uniformly continuous.

Definition 1.53
Let F be a collection of real valued function on a metric space X. We say F is equicontinuous if,
given any ε > 0, there exists δ > 0 such that, ∀, y ∈ X with d(, y) < δ, |ƒ () − ƒ (y)| < ε for
all ƒ ∈ F .

Theorem 1.32
Let X be a compact set. Any finite subset of C(X) is equicontinuous.

Definition 1.54
Fix k > 0 and α > 0. Consider the set of {ƒ ∈ C([0,1]) : |ƒ () − ƒ (y)| ≤ k| − y|α,∀, y ∈
[0,1]}. We call this set Lipα

k
.

Theorem 1.33

Given ε > 0, choose δ = (
ε

k
)α. Then Lipα

k
is equicontinuous

Definition 1.55
A collection of real valued functions F on X is uniformly equibounded if {ƒ () :  ∈ X, ƒ ∈ F} is
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a bounded set in R
sp

∈X,ƒ∈F
|ƒ ()| = sp

ƒ∈F
∥ƒ∥∞ <∞

1.10 Arzela-Ascoli Theorem

Definition 1.56 Uniformly Bounded
A collection of real values functions F on a set X is is Uniformly Bounded if

{ƒ () :  ∈ X, ƒ ∈ F}

or

sp
ƒ∈F ,∈X

|ƒ ()| = sp
ƒ∈F
∥ƒ∥∞ <∞

or

∃C > 0 such that ∥ƒ∥∞ ≤ C

∀ƒ ∈ F

☞ Remark
For F ⊆ C(X), where C(X) is equipped with ∥ · ∥∞, F is uniformly bounded if and only if F is a
bounded subset of C(X).

Theorem 1.34 Arzela-Ascoli
LetX be a compactmetric space and letF ⊆ C(X). F is compact if and only ifF is closed, uniformly
bounded, and equicontinuous.

Corollary 1.10
Let X be a compact metric space. If (ƒn) is uniformly bounded and equicontinuous on C(X), then
there exists a subsequence of (ƒn) that converges uniformly on X.
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2.1 Riemann Integral

Definition 2.1
Let P be a partition of [, b] ,

P = 0, 1, ..., n

such that
 = 0 < 1 < ... < n = b

Definition 2.2
Assume ƒ : [, b] → R is bounded.

L(ƒ , P, [, b]) =
n
∑

j=1

( inf
∈[j−1,j]

ƒ ())(j − j−1)

is the Lower Riemann Sum of ƒ .

Definition 2.3
Assume ƒ : [, b] → R is bounded.

U(ƒ , P, [, b]) =
n
∑

j=1

( sp
∈[j−1,j]

ƒ ())(j − j−1)

is the Upper Riemann Sum of ƒ .

Definition 2.4

L(ƒ , [, b]) = sp
P

L(ƒ , P, [, b])

is the Lower Riemann Integral of ƒ .

Definition 2.5

U(ƒ , [, b]) = inf
P
U(ƒ , P, [, b])

is the Upper Riemann Integral of ƒ .

Definition 2.6
A bounded function ƒ : [, b] → R is Riemann Integrable on [, b] if

L(ƒ , [, b]) = U(ƒ , [, b])

Theorem 2.1
If ƒ : [, b] → R is continuous, ƒ is Riemann Integrable.
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2.2 Measures

2.2.1 Outer Measures

Definition 2.7
If  is an open interval in R with  < b (i.e.  = (, b),  = (−∞, ),  = (,∞), or  = (−∞,∞)).
The length of  is given by

ℓ() =















b − ,  = (, b)

∞,  = (−∞, ),  = (,∞),  = (−∞,∞)

0,  = ∅

Definition 2.8
For A ⊆ R, the Outer Measure of A is

|A| = inf{
∞
∑

k=1

ℓ(k) : A ⊆
∞
⋃

k=1
k}

Where {k}∞k=1 is a collection of open intervals and |A| is the infimum over all such collections.

Theorem 2.2
The outer measure of any countable subset of R is 0.

Theorem 2.3
Suppose A ⊆ B ⊆ R, then |A| ≤ |B|.

Theorem 2.4
Assume t ∈ R and A ⊆ R, then |t + A| = |A|, where

t + A = {t +  :  ∈ A}

Theorem 2.5
Suppose {A1, A2, A3, ...} is a countable collection of subsets of R. Then

|
∞
⋃

k=1
Ak | ≤

∞
∑

k=1

|Ak |

☞ Remark
∃A1, A2 ∈ R with A1

⋂

A2 = ∅ such that

|A1 ∪ A2| ̸= |A1| + |A2|

Theorem 2.6
Let , b ∈ R,  < b. Then

|[, b] | = b − 
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Theorem 2.7
̸ ∃ a function μ with all the following properties:

1. μ maps all subsets of R to [0,∞].

2. μ() = ℓ() for all open intervals  ∈ R.

3. μ
�

∞
⋃

k=1
Ak
�

=
∞
∑

k=1

μ(Ak) for all {Ak}∞k=1 (pairwise disjoint).

4. μ(t + A) = μ(A) for all t ∈ R, A ⊆ R.

2.2.2 σ-algebras

Definition 2.9 σ-algebra
Let X be a set and S be a collection of subsets of X. Then S is a σ-algebra on X if:

1. ∅ ∈S

2. If E ∈S then X − E ∈S

3. If {Ek}∞k=1 is a collection in S then
∞
⋃

k=1
Ek ∈S

☞ Remark
Suppose S is a σ-algebra on X, then

1. X ∈S

2. D,E ∈S ⇒ D ∩ E ∈S and D ∪ E ∈S and D − E ∈S

3. If {Ek}∞k=1 is a countable collection in S , then
∞
⋂

k=1
Ek ∈S

2.2.3 Measurable Spaces

Definition 2.10
A measurable space is an ordered pair (X,S ), where X is a set and S is a σ-algebra on X. An
element of S is said to be S measurable.

☞ Remark
Consider X = R. Let S be the collection of all sets E such that E or X − E is countable.

1. Q is S measurable

2. R− Q is S measurable

3. (0,1) is not S measurable
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2.2.4 Borel Subsets

Theorem 2.8
Let X be a set and let A be a collection of subsets of X. Then the intersection of all σ-algebras on
X which contain A is also a σ-algebra containing A . Furthermore, the intersection is the smallest
possible σ-algebra containing A .

Definition 2.11
The smallest σ-algebra on R containing all open subsets of R is called the collection of Borel
Subsets. An element of this σ-algebra is called a Borel Set.

☞ Remark
1. Open sets are Borel Sets

2. Closed sets are Borel Sets

3. [, b),(, b] are Borel Sets

4.  is a Borel Set

5. Countable subsets of R are Borel Sets

6. Q and R− Q are Borel Sets

7. Any countable union of countable intersection of (1)-(7) is a Borel Set

2.2.5 Measures

Definition 2.12
let X be a set and S be a σ-algebra on X, then (X,S ) is a measurable space. A measure on
(X,S ) is a function μ : S → [0,∞] such that:

1.
μ(∅) = 0

2.

μ
�

∞
⋃

k=1
Ek
�

=
∞
∑

k=1

μ(Ek)

☞ Remark
Let X = R and S = P(X), then (X,S ) is a measurable space but μ = | · | is not a measure on
(X,S ) because (2) fails.

Definition 2.13 Counting Measure
Let X be a set and S = P(X). Define μ : S → [0,∞] as

μ(E) =

(

+∞, E ∈S is infinite.

n, E ∈S is finite.

where n is the number of elements in S .
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☞ Remark
Consider the set X = {1,2,3,4, ..., N − 1, N} and S = P(X) and let μ be a counting measure
on (X,S ). Consider a sum of real numbers 1 + 2 + 3 + 4 + ...+ N. Let ƒ (k) = k for each
1 ≤ k ≤ N (ƒ : X→ R). Then

N
∑

k=1

k =
N
∑

k=1

ƒ (k)

=
N
∑

k=1

ƒ (k) · μ({k})

=
∫

X

ƒ · dμ

Definition 2.14
A Measure Space (X,S , μ) is a measurable space with a measure on it.

Theorem 2.9
Suppose (X,S , μ) is a measure space. Let D,E ∈S such that D ⊆ E, then

1. μ(D) ≤ μ(E)

2. μ(D − E) = μ(D) − μ(E)

Theorem 2.10 Countable Subadditivity

Let (X,S , μ) be a measure space and E1, E2, E3, ... ∈S (not necessarily disjoint), then

μ
�

∞
⋃

k=1
Ek
�

≤
∞
∑

k=1

μ(Ek)

Theorem 2.11
Let (X,S , μ) be a measurable space. Let E1 ⊆ E2 ⊆ E3 ⊆ ... be a nested sequence of sets in S ,
then

μ
�

∞
⋃

k=1
Ek
�

= lim
k→∞

μ(Ek)

Theorem 2.12
Let (X,S , μ) be ameasurable space. Let (X,S , μ) be ameasurable space. LetE1 ⊇ E2 ⊇ E3 ⊇ ...
be a nested sequence of sets in S and μ(E1) <∞, then

μ
�

∞
⋂

k=1
Ek
�

= lim
k→∞

μ(Ek)

Theorem 2.13
Assume (X,S , μ) is a measure space and D,E ∈S with μ(D∪E) <∞. Then μ(D∪)E = μ(D) +
μ(E) − μ(D ∩ E).
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2.3 Lebesgue Measure

☞ Remark
In constructing the LebesgueMeasure, the idea is to show that the outer measure, when restricted
to (R,B)whereB is the Borel Set ofR, is a measure. In other words, (R,B, | · |) is a measure space.

Theorem 2.14
Let A,G ⊆ R, A ∩G = ∅ and G open. Then |A ∪G| = |A| + |G|.

Theorem 2.15
Let A, F ⊆ R, A ∩G = ∅ and F open. Then |A ∪ F| = |A| + |F|.

Theorem 2.16
Let B ⊆ R be a Borel set. The ∀ε > 0, there exists a closed set F ⊆ B such that |B − F| < ε.

Theorem 2.17
Suppose A,B ⊆ R, A ∩ B = ∅, and B is a Borel Set. Then

|A ∪ B| = |A| + |B|

Theorem 2.18
Outer Measure is a measure on the measurable space (R,B) where B is the set of all Borel Sets.
So (R,B, | · |) is a measure space.

Definition 2.15 Lebesgue Measure
Lebesque Measure is the measure on (R,B) which assigns to each Borel set its outer measure.

2.3.1 Lebesgue Measurable Sets

Definition 2.16
If A ⊆ R, A is Lebesgue Measurable if ∃ a Borel set B ⊆ A such that |A − B| = ∅.

Definition 2.17
Let A ⊆ R. The following statements are equivalent:

1. A is Lebesgue Measurable.

2. ∀ε > 0, ∃F closed in A such that |A − F| < ε.

3. ∃ sequence of closed sets F1, F2, F3, ... ⊆ A such that
�

�

�A −
∞
⋃

=1
F
�

�

� = 0

4. ∀ε > 0, ∃G open with G ⊇ A such that |G − A| < ε.

5. ∃ sequence of open sets G1, G2, G3, ... ⊇ A such that
�

�

�

�
∞
⋂

=1
G

�

− A
�

�

� = 0
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6. ∃ a Borel set B ⊇ A such that |B − A| = 0

Theorem 2.19
Outer Measure is a measure on (R,L), where L is the σ-algebra of Lebesgue measurable sets.

Definition 2.18 Alternative Definition of Lebesgue Measure
Lebesgue Measure is the measure on (R,L) which assigns to each A ∈ L its outer measure.

☞ Remark
The two definitions of Lebesgue Measure are not equivalent, however

∀A ∈ L,

A = B ∪ (A − B)

where B is Borel and |A − B| = 0. So, in practice, the difference in definition doesn’t matter.

Theorem 2.20
Every set A with |A| = 0 is Lebesgue measurable.

☞ Remark
For any Lebesgue measurable set A,

A = B ∪ (A − B)

where B is Borel and |A− B| = 0. So L is the smallest σ-algebra containing the Borel sets and the
sets of outer measure 0. (Note: non-Borel sets of outer measure 0 do exists, but they don’t really
matter for any reason.)

2.4 Measurable Functions

Definition 2.19

Suppose (X,S ) is ameasurable space. A function ƒ : X→ R is ameasurable function if ƒ−1(B) ∈
S for all B ∈ B.

2.4.1 Characteristic Functions

Definition 2.20
Let X be a set and E ⊆ X. The characteristic function of E, χE : X→ R, is defined by:

χE() =

(

1,  ∈ E

0,  ̸∈ E
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Theorem 2.21
Suppose (X,S ) is a measurable space. If E ⊆ X, then chE is measurable iff E ⊆ S (i.e. E is S

measurable).

Definition 2.21

Suppose X ⊆ R, then ƒ : X→ R is Borel Measurable if ƒ−1(B) is a Borel set ∀B ∈ B.

Definition 2.22

Suppose A ⊆ R. Then ƒ : A → R is Lebesgue Measurable if ƒ−1(B) is Lebesgue Measurable for
all Borel sets.

Theorem 2.22

Suppose (X,S ) is a measurable space and ƒ : X→ R, then ƒ is measurable iff ƒ−1(A) ∈ S for all
open sets A ⊆ R.

Theorem 2.23

Suppose (X,S ) is a measurable space and ƒ : X → R, then ƒ is measurable iff ƒ−1((,∞)) ∈ S

for all  ∈ R.

Theorem 2.24
Suppose (X,S ) is a measurable space and let ƒ1, ƒ2, ƒ3, ... be a sequence of measurable functions
with ƒk : X→ R for all k. Suppose, for all  ∈ X, lim

k→∞
ƒk() exists. Let

ƒ = lim
k→∞

ƒk()

for all  ∈ X. Then ƒ is also measurable.

Corollary 2.1
Suppose (X,S ) is a measurable space and let ƒ1, ƒ2, ƒ3, ... be a sequence of measurable functions
with ƒk : X→ R for all k. Suppose, for all  ∈ X, lim

k→∞
ƒk() exists. Then for any  ∈ R

ƒ−1
�

(,∞)
�

=
∞
⋃

j=1

∞
⋃

m=1

∞
⋂

m=k
ƒ−1
k

�

( +
1

j
,∞)
�

∈S

Theorem 2.25
If ƒ : X→ R is continuous with X ⊆ R, then ƒ is both Borel and Lebesgue measurable.

2.4.2 Composition of Measurable Functions

Theorem 2.26
Let (X,S ) be a measurable space and ƒ : X → R be S measurable. Assume Y ⊆ ƒ (X) and let
g : Y → R be Borel measurable. then g ◦ ƒ : X→ R is S measurable.
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Example 2.1

Assume ƒ is S measurable. Then ƒ2,
1

2
ƒ , −ƒ , |ƒ | are S measurable.

Theorem 2.27
Suppose (X,S ) is a measurable set. Let ƒ , g : X → R be S measurable. Then the following are
also S measurable:

1. ƒ + g

2. ƒ − g

3. ƒg

4. ƒ /g (If g() ̸= 0, ∀ ∈ X)

2.4.3 Convergence of Measurable Functions

Theorem 2.28 Egorov’s
Suppose (X,S , μ) is a measure space with μ() < ∞. Let {ƒk} be a sequence of measurable
functions ƒk : X → R for all k, with ƒk → ƒ for all  ∈ X (pointwise). Then ∀ε > 0, ∃E ∈ S such
that μ(X − E) < ε and ƒk → ƒ uniformly on E.

☞ Remark
We can assume ƒk → ƒ pointwise "almost everywhere", meaning everywhere except on a subset
A ⊆ X with μ(A) = 0.

2.4.4 Simple Functions

Definition 2.23
A subset A ⊆ [−∞,∞] is called a Borel Set if A ∩ R is a Borel set of R.

☞ Remark
The set of Borel Sets of [−∞,∞] is a σ-algebra on [−∞,∞].

Definition 2.24

Let (X,S ) be a measurable space. Then ƒ : X → [−∞,∞] is S measurable if ƒ−1(B) ∈ S for
all Borel Sets B in [−∞,∞].

Theorem 2.29
Suppose (XS ) is a measurable space. Then ƒ : X → [−∞,∞] is S measurable if and only if
ƒ−1((,∞]) ∈S for all  ∈ R.

Definition 2.25
A function if called simple if it takes on finitely many values in R
Let (X,S ) be a measurable space. Let ƒ : X → R be a simple function on the non-zero values
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c1, c2, c3, ..., cn. Then

ƒ = c1χE1 + c2χE2 + c3χE3 + ... + cnχEn

Where Ek = ƒ−1({ck}) for all 1 ≤ k ≤ n.
Note that if ƒ is S measurable, then Ek = ƒ−1({ck}) ∈S for all k. If Ek ∈S for all k then ξEk is
S measurable, so

ƒ =
n
∑

k=1

ckχEk

is S measurable. fo ƒ is S measurable if and only if Ek ∈S for all 1 ≤ k ≤ n

2.4.5 Approximation by Simple Functions

Theorem 2.30
Let (X,S ) be a measurable space and ƒ : X → [−∞,∞] be S -measurable. Then ∃ a sequence
ƒ1, ƒ2, ..., ƒk : X→ R for all k such that

1. Each ƒk is a simple function

2. |ƒk()| ≤ |ƒk+1()| ≤ |ƒ ()| for all  ∈ X and k ∈ N

3. lim
k→∞

ƒk() = ƒ ()

4. If ƒ is bounded, the ƒk → ƒ uniformly on X.

Theorem 2.31 Lusin’s Theorem
Suppose g : R→ R is Borel measurable. Then given ε > 0, ∃ closed F ⊂ R such that |R − F| ≤ ε
and g|F is continuous.

Theorem 2.32
If ƒ : R→ R is Lebesgue Measurable, there exists a Borel Measurable g : R→ R such that

|{ : g() ̸= ƒ ()}| = 0

Theorem 2.33
Let (XS ) be a measurable space, ƒ1, ƒ2, ... be a sequence of S -measurable functions with ƒk :
R→ R for all k ∈ N, then { ∈ X : lim

k→∞
ƒk() exists in R}

Theorem 2.34
If ƒ , g : X→ [−∞,∞] satisfy

μ({ ∈ X : ƒ () ̸= g()}) = 0

where μ is the Lebesgue measure, then we say ƒ and g are equal almost everywhere.
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2.5 Lebesgue Integration

☞ Remark
By convention, let

∞ × 0 = 0 ×∞ = 0

Definition 2.26
Let S be a σ-algebra on X, then an S -partition on X is a finite collection of disjoint sets
A1, A2, ..., An in S such that

n
⋃

j=1
Aj = X

Definition 2.27
Suppose (X,S , μ) is a measure space and let ƒ : X → [0,∞] be S -measurable. Let P =
{A1, A2, ..., An} be an S -partition on X. Then the Lower Lebesgue Sum is defined to be

L(ƒ , P) =
n
∑

j=1

μ(Aj) inf
∈Aj

ƒ ()

Definition 2.28
Suppose (X,S , μ) is a measure space and let ƒ : X → [0,∞] be S -measurable. The Integral
With Respect To μ (i.e. Lebesgue Integration is defined to be

∫

X

ƒdμ = sp{L(ƒ , P) : P is a partition on X}

☞ Remark
Suppose (X,S , μ) is a measure space and E ∈S . Then

∫

X

χEdμ = μ(E)

2.5.1 Integrals of Simple Functions

Theorem 2.35
Suppose (X,S , μ) is a measure space and E1, E2, .., En is a disjoint collection in S . Let
c1, c2, ..., cn ∈ [0,∞]. Then

∫

X

n
∑

k=1

ckχEkdμ =
n
∑

k=1

ckμ(Ek)

Theorem 2.36 Preservation of Order
Suppose (X,S , μ) is a measure space. Let ƒ , g : X → [0,∞] be S -measurable. Assume ƒ () ≤
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g() for all  ∈ X. Then
∫

X

ƒdμ ≤
∫

X

gdμ

Theorem 2.37
Suppose (X,S , μ) is a measure space and ƒ : X→ [0,∞] is S -measurable. Then
∫

X

ƒdμ = sp
�

{
n
∑

j=1

cjμ(Aj) : {A1, A2, ..., An} is a disjoint collection of sets in S ,

c1, c2, ..., cn ∈ [0,∞) and ƒ () ≥
m
∑

j=1

cjχAj()∀ ∈ X}
�

2.5.2 Monotone Convergence

Theorem 2.38 Monotone Convergence Theorem

Suppose (X,S , μ) is a measure space. Let {ƒk}∞k=1 be a sequence of functions such that ƒk : X→
[0,∞] is S -measurable for all k ∈ N and

0 ≤ ƒ1 ≤ ƒ2 ≤ ...

for all  ∈ X. Let ƒ () = lim
k→∞

ƒk(). Then

lim
k→∞

∫

X

ƒkdμ =
∫

X

lim
k→∞

ƒkdμ =
∫

X

ƒdμ

Theorem 2.39
Suppose (X,S , μ) is a measure space and E1, E2, ..., En ∈ S are not necessarily disjoint and
c1, c2, ..., cn ∈ [0,∞]. Then

∫

X

n
∑

k=1

ckχEkdμ =
n
∑

k=1

ckμ(Ek)

Theorem 2.40
Suppose (X,S , μ) is a measure space. Assume 1, 2, ..., m, b1, b2, ..., bn ∈ [0,∞] ,
A1, A2, ..., Am, B1, B2, ..., Bn ∈S such that

m
∑

j=1

jχAj =
n
∑

k=1

bkχBk

Then
m
∑

j=1

jμ(Aj) =
n
∑

k=1

bkμ(Bk)
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Theorem 2.41
Suppose (X,S , μ) is a measure space. Let ƒ , g : X→ [0,∞] be S -measurable. Then

∫

X

(ƒ + g)dμ =
∫

X

ƒdμ +
∫

X

gdμ

Definition 2.29
Let ƒ : X→ [−∞,∞]. Define:

ƒ+ : X→ [0,∞]

and

ƒ− : X→ [0,∞]

as

ƒ+() =

(

ƒ (), ƒ () ≥ 0

0, ƒ () < 0

ƒ− =

(

0 ƒ () ≥ 0

−ƒ () < 0

so

ƒ+ = ƒχƒ−1[0,∞]
ƒ− = −ƒχƒ−1[−∞,0]

☞ Remark
If ƒ : X→ [−∞,∞] is S -measurable, ƒ+ and ƒ− are also S -measurable.

Definition 2.30
Given measurable space (X,S , μ) and S -measurable function : X→ [∞,∞] such that either

∫

X

ƒ+dμ <∞

or
∫

X

ƒ−dμ <∞

Then
∫

X

ƒdμ ≡
∫

X

ƒ+dμ −
∫

X

ƒ−dμ

(Note: otherwise,
∫

ƒdμ =∞ −∞ (undefined))
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☞ Remark
Note that

∫

X

|ƒ |dμ =
∫

X

(ƒ+ + ƒ−)dμ =
∫

X

ƒ+dμ +
∫

X

ƒ−dμ

Therefore
∫

X

|ƒ |dμ <∞ ⇐⇒
∫

X

ƒ+dμ <∞ and
∫

X

ƒ−dμ <∞

2.5.3 Properties of the Integral

Theorem 2.42

Let ƒ : X→ [−∞,∞] be an S -measurable function and
∫

X

ƒdμ be defined. The ∀c ∈ R,

∫

X

cƒdμ = c
∫

X

ƒdμ

Theorem 2.43

Suppose ƒ : X→ [−∞,∞] such that
∫

|ƒ |dμ <∞. Then

�

�

�

∫

ƒdμ
�

�

� ≤
∫

|ƒ |dμ

2.6 Limits of Integrals and Integrals of Limits

Definition 2.31
Let E ∈S and ƒ : → [−∞,∞] be S -measurable. Define

∫

E

ƒdμ =
∫

X

χEƒdμ

Theorem 2.44 Bounded Convergence Theorem
Assume μ(X) < ∞. Let ƒ1, ƒ2, ƒ3, ... be a sequence of S -measurable functions such that ƒk → ƒ

pointwise on X and ƒk : X→ R for all k ∈ N and ƒ : X→ R. Suppose ∃c > 0 such that |ƒk()| ≤ c
∀ ∈ X and ∀k ∈ N. Then

lim
k→∞

∫

ƒkdμ =
∫

ƒdμ

Theorem 2.45

Let E ∈S . Assume ƒ : X→ [−∞,∞] such that
∫

X

|ƒ |dμ <∞. Then

�

�

�

∫

E

ƒdμ
�

�

� ≤ μ(X − E) sp
∈E
|ƒ ()|
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Theorem 2.46

Let e ∈S and g : X→ [0,∞] be S -measurable and assume
∫

X

gdμ <∞. Then ∀ε > 0, ∃δ > 0

such that whenever μ(E) < δ,
∫

E

gdμ < ε

Definition 2.32
Let ƒ , g : X→ [−∞,∞] be S -measurable and assume

μ({ ∈ X : ƒ () ̸= g()}) = 0

Then we say ƒ = g almost everywhere on X or ƒ = g a.e. on X.

Theorem 2.47
If ƒ = g a.e. on X, then

∫

X

ƒdμ =
∫

X

gdμ

Theorem 2.48

Let g : X → [0,∞] be S -measurable and assume
∫

X

|g| < ∞. Then ∀ε > 0, ∃E ∈ S with

μ(E) <∞ and
∫

X−E
gdμ < ε

In other words: Integrable functions live mostly on sets of finite measure.

Theorem 2.49 Dominated Convergence Theorem
Let ƒ : X → [0,∞] be S -measurable. Let ƒ1, ƒ2, ƒ3, ... be a sequence of S -measurable functions
such that

lim
k→∞

ƒk()→ ƒ () a.e. on X

Assume ∃g : X→ [0,∞] also S -measurable such that:

1)
∫

X

gdμ <∞

2) |ƒk()| ≤ g() for all k ∈ N a.e. on X
Then

lim
k→∞

∫

X

ƒkdμ =
∫

X

ƒdμ

2.6.1 Approximation by Nice Functions
Definition 2.33
Let ƒ : X→ [−∞,∞] be S -measurable. Set

∥ƒ∥1 =
∫

X

|ƒ |dμ
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Then define L 1(μ) to be

L 1(μ) = {ƒ : X→ [−∞,∞] :
∫

X

|ƒ |dμ <∞}

L 1 is referred to as the Lebesgue Space.

Theorem 2.50

Assume ƒ , g ∈L 1(μ). Then

1. ∥ƒ∥1 ≥ 0

2. ∥ƒ∥1 = 0 ⇐⇒ ƒ () = 0 for a.e.  ∈ X

3. ∥cƒ∥1 = |c|∥ƒ∥1 for all c ∈ R

4. ∥ƒ + g∥1 ≤ ∥ƒ∥1 + ∥g∥1

Note: by (3) and (4), L 1 satisfies the properties of a vector space. However, by (2), ∥ · ∥1 is not a
norm.

Theorem 2.51

Consider the measure space (R,L , λ). Let ƒ ∈ L 1(λ). Then ∀ε > 0, ∃g : R → R such that g is
continuous, { ∈ R : g() ̸= 0} is bounded and ∥ƒ − g∥1 < ε.

Definition 2.34
The support of a function ƒ : X→ [−∞,∞] is the closure of the non-zero domain

{ ∈ X : ƒ () ̸= 0}

The set of all continuous function on R with compact support is denoted Cc(R)

☞ Remark
Cc(R) is dense in L 1(λ)

2.7 Product Measures

Definition 2.35
The Cartesian Product of X and Y is defined as

X × Y = {(, y) :  ∈ X, y ∈ Y}

Definition 2.36
Let X, Y be sets. A rectangle in X × Y is a set A × B with A ⊆ X, B ⊆ Y.

Definition 2.37
Given (X,S , μ),(Y,T , ν) The product S ⊗ T is defined to be the smallest σ-algebra containing
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all the rectangles generated by S ,T :

{A × B : A ∈S , B ∈ T }

A measurable rectangle in S ⊗ T is a set of the form A × B where A ∈S and B ∈ T .

Definition 2.38

Let X,Y be sets. Let E ⊆ X × Y. Then for  ∈ X, b ∈ Y the cross sections [E] and [E]b are
defined as:

[E] = {y ∈ Y : (, y) ∈ E}

[E]b = { ∈ X : (, b) ∈ E}

Theorem 2.52
Let (X,S ), (Y,T ) be measurable spaces. If E ∈ S ⊗ T , then ∀ ∈ X, [E] ∈ T and ∀b ∈ Y ,
[E]b ∈S .

Definition 2.39
Let X,Y be sets. Let ƒ : X × Y → R. For  ∈ X, b ∈ Y , the cross section functions [ƒ ] : Y → R

and [ƒ ]b : X→ R are defined to be

[ƒ ](y) = ƒ (, y)

[ƒ ]b() = ƒ (b, )

Note: [ƒ ] is T -measurable and [ƒ ]b is S -measurable if ƒ is S ⊗ T -measurable.

Definition 2.40
A measure μ on (X,S ) is finite if μ(X) <∞.

Definition 2.41
μ is σ-finite if ∃ countably many sets X1, X2, X3, ... ∈S such that μ(Xk) <∞ for all k ∈ N and

X =
∞
⋃

k=1
Xk

Definition 2.42
Let (X,S , μ) and (Y,T , ν) be measure spaces and g : X × Y :→ [−∞,∞].

∫

X×Y
g(, y)d(μ × ν) =

∫

Y

∫

X

g(, y)dμ()dν(y)

Note that
∫

Y

∫

X

g(, y)dμ()dν(y) =
∫

Y

�

∫

X

[g]bdμ()
�

dν(y)
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Theorem 2.53
The Riemann and Lebesgue integrals agree on [, b] if ƒ is Riemann integrable on [, b] :

∫ b



ƒd =
∫

[,b]
ƒdλ

Theorem 2.54
Let (X,S , μ) and (Y,T , ν) be σ-finite. If E ∈S ⊗ T ,

1.  7→ ν([E]) is S -measurable

2. y 7→ μ([E]y) is T -measurable

Definition 2.43
Let (X,S , μ) and (Y,T , ν) be σ-finite.

(μ × ν)(E) =
∫

X

∫

Y

χE(, y)dν(y)dμ()

☞ Remark measure of a rectangle
Let A ∈S , B ∈ T

(μ × ν)(A × B) =
∫

X

∫

Y

χA×B(, y)dν(y)dμ()

=
∫

X

∫

Y

χAχBdν(y)dμ()

=
∫

X

χν(B)dμ()

= μ(A)ν(B)

Theorem 2.55 Tonelli’s
Let (X,S , μ) and (Y,T , ν) be measure spaces. Let ƒ : X × Y → [0,∞] be S ⊗ T be S ⊗ T -
measurable. Then

1.  7→
∫

Y

ƒ (, y)dν(y) is S -measurable

2. y 7→
∫

X

ƒ (, y)dμ() is T -measurable

3.

∫

X×Y
ƒd(μ × ν) =
∫

X

∫

Y

ƒ (, y)dν(y)dμ() =
∫

Y

∫

X

ƒ (, y)dμ()dμ(y)

Theorem 2.56
If {j,k}j∈N,k∈N are j,k ≥ 0 for all j, k, then

∞
∑

j=1

∞
∑

k=1

j,k =
∞
∑

k=1

∞
∑

j=1

j,k
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Theorem 2.57
Suppose (X,S , μ) and (Y,T , ν) are σ-finite and ƒ : X × Y → [−∞,∞] is S ⊗ T -measurable.
Assume ƒ ∈L 1(μ × ν). Then

1.

∫

Y

|ƒ (, y)|dν(y) <∞ for a.e.  ∈ X

2.

∫

X

|ƒ (, y)|dμ() <∞ for a.e. y ∈ Y

3.  7→
∫

Y

ƒ (, y)dν(y) is S -measurable

4. y 7→
∫

X

ƒ (, y)dμ() is T -measurable

5.

∫

X×Y
ƒd(μ × ν) =
∫

X

∫

Y

ƒ (, y)dν(y)dμ() =
∫

Y

∫

X

ƒ (, y)dμ()dμ(y)

2.8 Lebesgue Integration on Rn

Definition 2.44
If  ∈ Rn, δ > 0, we define

B(, δ) = {y ∈ Rn : ∥y − ∥∞ < δ}

to be the open cube.

Definition 2.45
A set G ⊆ Rn is open if ∀ ∈ G there exists δ > 0 such that B(, δ) ⊆ G.

☞ Remark

B(, δ) ∈ Rm × B(y, δ) ∈ Rn = B((, y), δ) ∈ Rm+n

☞ Remark
Let G1 ⊆ Rm open and G2 ⊆ Rn open. Then

G1 × G2 = Rm+n

Definition 2.46
Borel Set in Rn is an element of the smallest σ-algebra on Rn which contains all open subsets of
Rn. Denote this σ-algebra Bn

Theorem 2.58
G ⊆ Rn is open ⇐⇒ G is a countable union of open cubes in Rn

☞ Remark
Bn is the smallest σ-algebra containing all the open cubes in Rn
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Theorem 2.59

Bm+n = Bn ⊗ Bm

Definition 2.47

(R2,B2, λ2) = (R,B, λ) × (R,B, λ)

Lebesgue Measure on Rn is denoted λn and defined as

λn = λn−1 × λ1

☞ Remark
Let (Rn,Bn, λn) be a measure space. Then

Bn = Bn−1 × B1

So for E ∈ Bn,

λn(E) =
∫

Rn
χE()dλn()

=
∫

Rn−1

∫

R

χE(1, 2)dλ(1)dλn−1(2)

...

=
∫

R

∫

R

...

∫

R

χE(1, 2, ..., n)dλ(1)dλ(2)...dλ(n)
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3.1 Banach Spaces

3.1.1 Integration on C

Definition 3.1
The set of all complex numbers C is given by

C = {z =  + b : , b ∈ R, 2 = −1}

Definition 3.2
Given z ∈ C where z =  + b, the Real and Imaginary parts of z are given by

ℜ(z) = 

ℑ(z) = b

Note that both ℜ(z),ℑ(z) 7→ R and z = ℜ(z) + ℑ(z)

Definition 3.3
The modulus of z ∈ C is given by

|z| = (2 + b2)1/2

Definition 3.4
The complex conjugate of z ∈ C is given by

z̄ = ℜ(z) − ℑ(z)

Theorem 3.1
Properties of complex conjugates:

✿ products:
zz̄ = |z|2

✿ sums and differences

z + z̄ = 2ℜ(z)

z − z̄ = 2ℑ(z)

✿ multiplicativity and additivity

 + z = ̄ + z̄

z = ̄z̄

✿ conjugates of conjugates
¯̄z = z

Real Analysis: 511, 512, 513 38 Oregon State University



CHAPTER 3. HILBERT SPACES (MTH 513)

✿ absolute value
|z̄| = |z|

✿ integral of conjugate function
∫

ƒ̄ dμ =
∫

ƒd

Definition 3.5
Let (X,S ) be a measurable space. ƒ : X → C is S -measurable if both ℜ(ƒ ) : X → R and
ℑ(ƒ ) : X→ R are S -measurable.

Theorem 3.2
Suppose (X,S ) is a measurable space, ƒ : X→ C is S -measurable, and 0 < p <∞. Then |ƒ |p is
also S -measurable.

Definition 3.6

Suppose (X,S , /m) is a measure space and ƒ : X → C is S -measurable. Assume ƒ ∈ L 1(μ).
We define

∫

X

ƒdμ =
∫

X

ℜ(ƒ )dμ + 
∫

X

ℑ(ƒ )dμ

☞ Remark
If ƒ , g : X→ C are S -measurable and ƒ , g ∈L 1(μ), then

1.

∫

(ƒ + g)dμ =
∫

ƒdμ +
∫

gdμ

2.

∫

αƒdμ = α
∫

ƒdμ, ∀α ∈ C

Theorem 3.3

Suppose (X,S , μ) is a measure space and ƒ : X→ C is S -measurable. Assume ƒ ∈L 1(μ). Then
�

�

�

∫

X

ƒdμ
�

�

� ≤
∫



|ƒ |dμ

3.1.2 Bounded Linear Operators

Definition 3.7
For notation, we let the field F denote either R or C

Definition 3.8
Let V,W be vector spaces. A function T : V →W is a linear operator or linear map if

1. T(ƒ + g) = Tƒ + Tg, ∀ƒ , g ∈ V

2. T(αƒ ) = αTƒ , ∀α ∈ F and ∀ƒ ∈ V
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Definition 3.9
Let (V, ∥ · ∥V), (W, ∥ · ∥W) be NLS and T : V →W. Recall that the Operator Norm on T is given by

|||T ||| = sp
∥ƒ∥V≤1

{∥Tƒ∥W}

= sp
∥ƒ∥V=1

{∥Tƒ∥W}

= sp{
∥Tƒ∥W
∥ƒ∥V

: ∥ƒ∥V ̸= 0}

If |||T ||| <∞, then T is a bounded linear operator. The set of all bounded linear operators T : V →
W is denoted

B(V,W)

and we sometimes write
|||T ||| = ∥T∥B(V,W)

☞ Remark
B(V,W) is a vector space. Moreover, |||T ||| is a norm on B(V,W) so

�

B(V,W), ∥T∥B(V,W)
�

is a NLS.

Theorem 3.4
Suppose (V, ∥ · ∥V), (W, ∥ · ∥W) are NLSs and T : V → W is a bounded linear operator. T is not a
bounded function.

Proof. Let α ∈ F and ƒ ∈ V such that Tƒ ̸= 0.

∥T(αƒ )∥W = ∥αTƒ∥W
= |α|∥Tƒ∥W →∞

as |α| →∞

So ̸ ∃R > 0 such that ∥Tƒ∥W ≤ R, ∀ƒ ∈ V. Therefore T is not a bounded function. ■

Theorem 3.5

Let C[, b] be the set of all continuous functions on [, b] and let C1[, b] be the set of all func-
tions with continuous first order derivatives on [, b]. If we define the norms

∥ƒ∥C1[,b] = ∥ƒ∥∞ + ∥ƒ ′∥∞
and

∥ƒ∥C[,b] = ∥ƒ∥∞

then T :
�

C1[, b], ∥ƒ∥C1[,b]
�

→
�

C[, b], ∥ƒ∥C[,b]
�

, where Tƒ = ƒ ′, is a bounded linear opera-
tor.
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Theorem 3.6
Suppose (V, ∥ · ∥V), (W, ∥ · ∥W) are NLSs with V ̸= {0} and T : V →W is a linear map. Then

|||T ||| = sp
∥ƒ∥V

{∥Tƒ∥W} = sp
ƒ ̸=0

{
∥Tƒ∥W
∥ƒ∥V

}

So we can write the inequality
∥Tƒ∥W ≤ |||T |||∥ƒ∥V

This shows that |||T ||| can be thought of as the smallest value such that the above inequality holds.

Theorem 3.7
If (W, ∥ · ∥W) is a Banach Space and (V, ∥ · ∥V) is any NLS (not necessarily complete) then B(V,W)
is also a Banach Space.

Theorem 3.8
Let (V, ∥ · ∥V) and (W, ∥ · ∥W) be NLS. A linear map T : V → W is continuous if and only if it is
bounded.

3.2 Baire Category Theorem

Definition 3.10
Let U ⊆ V where V is a metric space. Recall that the interior of U is

int(U) = {ƒ ∈ U : ∃r > 0 s.t. Br(ƒ ) ⊆ U}

☞ Remark
int(U) is open in V.

Definition 3.11
Recall that U is dense in V:
⇐⇒ U = V
⇐⇒ ƒ is a limit point of U for all ƒ ∈ V.
⇐⇒ ∀ƒ ∈ V and ∀r > 0, Br(ƒ ) ∩ U ̸= ∅

Definition 3.12
A subset E ⊆ V is nowhere dense in V
⇐⇒ V − U is dense in V
⇐⇒ V − Ē = V
⇐⇒ int(Ē) = ∅

Example 3.1

✿ Z is nowhere dense in R (R− Z̄ = R− Z

✿ A line is nowhere dense in R2

✿ A line or a plane is nowhere dense in R3
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Theorem 3.9 Baire Category Theorem

(a) A complete metric space is not the countable union of closed subsets with empty interiors.

(b) The countable intersection of dense, open subsets of a complete metric space is non-empty.

☞ Remark

(a) says that a complete metric space is not the countable union of nowhere dense sets. So, for
example, we cannot represent R3 as the countable union of planes.
(a) also implies that, if X is a complete metric space and the countable union of closed sets G,
then at least one G is non-empty, so that G contains a non-empty open set.

? Uniform Boundedness Principle

Theorem 3.10
Assume V is a Banach Space and W is any NLS. Let A be the set of bounded linear maps from
V →W such that

sp{∥Tƒ∥W : T ∈ A } <∞

Then sp{|||T ||| : T ∈ A } <∞ (i.e. the Ts are uniformly bounded).

3.2.1 Open Mapping Theorem

Theorem 3.11
Let V,W be Banach Spaces and T be a bounded linear surjection. If G is open in V , then T(G) is
open inW.

Corollary 3.1

Let V,W be Banach Spaces and T be a bounded linear bijection, then T−1 is a bounded linear map.
(i.e. T−1 :W→ V is continuous).

3.3 Lp Spaces

3.3.1 L p Spaces

Definition 3.13
Let (X,S , μ) be a measure space, fix p ∈ (0,∞) and let ƒ : X → F be S -measurable. Then the
p-norm of ƒ is

∥ƒ∥p =
�

∫

X

|ƒ |pdμ
�1/p

Definition 3.14
The essential supremum of ƒ is

∥ƒ∥∞ = inf{t > 0 : |ƒ ()| ≤ t a.e.}
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In other words, the smallest upper bound of the function on all sets, except those of measure 0.

☞ Remark Motivation for 1/p in p-norm definition
Consider 0 < p <∞ and α ∈ F. Take some ƒ : X→ F. Then

∥αƒ∥p =
�

∫

X

|αƒ |pdμ
�1/p

=
�

∫

X

|α|p|ƒ |pdμ
�1/p

= |α|p
�

∫

X

|ƒ |pdμ
�1/p

= |α|∥ƒ∥p

But without the exponent 1/p, we get ∥αƒ∥p = |α|p∥ƒ∥p, which violates the definition of a norm!
So we really do need the 1/p to make ∥ƒ∥p a norm on ƒ .

Definition 3.15
Let (X,S , μ) be a measure space and 0 < p < ∞. Lebesgue Space, L p(μ) is the set of all
S -measurable functions ƒ : X→ F such that

∥ƒ∥p <∞

Intuition for ∥ · ∥p

☞ Remark
1. What does ∥ƒ∥p tell us about ƒ locally?

Say the function ƒ : X → F blows up (i.e. grows unbounded) near some  ∈ X. Then ƒ is
not Riemann integrable, but ƒ may be integrable in some L p space. For example, consider the
function

ƒ () =
1

||
Where ƒ : B(0,1) → R and B(0,1) ∈ R2. Note that as  → 0, ƒ → ∞. However we can show
that

∥ƒ∥1 =
∫

B(0,1)
|ƒ |dλ

(by change of coordinates)

= 2πk
∫ 1

0
r
1

r
dr

= 2πk <∞

Now consider the following:

∥ƒ∥3/23/2 =
∫

B(0,1)

1

||3/2
dλ
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(by change of coordinates)

= 2πk
∫ 1

0
r
1

r3/2
dr <∞

In fact, we can show that ƒ ∈L p for all p < 2, but ƒ ̸∈L p for p ≥ 2
Take away: Given ƒ ∈ L p, the larger p is, the slower the localized function grows unbounded.
So if ƒ ∈ L 1, then the function grows unbounded rapidly, but if ƒ ∈ L 100, the function grows
unbounded much slower!

2. What does ∥ƒ∥p tell us about how the function decays as || →∞?
Consider some p ∈ [1,∞). In order for ƒ ∈ L p to hold, we need the function to decay (i.e.
approach 0) as || →∞. But when we take

∫

X

|ƒ |pdμ

raising the function the p-th power results in even faster decay at  =∞.
Take Away: Given ƒ ∈L p(Rn), then the smaller p is, the faster ƒ decays at∞ because it needs
less help from the power of p to make the norm finite!

Definition 3.16
Let 1 ≤ p ≤ ∞. Then the dual exponent of p, denoted q (or sometimes p′) is the number that
satisfies

1

p
+
1

q
= 1

Note: for p =∞, q = 1.

Theorem 3.12 Young’s Inequality
Let p ∈ (0,∞) and q be the dual exponent of p. Then ∀, b ≥ 0,

b ≤
p

p
+
bq

q

Theorem 3.13 H"older’s Inequality
Let p ∈ [0,∞] , (X,S , μ) be a measure space, and ƒ , g : X→ F be S -measurable functions. Then

∥ƒg∥1 ≤ ∥ƒ∥p∥g∥q
∫

X

|ƒg|dμ ≤
�

∫

X

|ƒ |pdμ
�1/p�
∫

X

|g|qdμ
�1/q

Theorem 3.14
Let (X,S , μ) be a finite measure space (μ(X) <∞) and 0 < p < s <∞ (note: s not necessarily
the dual exponent of p). Then

∥ƒ∥p ≤ μ(X)
s−p
p ∥ƒ∥s
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This implies that when μ(X) <∞ and p < s,

ƒ ∈L s ⇒ ƒ ∈L p

so,

L s ⊆ L p

Furthermore, consider the case where 0 < p < s =∞. Then

∥ƒ∥p =
�

∫

X

|ƒ |pdμ
�1/p
≤
�

∫

X

∥ƒ∥∞dμ
�1/p

Recall that ∥ƒ∥∞ = inf
∈X

{M : |ƒ ()| ≤ M a.e.}. So,

�

∫

X

∥ƒ∥∞dμ
�1/p

= ∥ƒ∥∞
�

∫

X

1dμ
�1/p

= ∥ƒ∥∞μ(X)1/p.

Therefore, if μ(X) <∞,
L∞(μ) ⊆ L p(μ), ∀p <∞

3.3.2 Lp Spaces

Definition 3.17
Let (X,S , μ) be a measure space and 0 < p ≤∞.

(i) Z(μ) is the set of all S -measurable functions X 7→ F which are equal almost everywhere on
X

(ii) For ƒ ∈ Lp(μ), let ƒ̃ denote the subset of L p(μ),

ƒ̃ = {ƒ + z : z ∈ Z(μ)} = ƒ + Z(μ)

☞ Remark
Let ƒ1, ƒ2 ∈ ƒ̃ . Then ∃z1, z2 ∈ Z(μ) such that

ƒ1 = ƒ + z1

ƒ2 = ƒ + z2

ƒ1 − ƒ2 = z1 − z2 = 0 a.e.

So ƒ1 = ƒ2 a.e.

☞ Remark
Suppose ƒ̃ = g̃. Then ƒ + Z(μ) = g + Z(μ), so ƒ = ƒ + 0 ∈ g + Z(μ) ⇒ ∃z ∈ Z(μ) such that
ƒ = g + z. Therefore ƒ = g a.e.
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Definition 3.18 Lp

Let 0 < p ≤∞
Lp(μ) = {ƒ̃ : ƒ ∈L p(μ)}

Definition 3.19
Let 0 < p ≤∞. We define ∥ · ∥p on Lp(μ) by

∥ƒ̃∥p = ∥ƒ∥p, ∀ƒ ∈L p(μ)

If we restrict p ∈ [1,∞] , then ∥ · ∥p is a norm on Lp(μ).

☞ Remark
Consider ƒ̃ = g̃. Then ∥ƒ̃∥p = ∥g̃∥p.

3.3.3 Dual of Lp

Theorem 3.15
Let (X,S , μ) be a measure space, p ∈ [1,∞), q be the dual exponent of p, and ƒ ∈ Lp(μ). Then

∥ƒ∥p = sp{
�

�

�

∫

X

ƒhdμ
�

�

� : h ∈L q(μ), ∥h∥q ≤ 1}

☞ Remark
The above holds for p =∞ ⇐⇒ μ is σ-finite.

☞ Remark
Recall that the dual space of an NLS X, denoted X∗ is defined as the the set of all bounded linear
functionals on X

X∗ = {ƒ : ƒ : X→ F}

Theorem 3.16
Let (X,S , μ) be a measure space, 1 < p ≤ ∞, and q be the dual exponent of p. For h ∈ Lq(μ),
define ϕh : Lp(μ)→ F by

ϕh(ƒ ) =
∫

X

ƒhdμ

Note the following are true:

(i) h 7→ ϕh is 1:1, linear, and maps Lq(h) into (Lp(μ))∗

(ii) |||ϕh||| = ∥h∥q, ∀h ∈ Lq(μ)

In fact, since Lq(μ) has a 1:1 correspondence with (Lp(μ))∗, we can show that Lq(μ) = (Lp(μ))∗.

Theorem 3.17

Let T(h) = ϕh. We can show that T is linear and h T7−→ ϕh is 1:1, so (Lp(μ), ∥ · ∥p) is an NLS.
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Furthermore, for 1 ≤ p ≤∞, (Lp(μ), ∥ · ∥p) is complete, therefore

(Lp(μ), ∥ · ∥p) is a Banach Space.

☞ Remark
Let (X,S , μ) be a measure space. Recall that for ƒ ∈L p(μ), ∀ε > 0, ∃ϕ ∈L 1(μ), where ϕ is a
simple function, such that

∥ƒ − ϕ∥1 < ε

Theorem 3.18
The above also holds for Lp(μ), ∀1 ≤ p ≤∞.

Theorem 3.19
Let ƒ ∈ L∞(μ) and ε > 0. There exists ϕ ∈ L∞(μ) where ϕ is simple and

∥ƒ − g∥∞

Theorem 3.20
Suppose ƒ ∈ Lp(R) and 0 < p <∞. Then ∀ε > 0 ∃ a step function g ∈ Lp(R) such that

∥ƒ − g∥p < ε

3.4 Hilbert Spaces

3.4.1 Inner Product Spaces

Definition 3.20
Let V be a vector space over F. An inner product on V is a function 〈·, ·〉 : V × V → F such that

(i) 〈ƒ , ƒ 〉 ∈ [0,∞)

(ii) 〈ƒ , ƒ 〉 = 0 ⇐⇒ ƒ = 0

(iii) 〈ƒ + g, h〉 = 〈ƒ , h〉+ 〈g, h〉

(iv) 〈αƒ , g〉 = α〈ƒ , g〉

(v) 〈ƒ , g〉 = 〈g, ƒ 〉

Definition 3.21
An Inner Product Space (IPS) is a vector space with an inner product.

☞ Remark
Let ƒ , g ∈ L2(μ) and define

〈ƒ , g〉 =
∫

X

ƒ ḡdμ

Then L2(μ) is an IPS.
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Theorem 3.21
Suppose V is an IPS. Then the following properties also hold:

(a) 〈0, g〉 = 〈g,0〉

(b) 〈ƒ , g + h〉 = 〈ƒ , g〉+ 〈ƒ , h〉

(c) 〈ƒ , αg〉 = α〈ƒ , g〉

Definition 3.22
Let V be an IPS. We can induce a norm on V ny

∥ƒ∥ =
Æ

〈ƒ , ƒ 〉

Theorem 3.22 Properties of ∥ · ∥

1. ∥ƒ∥ =
Æ

〈ƒ , ƒ 〉 ≥ 0 ∀ƒ ∈ V

2. ∥ƒ∥ =
Æ

〈ƒ , ƒ 〉 = 0 ⇐⇒ ƒ = 0

3. ∥αƒ∥ = α∥ƒ∥

Definition 3.23
Let V be an IPS and , y ∈ V. , y are orthogonal if 〈, y〉 = 0. We write this  ⊥ y.

Theorem 3.23 Pythagorean Theorem
Assume V is an IPS and ƒ , g ∈ V with 〈ƒ , g〉 = 0. Then

∥ƒ + g∥2 = ∥ƒ∥2 + ∥g∥2

Theorem 3.24 Cauchy Schwarz
Let V be an IPS and ƒ , g ∈ V. Then

|〈ƒ , g〉| ≤ ∥ƒ∥∥g∥

Theorem 3.25
Let V be an IPS and ƒ , g ∈ V. Then

∥ƒ + g∥ ≤ ∥ƒ∥ + ∥g∥

3.4.2 Angles in an IPS

Definition 3.24
Define the angle θ between ƒ , g in an IPS by

cosθ =
〈ƒ , g〉

∥ƒ∥∥g∥
∈ [−1,1]
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Theorem 3.26 Law of Cosines
Let  = ∥ƒ∥, b = ∥g∥, c = ∥ƒ − g∥.

c2 = 2 + b2 − 2b cosθ

Theorem 3.27 Parallelogram Equality
Let V be an IPS and ƒ , g ∈ V. Then

∥ƒ + g∥2 + ∥ƒ − g∥2 = 2∥ƒ∥2 + 2∥g∥2

3.4.3 Orthogonality

Definition 3.25 Hilbert Space
A Hilbert Space is any IPS that is complete under the norm induced by the inner product.

Definition 3.26
Suppose U is a non-empty subset of an NVS V and ƒ ∈ V. The distance from ƒ to U is

distance(ƒ , U) = inf{∥ƒ − g∥ : g ∈ U}

☞ Remark
If U is open, then

inf{∥ƒ − g∥ : g ∈ U} ̸=min{∥ƒ − g∥ : g ∈ U}

☞ Remark

distance(ƒ , U) = 0 ⇐⇒ ƒ ∈ U

Definition 3.27
Suppose V is a vector space and U ⊆ V. U is convex if ∀ƒ , g,∈ U and t ∈ [0,1]

(1 − t)ƒ + tg ∈ U

☞ Remark
Every vector space is convex since it is closed under linear combination

3.4.4 Orthogonal Projection

Theorem 3.28
let V be a Hilbert Space, U ⊆ V be closed, convex, and non-empty, and ƒ ∈ V. Then ∃!g ∈ U such
that

∥ƒ − g∥ = distance(ƒ , U)

Definition 3.28
SupposeV is aHilbert Space andU ∈ V is a closed, non-empty, convex subset of V. The orthogonal
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projection of V onto U is the function
PU : V → U

where PUƒ is the unique element of U that best approximates ƒ ∈ V.

☞ Remark

(a) PUƒ = 0 ⇐⇒ ƒ ∈ U

(b) PU ◦ PU = P2U = PU

Theorem 3.29
Suppose U is a closed subspace of a Hilbert Space V. For ƒ ∈ V:

(a) ƒ − PUƒ ⊥ g ∀g ∈ U

(b) If h ∈ U and ƒ − h ⊥ g ∀g ∈ U, h = PUh

(c) PU : V → U is a linear map

(d) ∀ƒ ∈ V , ∥PUƒ∥ ≤ ∥ƒ∥ and ∥PUƒ∥ = ∥ƒ∥ ⇐⇒ ƒ ∈ U

Example 3.2
Recall

ℓ2 = { = (1, 2, ...), j ∈ F,
∞
∑

j=1

|j|2 <∞}

So ∀, y ∈ ℓ2,

〈, y〉 =
∞
∑

j=1

jyj

Consider the subset
U = { ∈ ℓ2 :  = (1,0, 3,0, 5,0, ...)}

So, given  ∈ ℓ2,
PU = (1,0, 3,0, 5,0, ...)

Then we have
 − PU = (0, 2,0, 4,0, 6...)

so

〈,  − PU〉 =
∞
∑

j=1

(j)(j − PUj) = 0

⇒  ⊥  − PU

Definition 3.29
Suppose U is a subset of an IPS V. The orthogonal complement of U in V is

U⊥ = {h ∈ U : 〈h, g〉 = 0 ∀g ∈ U}
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Example 3.3
Let V be an IPS and U ⊆ V
If U = V ⇒ U⊥ = {0}.
Suppose U = B(0,1) = {g ∈ V : ∥g∥ = 1}. Then U⊥ = {0} because for  ∈ U⊥,

〈, y〉 = 0 ∀y ∈ U⊥

h ∈ V⊥ ⇒ 〈, h〉 = 〈, ∥h∥
h

∥h∥
〉

= ∥h∥〈,
h

∥h∥
〉 = 0

Since
h

∥h∥
∈ B(0,1).

3.4.5 Properties of Orthogonal Projections

Theorem 3.30
Let V be an IPS and U ⊆ V. Then

(a) U⊥ is a closed subspace of V

(b) U ∩ U⊥ = {0} if 0 ∈ U, otherwise∅. So U ∩ U⊥sbseteq{0}

(c) IfW ⊂ U, U⊥ ⊆ W⊥

(d) U⊥ = U⊥

(e) U ⊆ (U⊥)⊥

Theorem 3.31 Orthogonal Decomposition
Let U be a closed subspace of a Hilbert Space V. Then any ƒ ∈ V can be written as

ƒ = g + h

where g ∈ U and h ∈ U⊥

Theorem 3.32 Range and Null Space of PU
Suppose U is a closed subspace of a Hilbert Space V. Then the following are true:

(a) Rnge(PU) = U, N(PU) = U⊥

(b) Rnge(PU⊥) = U
⊥, N(PU⊥) = U

(c) PU⊥ =  − PU where  is the identity function

Example 3.4
Let

U = {ƒ ∈ L2(R) : ƒ () = 0 a.e.  < 0}

We can show that U is a closed subspace of L2. So

U⊥ = {ƒ ∈ L2(R) : ƒ () = 0 a.e.  ≥ 0}
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Theorem 3.33 Riesz Representation Theorem

Let V be a Hilbert Space. Suppose ϕ ∈ V∗. Then ∃!h ∈ V such that ϕ(g) = 〈g, h〉 ∀g ∈ V , so ϕ h
and ∥ϕ∥ = ∥h∥

3.4.6 Orthonormal Bases

Definition 3.30
Let V be an NLS and consider {ek}k∈ ⊂ V where

 = {1,2,3, ..., n}

or

 = N

A family {ek}k∈ in an IPS is an orthonormal family if

〈ej, ek〉 =

(

1, j = k

0, j ̸= k

Example 3.5 Example: Rn

e1 =





















1

0

0
...

0





















e2 =





















0

1

0
...

0





















... en =





















0

0

0
...

1





















{ek}k∈ is an orthonormal family.

Example 3.6

Example: ℓ2(F)]

ek = (0,0,0, ...,0,1,0, ...,0,0,0)

where the k-th element is 1. {ek}k∈ is an orthonormal family.

3.4.7 Basis of a Hilbert Space

Definition 3.31
Recall: A metric space is seperable if it has a countable, dense subset.

Theorem 3.34
Every seperable Hilbert Space has a countable orthonormal basis. Moreover, ifV is an infinite dimen-
sional Hilbert Space, then there exists a countable orthonormal family {ek}k∈N such that ∀ƒ ∈ V ,
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∃! sequence {ck}k∈N, ck ∈ F, such that

∥ƒ −
N
∑

k=1

ckek∥ → 0

as N→∞. So ƒ =
∞
∑

k=1

ckek

Example 3.7

Example: R2] Let {q1, q2} be an orthonormal family in R2 and ƒ ∈ R2. Then

ƒ = 〈ƒ , q1〉+ 〈ƒ , q2〉q2

Example 3.8 Example: R2

Let {qk}1≤k≤n be an orthonormal family in Rn and ƒ ∈ Rn. Then ∃! collection {c1, c2, ..., cn}
such that

ƒ =
n
∑

k=1

ckqk

What are the cks?

〈ƒ , qk〉 = 〈
n
∑

j=1

cjqj, qk〉

=
n
∑

j=1

cj〈qj, qk〉

= ck(1)

= ck

so ƒ =
∞
∑

k=1

〈ƒ , qk〉qk.

Example 3.9 Example: Infinite Dimensional Hilbert Space
Let V be an infinite dimensional, seperable, Hilbert Space. Let {ek}k∈N be an orthonormal family
in V. Moreover, assume {ek}k∈N is an orthonormal basis for V. So, given ƒ ∈ V:

ƒ =
∞
∑

k=1

ckek

for some {ck}k∈N. It can be shown that

{ck}k∈N = {〈ƒ , e1〉, 〈ƒ , e2〉, 〈ƒ , e3〉, ..., 〈ƒ , en〉}
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3.4.8 Bessel’s Inequality

Theorem 3.35
Let {ek} be an orthonormal family in a Hilbert Space V. then ∀ƒ ∈ V and ∀n ∈ N,

∥ƒ∥2 ≥
n
∑

j=1

|〈ƒ , ej〉|2

Furthermore,

∥ƒ∥2 ≥
∞
∑

j=1

|〈ƒ , ej〉|2

.

3.4.9 Parceval’s Identity

Theorem 3.36
Suppose {ek}k∈N is an orthonormal basis for a seperable Hilbert Space V. let ƒ ∈ V. Then

∥ƒ∥2 =
n
∑

j=1

|〈ƒ , ej〉|2

3.4.10Linear Maps on Hilbert Spaces

Definition 3.32
LetV,W beHilbert Spaces and T : V →W be a bounded linearmap. The adjoint of T , T∗ :W→ V

is defined as
〈Tƒ , g〉 = 〈ƒ , T∗g〉

∀ƒ ∈ V , ∀g ∈W.

☞ Remark Intuition:
Fix g ∈W. Consider a linear functional ϕT

g
∈ V defined by

ϕT
g
(ƒ ) = 〈Tƒ , g〉

(Note: since T is linear and 〈·, ·〉 is linear in the first slot, ϕT
g
is linear).

|ϕT
g
(ƒ )| = |〈Tƒ , g〉| ≤ ∥Tƒ∥∥g∥ ≤ ∥T∥∥ƒ∥∥g∥

so ∥ϕT
g
∥ ≤ ∥T∥∥g∥, which implies ϕT

g
∈ V∗.

Now, by the Riesz Representation Theorem, ∃!h ∈ V such that

ϕT
g
(ƒ ) = 〈ƒ , h〉

∀ƒ ∈ V. So for g ∈W, set T∗g = h where h is the unique element of V given by the RRT.

Example: Let (X,S , μ) be a measure space and h ∈ L∞(μ). Define Mh : L2(μ)→ L2(μ) by

Mh(ƒ ) = ƒh

Real Analysis: 511, 512, 513 54 Oregon State University



CHAPTER 3. HILBERT SPACES (MTH 513)

∀ƒ ∈ L2(μ). Then

∥Mhƒ∥2 ≤ ∥ƒh∥2 ≤ ∥ƒ∥2∥h∥∞

which implies ∥Mh∥ ≤ ∥h∥∞, so Mh is a bounded linear functional. Therefore,

〈Mhƒ , g〉 =
∫

X

ƒhgdμ

=
∫

X

ƒhgdμ

= 〈ƒ , hg〉

= 〈ƒ ,Mhg〉

So M∗
h
= Mh.

Theorem 3.37
Suppose V,W are Hilbert Spaces and let T ∈B(V,W). Then the following are true:

1. T∗ ∈B(W,V)

2. (T∗)∗ = T

3. ∥T∗∥B(W,V) = ∥T∥B(V,W)

Definition 3.33
Let T ∈B(V) where V is a Hilbert Space. Then T is self adjoint if T = T∗, i.e., ∀ƒ , g ∈ V

〈Tƒ , g〉 = 〈ƒ , Tg〉

Theorem 3.38
Let V be a Hilbert Space and T ∈B(V). Assume 〈Tƒ , ƒ 〉 = 0, ∀ƒ ∈ V.

1. If F = C

2. If F = R and T is self-adjoint, T = 0.

Theorem 3.39
Let T ∈ B(V), where V is a Hilbert Space over C. Then T is self-adjoint if and only if 〈Tƒ , ƒ 〉 ∈
R, ∀ƒ ∈ V.

3.4.11Operators

Definition 3.34
Let V be an NLS. A function T : V → V is called an operator.
If T is bounded, we write T ∈B(V,V), or, more succinctly, T ∈B(V).
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Definition 3.35
An operator T is invertible if it is 1:1 and onto. We define the inverse as

T−1 : V → V

nd

T ◦ T−1 =  : V → V

Note: Since T is linear, T−1 is also linear.

Definition 3.36
Let T ∈B(V) where V is a Hilbert Space.

1. T is left invertible iff ∃S such that ST = 

2. T is right invertible iff ∃S such that TS = 

3. if T is left and right invertible, T is invertible.
(Suppose S1T =  and TS2 = , then

S1T =  ⇒ S1TS2 = S2 ⇒ S1 = S2 ⇒ S1 = S2)

Theorem 3.40
Let T ∈B(V) where V is a Hilbert Space. T is left invertible iff ∃α ∈ (0,∞) such that ∀ƒ ∈ V ,

∥ƒ∥ ≤ α∥Tƒ∥ (3.1)

Theorem 3.41
Let T ∈B(V) where V is a Hilbert Space. If T is left invertible, T∗ is right invertible.

☞ Remark
Let T ∈ B(V) be invertible. Let V be a Banach Space. By the Open Mapping Theorem, T is an
open map. Therefore T−1 is continuous, so T−1 ∈B(V).

☞ Remark
By convention, we write:

1. T : V → V

2. T ◦ T = TT = T2 : V → V

3. T ◦ (T ◦ T) = TTT = T3 : V → V

Theorem 3.42
Let U,V,W be an NLS and T ∈B(U,V), S ∈B(V,W). Then

∥ST∥ ≤ ∥S∥∥T∥
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Theorem 3.43

Let Tk = T ◦ T ◦ T ◦ ... ◦ T (k times). Then

∥Tk∥ ≤ ∥T∥k

Theorem 3.44
Let T ∈B(V) where V is a Banach Space. Assume ∥T∥ < 1. Then  − T : V → V is invertible and

( − T)−1 =
∞
∑

k=0

Tk

Note: this is similar to the fact that for z ∈ C with |z| < 1,

1

1 − z
=

∞
∑

k=0

zk

Theorem 3.45
Let V be an NLS. Then V is a Banach Space if and only if, for every {gk} satisfying

∞
∑

k=1

∥gk∥ <∞

∞
∑

k=1

gk converges in V.

Corollary 3.2
Suppose V is a Banach Space. The set of all invertible operators:

A = {T ∈B(V) : T is invertible}

is an open set in B(V).
Note: this implies the set of non-invertible operators in B(V) is closed, so a sequence of non-
invertible operators converges.

3.4.12Spectrum of an Operator

Definition 3.37
Let T ∈B(V).

1. α ∈ F is an eigenvalue of T if T − α is not injective. (i.e. (T − α) = 0, ƒ ̸= 0 implies Tƒ = αƒ .

2. ƒ ∈ V with ƒ ̸= 0 is an eigenvector of T corresponding to an eigenvalue of ƒ , α if Tƒ = αƒ

3. The spectrum of T is denoted sp(T):

sp(T) = {α ∈ F : T − α is not injective}
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☞ Remark on 1.
T − α is injective if and only if n(T − α) = {0}. In other words, T − α is not injective if and
only if ∃z ∈ V with z ̸= 0 and z ∈ n(T − α). Therefore, (T − α)z = 0⇒ Tz = αz.

3.4.13Compact Operator

Definition 3.38
An operator T : V → V , where V is a Hilbert Space, is compact if for all bounded sequences
{ƒk}∞k=1 in V , {Tƒk}∞k=1 has a convergent subsequence.
We denote the set of compact operators on V as C(V).

Theorem 3.46
Every compact operator on Hilbert Space is bounded, and therefore continuous.

3.4.14Spectrum of A Compact Operator

Theorem 3.47
If T : V → V is compact on an infinite dimensional Hilbert Space V , then 0 ∈ sp(T).

☞ Remark
The above implies that T = T − 0 is not invertible, so T is not invertible.

Theorem 3.48
Let T ∈ C(V) then Rnge(T) cannot contain an infinite dimensional, closed subspace of V.

Example 3.10

Consider the measure space ([0,1]),B, λ). and define T : L2([0,1])→ L2([0,1]) by

Tƒ () =
∫ 1

0
K(, y)ƒ (y)dy

where K ∈ C([0,1] × [0,1]) is a fixed kernel function. We claim that T is a compact operator.

Proof. First, note that

∥Tƒ∥L2 =
�

∫ 1

0
|Tƒ ()|2d
�1/2

≤ ∥Tƒ∥L∞
�

∫ 1

0
1d
�1/2

= ∥Tƒ∥L∞

Also note that, ∀ ∈ [0,1] ,

|Tƒ ()| =
�

�

�

∫ 1

0
K(, y)ƒ (y)dy

�

�

�

≤ K(, y)
∫ 1

0
|ƒ (y)|dy
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≤ K(, y)∥ƒ∥L2

So we have ∥Tƒ∥L∞([0,1]) ≤ K(, y)∥ƒ∥L2([0,1]), therefore

∥Tƒ∥L2([0,1]) ≤ ∥Tƒ∥L∞([0,1]) ≤ K(, y)∥ƒ∥L2([0,1])

So T is bounded, linear (by linearity of the integral), and maps L2([0,1]) to L2([0,1]), which
means T is bounded operator.
Now let {ƒn}∞n=1 be a bounded sequence in L2([0,1]). We want to show that {Tƒn} has a con-
vergent subsequence. In order to do this, we can show that Arzela-Ascoli applies:
Note that ∥ƒ∥2 ≤ ∥ƒ∥∞. Now, by the fact that K ∈ C([0,1] × [0,1]), given ε > 0, there exists
δ > 0 such that ∀, y, z ∈ [0,1] , whenever | − z| < δ, |K(, y) − K(z, y)| < ε. So

|Tƒn() − Tƒn(z)| ≤
∫ 1

0
|K(, y) − K(z, y)||ƒn(y)|dy

< ε

∫ 1

0
|ƒn(y)|dy

≤ ε∥ƒn∥L2([0,1])
≤ Cε

which implies that {Tƒn} is equicontinuous. We have already shown that |Tƒn()| ≤

∥K∥L∞([0,1]×[0,1])
∫ 1

0
|ƒn(y)|dy ≤ K(, y)∥ƒn∥L2([0,1]), so {Tƒn} is equibounded.

So, by Arzela-Ascoli, ∃ some subsequence of {Tƒn} that converges uniformly to some g. But then

∥Tƒnk − g∥L2([0,1]) =
�

∫ 1

0
|Tƒnk − g|
�1/2

≤ ∥Tƒnk − g∥L∞([0,1])
�

∫ 1

0
1dy
�1/2

= ∥Tƒnk − g∥L∞([0,1]) → 0

So T is compact. ■
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