Real Analysis Notes

Forrest Corcoran

Fall, Winter, Spring 2021-2022

Chapter 1 Metric Spaces (MTH 511)

1.1 Metric Spaces and Normed Vector Spaces

1.1.1 Metrics

Definition 1.1

Let M be any set. A function $d: M \times M \rightarrow [0, \infty)$ is a **metric** on M if it satisfies the following:

- 1. $0 \le d(x, y) < \infty, \forall x, y \in M$
- **2**. $d(x, y) = d(y, x), \forall x, y \in M$
- **3**. $d(x, y) = 0 \iff x = y$
- 4. $d(x, y) \le d(x, z) + d(z, y)$

1.1.2 Discrete Metric

Example 1.1

The **discrete metric** is defined by:

$$d(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$
(1.1)

1.1.3 Norms

Definition 1.2

Let V be a vector space. A **norm** on V is a function $\|\cdot\| : V \to [0, \infty)$ satisfying the following properties:

- 1. $0 \le \|\mathbf{x}\| < \infty, \forall \mathbf{x} \in V$
- **2**. $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$
- **3.** $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- **4**. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

1.1.4 Common Norms

Example 1.2

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{N} |x_{i}|$$
(1.2)

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{N} |x_{i}|^{2}\right)^{1/2}$$
(1.3)

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{N} |x_{i}|^{p}\right)^{1/p}$$
(1.4)

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le N} (|x_i|) \tag{1.5}$$

1.1.5 Norms of Continuous Functions

Definition 1.3

Consider the set of all continuous function on [a, b]. The following are norms on C([a, b]).

$$||f||_{1} = \int_{a}^{b} |f(t)| dt$$
 (1.6)

$$||f||_{2} = \left(\int_{a}^{b} |f(t)|^{2} dt\right)^{1/2}$$
(1.7)

$$||f||_{p} = \left(\int_{a}^{b} |f(t)|^{p} dt\right)^{1/p}$$
(1.8)

$$||f||_{\infty} = \sup_{t \in [a,b]} (|f(t)|)$$
(1.9)

1.1.6 *l*_p Spaces

Definition 1.4

For *p* satisfying $1 \le p < \infty$, l_p is the set of all sequences of real numbers $x = (x_i)_{i \in \mathbb{N}}$ for which the following is true:

$$\sum_{i=1}^{\infty} |x_i|^p < \infty \tag{1.10}$$

Definition 1.5

 ℓ_{∞} is the set of all bounded sequences of reals.

$$\|x\|_{\infty} = \sup_{i \in \mathbb{N}} \{|x_i|\} < c$$
for some $c > 0$
(1.11)

 Theorem 1.1 Hölder's Inequality

Let $p \in (1, \infty)$ and let q satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Given $x \in \ell_p$ and $y \in \ell_q$, we have the following inequality: $\sum_{i=1}^{\infty} |x_i y_i| = ||xy||_{\ell_1} \le ||x||_{\ell_p} ||y||_{\ell_q}$ (1.12)

1.1.7 Metric Spaces

Definition 1.6

The set M, equipped with the metric d defines a metric space (M, d).

Definition 1.7

Given $x \in (M, d)$ and r > 0, the **Open Ball** of radius r centered at x is defined by

$$B_r(x) = \{ y \in M \mid d(x, y) < r \}$$
(1.13)

Definition 1.8

 $A \subseteq M$ is **bounded** if and only if given any $x \in M$, $\exists r > 0$ such that $A \subseteq B_r(x)$.

Definition 1.9

The **diameter** of **A** is defined as

diam(A) = sup{
$$d(x, y) | x, y \in A$$
} (1.14)

Definition 1.10

A **neighborhood** of $x \in M$ is any set containing an open ball centered at x.

1.1.8 Convergent and Cauchy Sequences

Definition 1.11 Convergence

A sequence $(x_n) \in M$ converges to $x \in M$ if $d(x_n, x) \to x$ as $n \to \infty$.

Definition 1.12 Convergence

A sequence $(x_n) \in M$ converges to $x \in M$ if, given some $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N$ we have $d(x_n, x) < \epsilon$.

Definition 1.13 Convergence

A sequence $(x_n) \in M$ converges to $x \in M$ if, given some $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\{x_n \mid n \ge N\} \subseteq B_{\epsilon}(x)$.

Definition 1.14 Cauchy

A sequence (x_n) is **Cauchy** if, given some $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall m, n \ge N$ we have $d(x_m, x_n) < \epsilon$.

Remark

Every convergent sequence in (*M*, *d*) is Cauchy.

Remark

Any Cauchy sequence with a convergent subsequence in (M, d) converges in (M, d).

1.2 Topology of Metric Spaces

1.2.1 DeMorgan's Laws

Definition 1.15

$$\left(\bigcap_{i\in\mathbb{I}}A_i\right)^c = \bigcup_{i\in\mathbb{I}}A_i^c \tag{1.15}$$

$$\left(\bigcup_{i\in\mathbb{I}}A_i\right)^c = \bigcap_{i\in\mathbb{I}}A_i^c \tag{1.16}$$

1.2.2 Limit Points

Definition 1.16

Let A be a subset of (M, d). $x \in M$ is a **limit point** of A if

$$(B_{\epsilon}(x) - \{x\}) \cap A \neq \emptyset \tag{1.17}$$

for all $\epsilon > 0$.

Definition 1.17

Let A be a subset of (M, d). $x \in M$ is an **isolated point** of A if

$$(B_{\epsilon}(x) - \{x\}) \cap A = \emptyset \tag{1.18}$$

If x is not a limit point, it is an isolated point (and vice versa).

Definition 1.18 Boundary Points

Let A be a subset of M. $x \in M$ is a **boundary point** of A if and only if

$$(B_{\epsilon}(x) - \{x\}) \cap A \neq \emptyset$$

and (1.19)
$$(B_{\epsilon}(x) - \{x\}) \cap A^{c} \neq \emptyset$$

1.2.3 Open Sets

Definition 1.19

A set $U \subseteq (M, d)$ is **open** if $\forall x \in U, \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset U$.

Remark

 $\forall x \in M \text{ and } \forall \epsilon > 0, B_{\epsilon}(x) \text{ is an open set.}$

Theorem 1.2

An arbitrary union of open sets is open.

$$V = \bigcup_{\alpha \in A} U_{\alpha} \text{ is open.}$$
(1.20)

Theorem 1.3

A finite intersection of open sets is open.

$$I = \bigcap_{i=1}^{N} U_{\alpha} \text{ is open.}$$
(1.21)

Theorem 1.4

If U is open and $U \subset \mathbb{R}$, then U is a countable union of disjoint, open intervals.

$$U = \bigcap_{n=1}^{\infty} I_n$$

$$I_n = (a_n, b_n)$$

$$I_n \cap I_m = \emptyset$$

$$n \neq m$$
(1.22)

Theorem 1.5

A set U is open if and only if, whenever $(x_n) \in M \to x \in U$, for all but finitely many $n, x_n \in U$.

Definition 1.20

let (U_{α}) be the set of all open sets in *M*. (U_{α}) is an **open base** for *M* if

$$M = \bigcup (U_{\alpha}) \tag{1.23}$$

1.2.4 Closed Sets

Definition 1.21

A set $F \subseteq (M, d)$ is closed if and only if $F^{c} = M - F$ is open.

Definition 1.22

A set $F \subseteq (M, d)$ is closed if and only if, given $x \in M, \forall \epsilon > 0$,

$$B_{\epsilon}(x) \cap F \neq \emptyset \Rightarrow x \in F \tag{1.24}$$

Definition 1.23

A set $F \subseteq (M, d)$ is closed if and only if, given a sequence $(x_n) \subseteq F$

$$(x_n) \to x \in M \Rightarrow x \in F. \tag{1.25}$$

In other words, *F* is closed if it contains all its limit points.

Definition 1.24 Interior

The interior of A is defined as

$$int(A) = A^{\circ} = \{x \in A \mid B_{\epsilon}(x) \subset A \text{ for some } \epsilon > 0\}$$
(1.26)

Definition 1.25 Closure

The **closure** of **A** is defined as

$$cl(A) = \overline{A} = \bigcap \{F \mid F \text{ is closed and } A \subseteq F\}$$
(1.27)

Theorem 1.6

 $x\in\overline{A}\iff B_\epsilon(x)\cap A\neq \emptyset,\,\forall\epsilon>0.$

Theorem 1.7

 $x \in A \iff \exists (x_n) \subset A \text{ with } (x_n) \rightarrow x.$

1.2.5 Relative Metrics

Remark Notation For $x \in A$ with $A \subseteq M$:

$$B_{\epsilon}^{A}(x) = \{ y \in A \mid d(x, y) < \epsilon \} = A \cap \{ y \in M \mid d(x, y) < \epsilon \} = A \cap B_{\epsilon}^{M}(x)$$
(1.28)

Definition 1.26

A subset $G \subseteq A$ is open relative to A if, given $x \in G$, $\exists \epsilon > 0$ such that

$$B_{\epsilon}^{A}(x) = A \cap B_{\epsilon}^{M}(x) \subseteq G \tag{1.29}$$

Corollary 1.1

A subset $G \subseteq A$ is open relative to A if and only if

$$A = G \cap U$$

for some **U** open in **A**.

Definition 1.27

A set $F \subseteq A$ is closed relative to A if $F^c = A - F$ is open in A.

Corollary 1.2

A subset $F \subseteq A$ is closed relative to A if and only if

$$F = A \cap V$$

for some ∨ closed in A.

1.2.6 Seperable Sets

Definition 1.28

A subset of a metric space, $D \subseteq M$, is **dense** in M if it satisfies any of the following:

1. $x \in M \Rightarrow x \in D'$

2. $\forall x \in M$ and $\forall \epsilon > 0, B_{\epsilon}(x) \cap D \neq \emptyset$

3. $U \cap D \neq \emptyset$ for all non-empty U in M

4. $(D^c)^\circ = \emptyset$

Definition 1.29

A set **D** is **countable** if there exists

$$f: D \to \mathbb{N}, f$$
 is injective. (1.32)

Definition 1.30

A subset of a metric space, $D \subseteq M$, is **seperable** if it is countable and dense in M.

(1.30)

(1.31)

1.3 Continuity

1.3.1 Continuous Functions

Definition 1.31

Let $f: (M, d) \rightarrow (N, \rho)$. f is **continuous** at $x \in M$ if, given $\epsilon > 0$, $\exists \delta > 0$ such that

$$d(x, y) < \delta \Rightarrow \rho(f(x) - f(y)) < \epsilon.$$
(1.33)

If f is continuous for all $x \in M$, we say f is continuous on M.

Definition 1.32 Pre-Image

For $A \subseteq N$, the **pre-image** of f is

$$f^{-1}(A) = \{ x \in M \mid f(x) \in A \}.$$
(1.34)

Theorem 1.8

Given $f: (M, d) \rightarrow (N, \rho)$, the following statements are equivalent:

1. *f* is continuous on *M*.

2. $\forall x \in M$, if $x_n \to x$ in (M, d) then $f(x_x) \to f(x)$ in (N, ρ)

3. If E is closed in N, $f^{-1}(E)$ is closed in M.

4. if V is open in N, $f^{-1}(V)$ is open in M.

Theorem 1.9

Let $f : L \to M$ and $g : M \to N$. If f is continuous at $x \in L$ and g is continuous $f(x) \in M$, $f \circ g : L \to N$ is continuous at $x \in L$.

Definition 1.33 Lipschitz

A function $f : (M, d) \to (N, \rho)$ is **Lipschitz continuous** if $\exists K < \infty$ such that $\rho(f(x), f(y)) \le Kd(x, y)$ for all $x, y \in M$.

1.3.2 Homeomorphisms

Definition 1.34

The metric spaces (M, d) and (N, ρ) are **homeomorphic** if there exists a bijection $f : (M, d) \rightarrow (N, \rho)$ such that f and f^{-1} are continuous on M and N, respectively.

Definition 1.35

Two metrics d and ρ on M are **equivalent** if

$$d(x_n, x) \to 0 \iff \rho(f(x_n), f(x)) \to 0 \text{ as } n \to 0.$$
(1.35)

Corollary 1.3

Two metrics d and ρ are **equivalent** if (M, d), (M, ρ) have convergent sequences which converge to the same limit:

$$x_n \xrightarrow{d} x \iff x_n \xrightarrow{\rho} x$$
 (1.36)

Theorem 1.10

Let $f: (M, d) \rightarrow (N, \rho)$ be a bijection. The following statements are equivalent:

1. *f* is a homeomorphism

2. $x_n \xrightarrow{d} x \iff f(x_n) \xrightarrow{\rho} f(x)$

3. G is open in $M \iff f(E)$ is open in N.

- **4.** *E* is closed in $M \iff f(E)$ is closed in *N*.
- 5. $\hat{d}(x, y) = \rho(f(x), f(y))$ if equivalent to d.

Remark

 $(\mathbb{R}, \|\cdot\|_1), (\mathbb{R}, \|\cdot\|_2), (\mathbb{R}, \|\cdot\|_{\infty})$ are all homeomorphic.

1.4 Connected Sets

Definition 1.36

A metric space *M* is **disconnected** if it can be written as the union of two non-empty, disjoint, open sets.

$M = A \cup B$	
$A \neq \emptyset, B \neq \emptyset$	(1.37)
$A \cap B = \emptyset$	

Definition 1.37 Clopen Sets

A set which is both closed and open is said to be clopen.

Remark

M is disconnected $\iff \exists A \subset M$ such that A is clopen (1.38)

Remark Let $E \subset M$.

E is a disconnected subset of $M \iff \exists U, V \subset M$ such that $E = (E \cap U) \cup (E \cap V)$ (1.39)

Where *U*, *V* are open in *M* and satisfy:

- 1. $(E \cap U) \neq \emptyset$
- **2.** $(E \cap V) \neq \emptyset$

3. $(E \cap U) \cap (E \cap V) = \emptyset$

Theorem 1.11 Intermediate Value Theorem

A subset $E \subseteq \mathbb{R}$ containing more than 1 point is connected if and only if, $\forall x, y \in E$ satisfying x < y, we have $[x, y] \subseteq E$.

Corollary 1.4

A subset $E \subseteq \mathbb{R}$ is connected if and only if it is an interval.

Theorem 1.12

A metric space M is disconnected if and only if there exists a continuous map from M on $(\{0, 1\}, d)$, where d is the discrete metric.

1.5 Completeness

1.5.1 Totally Bounded Sets

Theorem 1.13

A set A in (M, d) is **totally bounded** if and only if, given any $\epsilon > 0$, there exists finitely many points $x_1, x_2, ..., x_n \in M$ such that

$$A \subseteq \bigcup_{i=1}^{n} B_{\epsilon}(x_i)$$
(1.40)

Corollary 1.5

A set A in (M, d) is **totally bounded** if and only if, given any $\epsilon > 0$, there exists finitely many set $A_1, A_2, ..., A_n \subseteq A$ with diam $(A_i) < \epsilon$ for i = 1, 2, ..., n such that

$$A \subseteq \bigcup_{i=1}^{n} A_i \tag{1.41}$$

I Remark

Totally bounded \Rightarrow bounded, but Bounded \neq totally bounded.

1.5.2 Totally Bounded Sets vs. Cauchy Sequences

.42)

Theorem 1.14

Let (x_n) be a sequence in a metric space and let

$$A = \{x_n \mid n \ge 1\} \tag{1}$$

1. if (x_n) is a Cauchy Sequence, A is totally bounded.

2. If **A** is totally bounded, (x_n) has a Cauchy subsequence.

1.5.3 Complete Metric Spaces

Definition 1.38

(M, d) is **complete** if every Cauchy sequence in M converges to a point in M.

Theorem 1.15

Let (M, d) be a complete metric space and let A be a subset of M. (A, d) is complete if and only if A is closed in M.

n

Theorem 1.16 Nested Set Theorem

For a metric space (M, d), the following statements are equivalent:

- 1. (M, d) is complete
- **2.** let (F_n) be a sequence of closed, non-empty sets satisfying

$$F_1 \supseteq F_2 \supseteq F_3 \supseteq \dots \tag{1.43}$$

such that diam(F_n) $\rightarrow 0$ as $n \rightarrow \infty$. Then

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset. \tag{1.44}$$

3. Every infinite, totally bounded subset of M has a limit point in M.

Theorem 1.17

 l_2 is complete.

1.5.4 Banach Spaces

Definition 1.39

A complete, normed, linear space is a **Banach Space**.

Definition 1.40 Strict Contraction

Let (M, d) be a metric space and define $f : M \to M$. This f is a **strict contraction** if $\exists \alpha < 1$ such that $d(f(x), f(y)) \leq \alpha d(x, y)$ for all $x, y \in M$.

Remark

A contraction $f : M \rightarrow M$ is automatically continuous.

Theorem 1.18 Banach Fixed Point Let (M, d) be complete and $f : M \to M$ be a strict contraction. The $\exists ! x \in M$ such that f(x) = x. x is called a **fixed point** in M. Moreover, given any $x \in M$, the sequence $(f^n(x_\circ))_{n=1}^{\infty}$ converges to the fixed point x = f(x) as $n \to \infty$.

1.5.5 Completions

Definition 1.41 Isometry

 $f: (M, d) \rightarrow (N, \rho)$ is an **isometry** if it satisfies:

$$\rho(f(x), f(y)) = d(x, y).$$
(1.45)

In other words, isometries preserve distances.

Definition 1.42

A metric space (\hat{M}, \hat{d}) is a completion of (M, d) if:

- **1.** (\hat{M}, \hat{d}) is complete.
- **2.** (M, d) is isometric to a dense subset of (\hat{M}, \hat{d}) .

Remark

If *M* is dense in \hat{M} , (\hat{M}, \hat{d}) is a completion of (M, d).

Theorem 1.19

Every metric space (M, d) has a completion. Moreover, if (\hat{M}_1, \hat{d}_1) and (\hat{M}_2, \hat{d}_2) are both completions of (M, d), then $f : (\hat{M}_1, \hat{d}_1) \rightarrow (\hat{M}_2, \hat{d}_2)$ is an isometry.

1.6 Compactness

Definition 1.43

A metric space (M, d) is **compact** if it is both totally bounded and complete.

RemarkHeine-BorelA subset $K \subseteq \mathbb{R}$ is compact if and only if K is closed.Additionally, K is totally bounded if and only iff K is bounded.So K is compact if and only if it is closed and bounded.

Theorem 1.20

(M, d) is compact if and only if every sequence in M has a subsequence that converges to a point in M.

Corollary 1.6

 $compact \Rightarrow closed$

Corollary 1.7

 $compact \Rightarrow bounded$

Corollary 1.8

Closed subsets of compact metric spaces are compact.

Theorem 1.21

Let $f: (M, d) \rightarrow (N, \rho)$ be continuous on M. If K is compact in M, then f(K) is compact in N.

Theorem 1.22Extreme Value Theorem

Let (M, d) be a complete metric space. and let $f : M \to \mathbb{R}$ be continuous. Then f(M) is bounded and achieves its maximum and minimum values.

Corollary 1.9

If $f : [a, b] \rightarrow M$ is continuous, then $\exists c, d, \in \mathbb{R}$ with c < d such that f([a, b]) = [c, d].

Theorem 1.23

In a metric space (M, d), the following are equivalent:

1. If \mathcal{G} is any collection of open sets in M and $M \subseteq \bigcup \{G : G \in \mathcal{G}\}$, then there exists $G_1, ..., G_n$ such that

$$M\subseteq \bigcup_{i=1}^n G_i$$

In other words, every open cover of M has a finite subcover.

2. If \mathcal{F} is any collection of closed sets in **M** with $\bigcap_{i=1}^{n} F_i \neq \emptyset$, then

$$\bigcap \{F: F \in \mathcal{F}\} \neq \emptyset.$$

1.7 Uniform Continuity

Definition 1.44

 $f : (M, d) \rightarrow (N, \rho)$ is **uniformly continuous** if, given any $\epsilon > 0$, there exists $\delta > 0$ such that, $\forall x, y \in M$ with $d(x, y) < \delta$,

$$\rho(f(x),f(y))<\epsilon$$

Remark

Lipschitz functions are uniformly continuous. Given any $\epsilon > 0$, choose $\delta < \frac{c}{K}$ where K is the Lipschitz constant.

Theorem 1.24

If $f : M \rightarrow N$ is uniformly continuous and M is totally bounded, then N is also totally bounded. (Uniformly continuous functions map totally bounded sets to totally bounded sets).

Theorem 1.25

If M is compact and $f : M \rightarrow N$ is continuous, then f is uniformly continuous.

Theorem 1.26

Assume $(V, \|\cdot\|)$ and $(W, \|\cdot\|)$ are normed linear spaces and consider the map $T : V \to W$, where T is linear, i.e. T satisfies:

 $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$

for all $x, y \in M$ and for all scalars α, β . Then the following are equivalent:

1. *T* is Lipschitz: $\exists c > 0$ such that, $\forall x, y \in V$

$$|||T(x) - T(y)||| \le c||x - y||$$

- **2**. *T* is uniformly continuous
- **3.** T is continuous on V.
- 4. T is continuous at $0 \in V$.
- 5. $\exists c > 0$ such that

$$|||T(x)||| \le c||x||$$

Definition 1.45

A linear map $T : (V, \|\cdot\|) \rightarrow (W, \|\cdot\|)$ is **bounded** if $\exists c > 0$ such that

 $|||T(x)||| \le c ||x||$

Definition 1.46

We denote the set of all bounded, linear mappings from V to W as B(V, W).

Theorem 1.27

B(V, W) is a normed linear space.

Definition 1.47

Let $T \in B(V, W)$. We define the norm of T (known as the **Operator Norm**) as follows:

$$\|T\|_{B(V,W)} = \inf\{c \ge 0 : \||T(x)||| \le c ||x||, \forall x \in V\}$$
$$= \sup_{x \in V, ||x|| \ne 0} \frac{\||T(x)|||}{||x||}$$
$$= \sup_{\|x\| \le 1} \||T(x)|||$$

For all $x \in V$:

$|||T(x)||| \le ||T(x)||_{B(V,W)}||x||$

1.8 Sequences of Functions

1.8.1 Pointwise vs. Uniform Convergence

Definition 1.48

Let X be a set and (Y, ρ) a metric space. Let $f : X \to Y$ and $(f_n)_{i=1}^{\infty}$ be a sequence of functions such that $f_n : X \to Y$ for all $n \in \mathbb{N}$.

We say (f_n) converges to f **point-wise** on X if, for every $\hat{x} \in X$,

 $f_n(\hat{x}) \xrightarrow{\rho} f(\hat{x})$

Definition 1.49

We say (f_n) is **uniformly convergent** if, given any $\epsilon > 0$ and $x \in X$, there exists $N \in \mathbb{N}$ such that, for all $n \ge N$,

$$\rho(f_n(x), f(x)) < \epsilon$$

for each $\epsilon > 0$.

Theorem 1.28

Let (X, d) and (Y, ρ) be metric spaces and $f_n : X \to Y \forall n \in \mathbb{N}$. Asssume $f_n \to f$ uniformly on X and f_n is continuous at $x \in X \forall n \in \mathbb{N}$. Then f is also continuous at x.

Theorem 1.29

Suppose $f_n : [a, b] \to \mathbb{R}$ is continuous $\forall n \in \mathbb{N}$ and assume $f_n \to f$ uniformly on [a, b]. Then

$$\int_{a}^{b} f_{n} \to \int_{a}^{b} f$$

1.8.2 Space of Bounded Functions

Definition 1.50

Given a set X, let B(X) denote the space of all real valued, bounded functions on X. So $f \in B(X)$ means $f : X \to \mathbb{R}$ and $\sup_{x \in X} |f(x)| < \infty$. We equip B(X) with the sup norm: $||f||_{B(X)} = ||f||_{\infty} = \sup_{x \in X} |f(x)|_{x \in X}$

Remark

 $\|\cdot\|_{\ell_{\infty}}$ refers specifically to sequences.

Remark

If $f_n \to f$ in B(X), or $||f_n - f||_{\infty} \to 0$ as $n \to \infty$, then, given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $||f_n - f||_{\infty} = \sup_{x \in X} |f_n(x) - f(x)| < \epsilon$. But then $\forall n \ge N$ and $\forall x \in X$, $|f_n(x) - f(x)| < \epsilon$, so $f_n \to f$ uniformly on X.

Theorem 1.30

B(X) is complete under the sup norm. This means, given any Cauchy sequence $(f_n) \in B(X)$, $f_n \to f \in B(X)$. Moreover, $\exists c > 0$ such that $||f_n||_{\infty} \leq C$ for all $n \in \mathbb{N}$ and $||f_n||_{\infty} \to ||f||_{\infty}$

Definition 1.51

A Cauchy sequence $(f_n) \in B(X)$ is called **Uniformly Cauchy**.

Definition 1.52

A bounded sequence in B(X) is called **Uniformly Bounded**.

Theorem 1.31

Assume X is a coompact metric space. Then $C_b(x) = C(x)$. If X is compact and $f : X \to \mathbb{R}$ is continuous, then f(x) is compact in \mathbb{R} so f(x) is bounded. Therefore, $C(x) = c_b(x)$.

1.9 Equicontinuity

Remark

If $f \in C(X)$ and X is compact, then f is uniformly continuous.

Definition 1.53

Let \mathcal{F} be a collection of real valued function on a metric space X. We say \mathcal{F} is **equicontinuous** if, given any $\epsilon > 0$, there exists $\delta > 0$ such that, $\forall x, y \in X$ with $d(x, y) < \delta$, $|f(x) - f(y)| < \epsilon$ for all $f \in \mathcal{F}$.

Theorem 1.32

Let X be a compact set. Any finite subset of C(X) is equicontinuous.

Definition 1.54

Fix k > 0 and $\alpha > 0$. Consider the set of $\{f \in C([0, 1]) : |f(x) - f(y)| \le k|x - y|^{\alpha}, \forall x, y \in [0, 1]\}$. We call this set $\operatorname{Lip}_{\nu}^{\alpha}$.

Theorem 1.33

Given $\epsilon > 0$, choose $\delta = (\frac{\epsilon}{k})^{\alpha}$. Then Lip_k^{α} is equicontinuous

Definition 1.55

A collection of real valued functions \mathcal{F} on X is **uniformly equibounded** if $\{f(x) : x \in X, f \in \mathcal{F}\}$ is

a bounded set in \mathbb{R}

$$\sup_{x\in X, f\in \mathcal{F}} |f(x)| = \sup_{f\in \mathcal{F}} ||f||_{\infty} < \infty$$

1.10 Arzela-Ascoli Theorem

Definition 1.56 Uniformly Bounded

A collection of real values functions \mathcal{F} on a set X is is **Uniformly Bounded** if

 $\{f(x) : x \in X, f \in \mathcal{F}\}$ or $\sup_{f \in \mathcal{F}, x \in X} |f(x)| = \sup_{f \in \mathcal{F}} ||f||_{\infty} < \infty$ or $\exists C > 0 \text{ such that } ||f||_{\infty} \le C$ $\forall f \in \mathcal{F}$

Remark

For $\mathcal{F} \subseteq C(X)$, where C(X) is equipped with $\|\cdot\|_{\infty}$, \mathcal{F} is uniformly bounded if and only if \mathcal{F} is a bounded subset of C(X).

Theorem 1.34 Arzela-Ascoli

Let X be a compact metric space and let $\mathcal{F} \subseteq C(X)$. \mathcal{F} is compact if and only if \mathcal{F} is closed, uniformly bounded, and equicontinuous.

Corollary 1.10

Let X be a compact metric space. If (f_n) is uniformly bounded and equicontinuous on C(X), then there exists a subsequence of (f_n) that converges uniformly on X.

Chapter 2 Measure Theory (MTH 512)

2.1 Riemann Integral

Definition 2.1

Let *P* be a **partition** of [*a*, *b*],

$$P = x_0, x_1, ..., x_n$$

such that

$$a = x_0 < x_1 < \dots < x_n = b$$

Definition 2.2

Assume $f : [a, b] \rightarrow \mathbb{R}$ is bounded.

$$L(f, P, [a, b]) = \sum_{j=1}^{n} (\inf_{x \in [x_{j-1}, x_j]} f(x))(x_j - x_{j-1})$$

is the Lower Riemann Sum of f.

Definition 2.3

Assume $f : [a, b] \rightarrow \mathbb{R}$ is bounded.

$$U(f, P, [a, b]) = \sum_{j=1}^{n} (\sup_{x \in [x_{j-1}, x_j]} f(x))(x_j - x_{j-1})$$

is the Upper Riemann Sum of f.

Definition 2.4

$$L(f, [a, b]) = \sup_{a} L(f, P, [a, b])$$

is the Lower Riemann Integral of *f*.

Definition 2.5

$$U(f, [a, b]) = \inf_{n} U(f, P, [a, b])$$

is the Upper Riemann Integral of f.

Definition 2.6

A bounded function $f : [a, b] \rightarrow \mathbb{R}$ is **Riemann Integrable** on [a, b] if

$$L(f, [a, b]) = U(f, [a, b])$$

Theorem 2.1

If $f : [a, b] \rightarrow \mathbb{R}$ is continuous, f is Riemann Integrable.

2.2 Measures

2.2.1 Outer Measures

Definition 2.7

If *I* is an open interval in \mathbb{R} with a < b (i.e. $I = (a, b), I = (-\infty, a), I = (a, \infty)$, or $I = (-\infty, \infty)$). The **length** of *I* is given by

$$\ell(I) = \begin{cases} b - a, I = (a, b) \\ \infty, I = (-\infty, a), I = (a, \infty), I = (-\infty, \infty) \\ 0, I = \emptyset \end{cases}$$

Definition 2.8

For $A \subseteq \mathbb{R}$, the **Outer Measure** of A is

$$|A| = \inf\{\sum_{k=1}^{\infty} \ell(I_k) : A \subseteq \bigcup_{k=1}^{\infty} I_k\}$$

Where $\{I_k\}_{k=1}^{\infty}$ is a collection of open intervals and |A| is the infimum over all such collections.

Theorem 2.2

The outer measure of any countable subset of \mathbb{R} is **0**.

Theorem 2.3

Suppose $A \subseteq B \subseteq \mathbb{R}$, then $|A| \leq |B|$.

Theorem 2.4

Assume $t \in \mathbb{R}$ and $A \subseteq \mathbb{R}$, then |t + A| = |A|, where

 $t + A = \{t + a : a \in A\}$

Theorem 2.5

Suppose $\{A_1, A_2, A_3, ...\}$ is a countable collection of subsets of \mathbb{R} . Then

$$|\bigcup_{k=1}^{\infty} A_k| \le \sum_{k=1}^{\infty} |A_k|$$

Remark

 $\exists A_1, A_2 \in \mathbb{R}$ with $A_1 \bigcap A_2 = \emptyset$ such that

 $|A_1 \cup A_2| \neq |A_1| + |A_2|$

Theorem 2.6

Let $a, b \in \mathbb{R}$, a < b. Then

$$|[a,b]| = b - a$$

19

Theorem 2.7

 \underline{A} a function μ with all the following properties:

- **1.** μ maps all subsets of \mathbb{R} to $[0, \infty]$.
- 2. $\mu(I) = \ell(I)$ for all open intervals $I \in \mathbb{R}$.

3.
$$\mu([A_k] = \sum \mu(A_k)$$
 for all $\{A_k\}_{k=1}^{\infty}$ (pairwise disjoint).

4. $\mu(t + A) = \mu(A)$ for all $t \in \mathbb{R}$, $A \subseteq \mathbb{R}$.

k=1

2.2.2 σ -algebras

k=1

Definition 2.9 *σ*-algebra

Let X be a set and \mathscr{S} be a collection of subsets of X. Then \mathscr{S} is a σ -algebra on X if:

- **1**. $\emptyset \in \mathscr{S}$
- **2.** If $E \in \mathscr{S}$ then $X E \in \mathscr{S}$
- **3.** If $\{E_k\}_{k=1}^{\infty}$ is a collection in \mathscr{S} then

$$\bigcup_{k=1}^{\infty} E_k \in \mathcal{S}$$

Remark

Suppose \mathscr{S} is a σ -algebra on X, then

1. $X \in \mathcal{S}$

2. $D, E \in \mathcal{S} \Rightarrow D \cap E \in \mathcal{S}$ and $D \cup E \in \mathcal{S}$ and $D - E \in \mathcal{S}$

3. If $\{E_k\}_{k=1}^{\infty}$ is a countable collection in \mathscr{S} , then $\bigcap E_k \in \mathscr{S}$

2.2.3 Measurable Spaces

Definition 2.10

A **measurable space** is an ordered pair (X, \mathcal{S}), where X is a set and \mathcal{S} is a σ -algebra on X. An element of \mathcal{S} is said to be \mathcal{S} **measurable**.

Remark Consider $X = \mathbb{R}$. Let \mathscr{S} be the collection of all sets *E* such that *E* or X - E is countable.

1. \mathbb{Q} is \mathscr{S} measurable

- **2**. $\mathbb{R} \mathbb{Q}$ is \mathscr{S} measurable
- **3.** (0, 1) is <u>not</u> *S* measurable

2.2.4 Borel Subsets

Theorem 2.8

Let X be a set and let \mathscr{A} be a collection of subsets of X. Then the intersection of all σ -algebras on X which contain \mathscr{A} is also a σ -algebra containing \mathscr{A} . Furthermore, the intersection is the smallest possible σ -algebra containing \mathscr{A} .

Definition 2.11

The smallest σ -algebra on \mathbb{R} containing all open subsets of \mathbb{R} is called the collection of **Borel Subsets**. An element of this σ -algebra is called a **Borel Set**.

Remark

- 1. Open sets are Borel Sets
- 2. Closed sets are Borel Sets
- **3.** [*a*, *b*),(*a*, *b*] are Borel Sets
- 4. x is a Borel Set
- **5.** Countable subsets of \mathbb{R} are Borel Sets
- **6.** \mathbb{Q} and $\mathbb{R} \mathbb{Q}$ are Borel Sets
- 7. Any countable union of countable intersection of (1)-(7) is a Borel Set

2.2.5 Measures

Definition 2.12

let X be a set and \mathscr{S} be a σ -algebra on X, then (X, \mathscr{S}) is a measurable space. A **measure** on (X, \mathscr{S}) is a function $\mu : \mathscr{S} \to [0, \infty]$ such that:

$$\mu(\emptyset) = 0$$

2.

$$\mu\Big(\bigcup_{k=1}^{\infty}E_k\Big)=\sum_{k=1}^{\infty}\mu(E_k)$$

Remark

Let $X = \mathbb{R}$ and $\mathscr{S} = P(X)$, then (X, \mathscr{S}) is a measurable space but $\mu = |\cdot|$ is not a measure on (X, \mathscr{S}) because (2) fails.

Definition 2.13 Counting Measure

Let X be a set and $\mathscr{S} = P(X)$. Define $\mu : \mathscr{S} \to [0, \infty]$ as

$$\mu(E) = \begin{cases} +\infty, & E \in \mathscr{S} \text{ is infinite.} \\ n, & E \in \mathscr{S} \text{ is finite.} \end{cases}$$

where n is the number of elements in \mathscr{S} .

I Remark

Consider the set $X = \{1, 2, 3, 4, ..., N - 1, N\}$ and $\mathscr{S} = P(X)$ and let μ be a counting measure on (X, \mathscr{S}) . Consider a sum of real numbers $a_1 + a_2 + a_3 + a_4 + ... + a_N$. Let $f(k) = a_k$ for each $1 \le k \le N$ ($f : X \to \mathbb{R}$). Then

$$\sum_{k=1}^{N} a_k = \sum_{k=1}^{N} f(k)$$
$$= \sum_{k=1}^{N} f(k) \cdot \mu(\{k\})$$
$$= \int_{X} f \cdot d\mu$$

Definition 2.14

A **Measure Space** (X, \mathcal{S}, μ) is a measurable space with a measure on it.

Theorem 2.9

Suppose (X, \mathcal{S}, μ) is a measure space. Let $D, E \in \mathcal{S}$ such that $D \subseteq E$, then

1. μ(D) ≤ μ(E)

2.
$$\mu(D - E) = \mu(D) - \mu(E)$$

Theorem 2.10 Countable Subadditivity

Let (X, \mathcal{S}, μ) be a measure space and $E_1, E_2, E_3, \dots \in \mathcal{S}$ (not necessarily disjoint), then

$$\mu\Big(\bigcup_{k=1}^{\infty} E_k\Big) \leq \sum_{k=1}^{\infty} \mu(E_k)$$

Theorem 2.11

Let (X, \mathcal{S}, μ) be a measurable space. Let $E_1 \subseteq E_2 \subseteq E_3 \subseteq ...$ be a nested sequence of sets in \mathcal{S} , then

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \lim_{k \to \infty} \mu(E_k)$$

Theorem 2.12

Let (X, \mathscr{S}, μ) be a measurable space. Let (X, \mathscr{S}, μ) be a measurable space. Let $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$ be a nested sequence of sets in \mathscr{S} and $\mu(E_1) < \infty$, then

$$\mu\Big(\bigcap_{k=1}^{\infty}E_k\Big)=\lim_{k\to\infty}\mu(E_k)$$

Theorem 2.13

Assume (X, \mathcal{S}, μ) is a measure space and $D, E \in \mathcal{S}$ with $\mu(D \cup E) < \infty$. Then $\mu(D \cup)E = \mu(D) + \mu(E) - \mu(D \cap E)$.

2.3 Lebesgue Measure

Remark

In constructing the Lebesgue Measure, the idea is to show that the outer measure, when restricted to (\mathbb{R}, \mathbb{B}) where \mathbb{B} is the Borel Set of \mathbb{R} , is a measure. In other words, $(\mathbb{R}, \mathbb{B}, |\cdot|)$ is a measure space.

Theorem 2.14

Let $A, G \subseteq \mathbb{R}, A \cap G = \emptyset$ and G open. Then $|A \cup G| = |A| + |G|$.

Theorem 2.15

Let $A, F \subseteq \mathbb{R}, A \cap G = \emptyset$ and F open. Then $|A \cup F| = |A| + |F|$.

Theorem 2.16

Let $B \subseteq \mathbb{R}$ be a Borel set. The $\forall \epsilon > 0$, there exists a closed set $F \subseteq B$ such that $|B - F| < \epsilon$.

Theorem 2.17

Suppose $A, B \subseteq \mathbb{R}, A \cap B = \emptyset$, and B is a Borel Set. Then

$$|A \cup B| = |A| + |B|$$

Theorem 2.18

Outer Measure is a measure on the measurable space (\mathbb{R} , \mathscr{B}) where \mathscr{B} is the set of all Borel Sets. So (\mathbb{R} , \mathscr{B} , $|\cdot|$) is a measure space.

Definition 2.15 Lebesgue Measure

Lebesque Measure is the measure on $(\mathbb{R}, \mathcal{B})$ which assigns to each Borel set its outer measure.

2.3.1 Lebesgue Measurable Sets

Definition 2.16

If $A \subseteq \mathbb{R}$, A is **Lebesgue Measurable** if \exists a Borel set $B \subseteq A$ such that $|A - B| = \emptyset$.

Definition 2.17

Let $A \subseteq \mathbb{R}$. The following statements are equivalent:

- **1.** *A* is Lebesgue Measurable.
- **2**. $\forall \epsilon > 0$, $\exists F$ closed in A such that $|A F| < \epsilon$.
- **3**. \exists sequence of closed sets $F_1, F_2, F_3, \dots \subseteq A$ such that

$$\left|A - \bigcup_{i=1}^{\infty} F_i\right| = 0$$

- **4**. $\forall \epsilon > 0$, $\exists G$ open with $G \supseteq A$ such that $|G A| < \epsilon$.
- **5.** \exists sequence of open sets $G_1, G_2, G_3, \dots \supseteq A$ such that

$$\left|\left(\bigcap_{i=1}^{\infty}G_{i}\right)-A\right|=0$$

6. \exists a Borel set $B \supseteq A$ such that |B - A| = 0

Theorem 2.19

Outer Measure is a measure on (\mathbb{R} , \mathcal{L}), where \mathcal{L} is the σ -algebra of Lebesgue measurable sets.

Definition 2.18 Alternative Definition of Lebesgue Measure

Lebesgue Measure is the measure on $(\mathbb{R}, \mathcal{L})$ which assigns to each $A \in \mathcal{L}$ its outer measure.

I Remark

The two definitions of Lebesgue Measure are not equivalent, however

 $\forall A \in \mathcal{L},$ $A = B \cup (A - B)$

where *B* is Borel and |A - B| = 0. So, in practice, the difference in definition doesn't matter.

Theorem 2.20

Every set A with |A| = 0 is Lebesgue measurable.

For any Lebesgue measurable set *A*,

 $A = B \cup (A - B)$

where *B* is Borel and |A - B| = 0. So \mathcal{L} is the smallest σ -algebra containing the Borel sets and the sets of outer measure 0. (Note: non-Borel sets of outer measure 0 do exists, but they don't really matter for any reason.)

2.4 Measurable Functions

Definition 2.19

Suppose (X, \mathscr{S}) is a measurable space. A function $f : X \to \mathbb{R}$ is a **measurable function** if $f^{-1}(B) \in \mathscr{S}$ for all $B \in \mathbb{B}$.

2.4.1 Characteristic Functions

Definition 2.20

Let X be a set and $E \subseteq X$. The **characteristic function** of $E, \chi_E : X \to \mathbb{R}$, is defined by:

$$\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

Theorem 2.21

Suppose (X, \mathscr{S}) is a measurable space. If $E \subseteq X$, then chi_E is measurable iff $E \subseteq \mathscr{S}$ (i.e. E is \mathscr{S} measurable).

Definition 2.21

Suppose $X \subseteq \mathbb{R}$, then $f : X \to \mathbb{R}$ is **Borel Measurable** if $f^{-1}(B)$ is a Borel set $\forall B \in \mathbb{B}$.

Definition 2.22

Suppose $A \subseteq \mathbb{R}$. Then $f : A \to \mathbb{R}$ is **Lebesgue Measurable** if $f^{-1}(B)$ is Lebesgue Measurable for all Borel sets.

Theorem 2.22

Suppose (X, \mathscr{S}) is a measurable space and $f : X \to \mathbb{R}$, then f is measurable iff $f^{-1}(A) \in \mathscr{S}$ for all open sets $A \subseteq \mathbb{R}$.

Theorem 2.23

Suppose (X, \mathscr{S}) is a measurable space and $f : X \to \mathbb{R}$, then f is measurable iff $f^{-1}((\alpha, \infty)) \in \mathscr{S}$ for all $\alpha \in \mathbb{R}$.

Theorem 2.24

Suppose (X, \mathscr{S}) is a measurable space and let $f_1, f_2, f_3, ...$ be a sequence of measurable functions with $f_k : X \to \mathbb{R}$ for all k. Suppose, for all $x \in X$, $\lim_{k \to \infty} f_k(x)$ exists. Let

$$f = \lim_{k \to \infty} f_k(x)$$

for all $x \in X$. Then f is also measurable.

Corollary 2.1

Suppose (X, \mathscr{S}) is a measurable space and let $f_1, f_2, f_3, ...$ be a sequence of measurable functions with $f_k : X \to \mathbb{R}$ for all k. Suppose, for all $x \in X$, $\lim_{k \to \infty} f_k(x)$ exists. Then for any $a \in \mathbb{R}$

$$F^{-1}((a,\infty)) = \bigcup_{j=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{m=k}^{\infty} f_k^{-1}((a+\frac{1}{j},\infty)) \in \mathcal{S}$$

Theorem 2.25

If $f : X \to \mathbb{R}$ is continuous with $X \subseteq \mathbb{R}$, then f is both Borel and Lebesgue measurable.

2.4.2 Composition of Measurable Functions

Theorem 2.26

Let (X, \mathscr{S}) be a measurable space and $f : X \to \mathbb{R}$ be \mathscr{S} measurable. Assume $Y \subseteq f(X)$ and let $g : Y \to \mathbb{R}$ be Borel measurable. then $g \circ f : X \to \mathbb{R}$ is \mathscr{S} measurable.

Example 2.1

Assume *f* is \mathscr{S} measurable. Then f^2 , $\frac{1}{2}f$, -f, |f| are \mathscr{S} measurable.

Theorem 2.27

Suppose (X, \mathscr{S}) is a measurable set. Let $f, g : X \to \mathbb{R}$ be \mathscr{S} measurable. Then the following are also \mathscr{S} measurable:

1. *f* + *g*

2. *f* − *g*

3. fg

4. f/g (If $g(x) \neq 0, \forall x \in X$)

2.4.3 Convergence of Measurable Functions

Theorem 2.28 Egorov's

Suppose (X, \mathscr{S}, μ) is a measure space with $\mu(x) < \infty$. Let $\{f_k\}$ be a sequence of measurable functions $f_k : X \to \mathbb{R}$ for all k, with $f_k \to f$ for all $x \in X$ (pointwise). Then $\forall \epsilon > 0$, $\exists E \in \mathscr{S}$ such that $\mu(X - E) < \epsilon$ and $f_k \to f$ uniformly on E.

Remark

We can assume $f_k \rightarrow f$ pointwise "almost everywhere", meaning everywhere except on a subset $A \subseteq X$ with $\mu(A) = 0$.

2.4.4 Simple Functions

Definition 2.23

A subset $A \subseteq [-\infty, \infty]$ is called a **Borel Set** if $A \cap \mathbb{R}$ is a Borel set of \mathbb{R} .

Remark

The set of Borel Sets of $[-\infty, \infty]$ is a σ -algebra on $[-\infty, \infty]$.

Definition 2.24

Let (X, \mathscr{S}) be a measurable space. Then $f : X \to [-\infty, \infty]$ is \mathscr{S} measurable if $f^{-1}(B) \in \mathscr{S}$ for all Borel Sets B in $[-\infty, \infty]$.

Theorem 2.29

Suppose $(X\mathscr{S})$ is a measurable space. Then $f : X \to [-\infty, \infty]$ is \mathscr{S} measurable if and only if $f^{-1}((a, \infty]) \in \mathscr{S}$ for all $a \in \mathbb{R}$.

Definition 2.25

A function if called **simple** if it takes on finitely many values in \mathbb{R} Let (X, \mathscr{S}) be a measurable space. Let $f : X \to \mathbb{R}$ be a simple function on the non-zero values *c*₁, *c*₂, *c*₃, ..., *c*_n. Then

$$f = c_1 \chi_{E_1} + c_2 \chi_{E_2} + c_3 \chi_{E_3} + \dots + c_n \chi_{E_n}$$

Where $E_k = f^{-1}(\{c_k\})$ for all $1 \le k \le n$. Note that if f is \mathscr{S} measurable, then $E_k = f^{-1}(\{c_k\}) \in \mathscr{S}$ for all k. If $E_k \in \mathscr{S}$ for all k then ξ_{E_k} is \mathscr{S} measurable, so

$$f=\sum_{k=1}^n c_k \chi_{E_k}$$

is \mathscr{S} measurable. fo f is \mathscr{S} measurable if and only if $E_k \in \mathscr{S}$ for all $1 \le k \le n$

2.4.5 Approximation by Simple Functions

Theorem 2.30

Let (X, \mathscr{S}) be a measurable space and $f : X \to [-\infty, \infty]$ be \mathscr{S} -measurable. Then \exists a sequence $f_1, f_2, ..., f_k : X \to \mathbb{R}$ for all k such that

- **1.** Each f_k is a simple function
- 2. $|f_k(x)| \le |f_{k+1}(x)| \le |f(x)|$ for all $x \in X$ and $k \in \mathbb{N}$
- 3. $\lim_{k \to \infty} f_k(x) = f(x)$
- **4.** If *f* is bounded, the $f_k \rightarrow f$ uniformly on *X*.

Theorem 2.31 Lusin's Theorem

Suppose $g : \mathbb{R} \to \mathbb{R}$ is Borel measurable. Then given $\epsilon > 0$, $\exists \ closed \ F \subset \mathbb{R}$ such that $|\mathbb{R} - F| \le \epsilon$ and $g|_F$ is continuous.

Theorem 2.32

If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue Measurable, there exists a Borel Measurable $g : \mathbb{R} \to \mathbb{R}$ such that

 $|\{x: g(x) \neq f(x)\}| = 0$

Theorem 2.33

Let $(X \mathscr{S})$ be a measurable space, $f_1, f_2, ...$ be a sequence of \mathscr{S} -measurable functions with $f_k : \mathbb{R} \to \mathbb{R}$ for all $k \in \mathbb{N}$, then $\{x \in X : \lim_{k \to \infty} f_k(x) \text{ exists in } \mathbb{R}\}$

Theorem 2.34

If $f, g: X \to [-\infty, \infty]$ satisfy

 $\mu(\{x \in X : f(x) \neq g(x)\}) = 0$

where μ is the Lebesgue measure, then we say f and g are equal almost everywhere.

2.5 Lebesgue Integration

Remark

By convention, let

 $\infty \times 0 = 0 \times \infty = 0$

Definition 2.26

Let \mathscr{S} be a σ -algebra on X, then an \mathscr{S} -partition on X is a finite collection of disjoint sets $A_1, A_2, ..., A_n$ in \mathscr{S} such that

$$\bigcup_{j=1}^n A_j = X$$

Definition 2.27

Suppose (X, \mathcal{S}, μ) is a measure space and let $f : X \to [0, \infty]$ be \mathcal{S} -measurable. Let $P = \{A_1, A_2, ..., A_n\}$ be an \mathcal{S} -partition on X. Then the **Lower Lebesgue Sum** is defined to be

$$\mathcal{L}(f, P) = \sum_{j=1}^{n} \mu(A_j) \inf_{x \in A_j} f(x)$$

Definition 2.28

Suppose (X, \mathcal{S}, μ) is a measure space and let $f : X \to [0, \infty]$ be \mathcal{S} -measurable. The **Integral** With Respect To μ (i.e. Lebesgue Integration is defined to be

$$\int_{X} f d\mu = \sup \{ \mathcal{L}(f, P) : P \text{ is a partition on } X \}$$

Remark Suppose (*X*, *S*, μ) is a measure space and *E* ∈ *S*. Then

$$\int_{X} \chi_{E} d\mu = \mu(E)$$

2.5.1 Integrals of Simple Functions

Theorem 2.35

Suppose (X, \mathcal{S}, μ) is a measure space and $E_1, E_2, ..., E_n$ is a disjoint collection in \mathcal{S} . Let $c_1, c_2, ..., c_n \in [0, \infty]$. Then

$$\int_X \sum_{k=1}^n c_k \chi_{E_k} d\mu = \sum_{k=1}^n c_k \mu(E_k)$$

Theorem 2.36 Preservation of Order Suppose (X, \mathcal{S}, μ) is a measure space. Let $f, g : X \to [0, \infty]$ be \mathcal{S} -measurable. Assume $f(x) \leq f(x) \leq f(x)$ g(x) for all $x \in X$. Then

$$\int_X f d\mu \le \int_X g d\mu$$

Theorem 2.37

Suppose (X, \mathcal{S}, μ) is a measure space and $f : X \to [0, \infty]$ is \mathcal{S} -measurable. Then

$$\int_{X} f d\mu = \sup \left(\left\{ \sum_{j=1}^{n} c_{j} \mu(A_{j}) : \left\{ A_{1}, A_{2}, \dots, A_{n} \right\} \text{ is a disjoint collection of sets in } \mathscr{S}, \right. \\ \left. c_{1}, c_{2}, \dots, c_{n} \in [0, \infty) \text{ and } f(x) \ge \sum_{j=1}^{m} c_{j} \chi_{A_{j}}(x) \forall x \in X \right\} \right)$$

Theorem 2.38 Monotone Convergence Theorem

Suppose (X, \mathcal{S}, μ) is a measure space. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions such that $f_k : X \rightarrow [0, \infty]$ is \mathcal{S} -measurable for all $k \in \mathbb{N}$ and

$$0 \leq f_1 \leq f_2 \leq \dots$$

for all $x \in X$. Let $f(x) = \lim_{k \to \infty} f_k(x)$. Then

$$\lim_{k \to \infty} \int_X f_k d\mu = \int_X \lim_{k \to \infty} f_k d\mu = \int_X f d\mu$$

Theorem 2.39

Suppose (X, \mathcal{S}, μ) is a measure space and $E_1, E_2, ..., E_n \in \mathcal{S}$ are not necessarily disjoint and $c_1, c_2, ..., c_n \in [0, \infty]$. Then

$$\int_X \sum_{k=1}^n c_k \chi_{E_k} d\mu = \sum_{k=1}^n c_k \mu(E_k)$$

Theorem 2.40

Suppose (X, \mathcal{S}, μ) is a measure space. Assume $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n \in [0, \infty]$, $A_1, A_2, ..., A_m, B_1, B_2, ..., B_n \in \mathcal{S}$ such that

$$\sum_{j=1}^m a_j \chi_{A_j} = \sum_{k=1}^n b_k \chi_{B_k}$$

Then

$$\sum_{j=1}^m a_j \mu(A_j) = \sum_{k=1}^n b_k \mu(B_k)$$

Theorem 2.41

Suppose (X, \mathcal{S}, μ) is a measure space. Let $f, g : X \to [0, \infty]$ be \mathcal{S} -measurable. Then

$$\int_{X} (f+g) d\mu = \int_{X} f d\mu + \int_{X} g d\mu$$

Definition 2.29

Let $f : X \rightarrow [-\infty, \infty]$. Define:

$$f^{+}: X \to [0, \infty]$$

and
$$f^{-}: X \to [0, \infty]$$

as
$$f^{+}(x) = \begin{cases} f(x), & f(x) \ge 0\\ 0, & f(x) < 0 \end{cases}$$

$$f^{-} = \begin{cases} 0 & f(x) \ge 0\\ -f(x) &< 0 \end{cases}$$

So
$$f^{+} = f\chi_{f^{-1}[0,\infty]}$$

$$f^{-} = -f\chi_{f^{-1}[-\infty,0]}$$

Remark

If $f : X \to [-\infty, \infty]$ is \mathscr{S} -measurable, f^+ and f^- are also \mathscr{S} -measurable.

Definition 2.30

Given measurable space (X, \mathcal{S}, μ) and \mathcal{S} -measurable function : $X \to [\infty, \infty]$ such that either

$$\int_{X} f^{+} d\mu < \infty$$
or
$$\int_{X} f^{-} d\mu < \infty$$

Then

$$\int_{X} f d\mu \equiv \int_{X} f^{+} d\mu - \int_{X} f^{-} d\mu$$

(Note: otherwise, $\int f d\mu = \infty - \infty$ (undefined))

Note that $\int_{X} |f| d\mu = \int_{X} (f^{+} + f^{-}) d\mu = \int_{X} f^{+} d\mu + \int_{X} f^{-} d\mu$ Therefore $\int_{X} |f| d\mu < \infty \iff \int_{X} f^{+} d\mu < \infty$ and $\int_{X} f^{-} d\mu < \infty$

2.5.3 Properties of the Integral

Theorem 2.42

Let $f : X \to [-\infty, \infty]$ be an \mathscr{S} -measurable function and $\int_X f d\mu$ be defined. The $\forall c \in \mathbb{R}$, $\int_X cf d\mu = c \int_X f d\mu$

Theorem 2.43

Suppose
$$f: X \to [-\infty, \infty]$$
 such that $\int |f| d\mu < \infty$. Then
 $\left| \int f d\mu \right| \le \int |f| d\mu$

2.6 Limits of Integrals and Integrals of Limits

Definition 2.31

Let $E \in \mathscr{S}$ and $f : x \to [-\infty, \infty]$ be \mathscr{S} -measurable. Define

$$\int_{E} f d\mu = \int_{X} \chi_{E} f d\mu$$

Theorem 2.44 Bounded Convergence Theorem

Assume $\mu(X) < \infty$. Let $f_1, f_2, f_3, ...$ be a sequence of \mathscr{S} -measurable functions such that $f_k \to f$ pointwise on X and $f_k : X \to \mathbb{R}$ for all $k \in \mathbb{N}$ and $f : X \to \mathbb{R}$. Suppose $\exists c > 0$ such that $|f_k(x)| \le c$ $\forall x \in X$ and $\forall k \in \mathbb{N}$. Then

$$\lim_{k\to\infty}\int f_k d\mu = \int f d\mu$$

Theorem 2.45

Let $E \in \mathscr{S}$. Assume $f : X \to [-\infty, \infty]$ such that $\int_{Y} |f| d\mu < \infty$. Then

$$\int_{E} f d\mu \leq \mu(X - E) \sup_{x \in E} |f(x)|$$

Theorem 2.46

Let $e \in \mathscr{S}$ and $g : X \to [0, \infty]$ be \mathscr{S} -measurable and assume $\int_X gd\mu < \infty$. Then $\forall \epsilon > 0, \exists \delta > 0$ such that whenever $\mu(E) < \delta$, $\int_{-g} gd\mu < \epsilon$

Definition 2.32

Let $f, g: X \rightarrow [-\infty, \infty]$ be \mathscr{S} -measurable and assume

$$\mu(\{x \in X : f(x) \neq g(x)\}) = 0$$

Then we say f = g almost everywhere on X or f = g a.e. on X.

Theorem 2.47

If f = g a.e. on X, then

$$\int_X f d\mu = \int_X g d\mu$$

Theorem 2.48

Let $g : X \to [0, \infty]$ be \mathscr{S} -measurable and assume $\int_X |g| < \infty$. Then $\forall \epsilon > 0, \exists E \in \mathscr{S}$ with $\mu(E) < \infty$ and

In other words: Integrable functions live mostly on sets of finite measure.

Theorem 2.49 Dominated Convergence Theorem

Let $f : X \to [0, \infty]$ be \mathscr{S} -measurable. Let f_1, f_2, f_3, \dots be a sequence of \mathscr{S} -measurable functions such that

$$\lim_{k \to \infty} f_k(x) \to f(x) \text{ a.e. on } X$$

Assume $\exists g : X \rightarrow [0, \infty]$ also \mathscr{S} -measurable such that:

1) $\int_{X} gd\mu < \infty$ 2) $|f_k(x)| \le g(x)$ for all $k \in \mathbb{N}$ a.e. on X Then

$$\lim_{k\to\infty}\int_X f_k d\mu = \int_X f d\mu$$

2.6.1 Approximation by Nice Functions

Definition 2.33

Let $f : X \to [-\infty, \infty]$ be \mathscr{S} -measurable. Set

$$\|f\|_1 = \int_X |f| d\mu$$

Then define $\mathscr{L}^{1}(\mu)$ to be

$$\mathcal{L}^1(\mu) = \{f: X \to [-\infty,\infty]: \int_X |f| d\mu < \infty\}$$

 \mathscr{L}^1 is referred to as the **Lebesgue Space**.

Theorem 2.50

Assume $f, g \in \mathscr{L}^1(\mu)$. Then

- **1.** $||f||_1 \ge 0$
- 2. $||f||_1 = 0 \iff f(x) = 0$ for a.e. $x \in X$
- 3. $||cf||_1 = |c|||f||_1$ for all $c \in \mathbb{R}$
- **4.** $||f + g||_1 \le ||f||_1 + ||g||_1$

Note: by (3) and (4), \mathcal{L}^1 satisfies the properties of a vector space. However, by (2), $\|\cdot\|_1$ is not a norm.

Theorem 2.51

Consider the measure space $(\mathbb{R}, \mathcal{L}, \lambda)$. Let $f \in \mathcal{L}^1(\lambda)$. Then $\forall \epsilon > 0, \exists g : \mathbb{R} \to \mathbb{R}$ such that g is continuous, $\{x \in \mathbb{R} : g(x) \neq 0\}$ is bounded and $\|f - g\|_1 < \epsilon$.

Definition 2.34

The **support** of a function $f : X \rightarrow [-\infty, \infty]$ is the closure of the non-zero domain

 $\overline{\{x \in X : f(x) \neq 0\}}$

The set of all continuous function on \mathbb{R} with compact support is denoted $C_{\mathcal{C}}(\mathbb{R})$

Remark $C_c(\mathbb{R})$ is dense in $\mathscr{L}^1(\lambda)$

2.7 Product Measures

Definition 2.35

The Cartesian Product of X and Y is defined as

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

Definition 2.36

Let X, Y be sets. A **rectangle** in $X \times Y$ is a set $A \times B$ with $A \subseteq X, B \subseteq Y$.

Definition 2.37

Given $(X, \mathcal{S}, \mu), (Y, \mathcal{T}, \nu)$ The product $\mathcal{S} \otimes \mathcal{T}$ is defined to be the smallest σ -algebra containing

all the rectangles generated by \mathscr{S}, \mathscr{T} :

 $\{A \times B : A \in \mathcal{S}, B \in \mathcal{T}\}$

A measurable rectangle in $\mathscr{S} \otimes \mathscr{T}$ is a set of the form $A \times B$ where $A \in \mathscr{S}$ and $B \in \mathscr{T}$.

Definition 2.38

Let X, Y be sets. Let $E \subseteq X \times Y$. Then for $a \in X, b \in Y$ the **cross sections** $[E]_a$ and $[E]^b$ are defined as:

 $[E]_a = \{y \in Y : (a, y) \in E\}$ $[E]^b = \{x \in X : (x, b) \in E\}$

Theorem 2.52

Let (X, \mathcal{S}) , (Y, \mathcal{T}) be measurable spaces. If $E \in \mathcal{S} \otimes \mathcal{T}$, then $\forall a \in X$, $[E]_a \in \mathcal{T}$ and $\forall b \in Y$, $[E]^b \in \mathcal{S}$.

Definition 2.39

Let X, Y be sets. Let $f : X \times Y \to \mathbb{R}$. For $a \in X, b \in Y$, the **cross section functions** $[f]_a : Y \to \mathbb{R}$ and $[f]^b : X \to \mathbb{R}$ are defined to be

$$[f]_a(y) = f(a, y)$$
$$[f]^b(x) = f(b, x)$$

Note: $[f]_a$ is \mathcal{T} -measurable and $[f]^b$ is \mathcal{S} -measurable if f is $\mathcal{S} \otimes \mathcal{T}$ -measurable.

Definition 2.40

A measure μ on (X, \mathscr{S}) is **finite** if $\mu(X) < \infty$.

Definition 2.41

 μ is σ -finite if \exists countably many sets $X_1, X_2, X_3, \dots \in \mathscr{S}$ such that $\mu(X_k) < \infty$ for all $k \in \mathbb{N}$ and

$$X = \bigcup_{k=1}^{\infty} X_k$$

Definition 2.42

Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be measure spaces and $g: X \times Y : \rightarrow [-\infty, \infty]$.

$$\int_{X \times Y} g(x, y) d(\mu \times \nu) = \int_{Y} \int_{X} g(x, y) d\mu(x) d\nu(y)$$

Note that

$$\int_{Y} \int_{X} g(x, y) d\mu(x) d\nu(y) = \int_{Y} \Big(\int_{X} [g]^{b} d\mu(x) \Big) d\nu(y)$$

Theorem 2.53

The Riemann and Lebesgue integrals agree on [a, b] if f is Riemann integrable on [a, b]:

$$\int_{a}^{b} f dx = \int_{[a,b]} f d\lambda$$

Theorem 2.54

Let (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) be σ -finite. If $E \in \mathcal{S} \otimes \mathcal{T}$,

1. $x \mapsto v([E]_x)$ is \mathscr{S} -measurable

2. $y \mapsto \mu([E]^{y})$ is \mathscr{T} -measurable

Definition 2.43

Let (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) be σ -finite.

$$(\mu \times \nu)(E) = \int_X \int_Y \chi_E(x, y) d\nu(y) d\mu(x)$$

Image: Remarkmeasure of a rectangleLet $A \in \mathcal{S}, B \in \mathcal{T}$

$$(\mu \times \nu)(A \times B) = \int_{X} \int_{Y} \chi_{A \times B}(x, y) d\nu(y) d\mu(x)$$
$$= \int_{X} \int_{Y} \chi_{A} \chi_{B} d\nu(y) d\mu(x)$$
$$= \int_{X} \chi_{X} \nu(B) d\mu(x)$$
$$= \mu(A) \nu(B)$$

Theorem 2.55 Tonelli's

Let (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) be measure spaces. Let $f : X \times Y \to [0, \infty]$ be $\mathcal{S} \otimes \mathcal{T}$ be $\mathcal{S} \otimes \mathcal{T}$ -measurable. Then

1.
$$x \mapsto \int_{Y} f(x, y) d\nu(y)$$
 is \mathscr{S} -measurable
2. $y \mapsto \int_{X} f(x, y) d\mu(x)$ is \mathscr{T} -measurable
3. $\int_{Y \times Y} f d(\mu \times \nu) = \int_{X} \int_{Y} f(x, y) d\nu(y) d\mu(x) = \int_{Y} \int_{X} f(x, y) d\mu(x) d\mu(y)$

Theorem 2.56

If $\{x_{j,k}\}_{j\in\mathbb{N},k\in\mathbb{N}}$ are $x_{j,k} \ge 0$ for all j, k, then

$$\sum_{k=1}^{\infty}\sum_{k=1}^{\infty}x_{j,k}=\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}x_{j,k}$$

Theorem 2.57

Suppose (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) are σ -finite and $f : X \times Y \to [-\infty, \infty]$ is $\mathcal{S} \otimes \mathcal{T}$ -measurable. Assume $f \in \mathcal{L}^1(\mu \times \nu)$. Then

1.
$$\int_{Y} |f(x, y)| d\nu(y) < \infty \text{ for a.e. } x \in X$$

2.
$$\int_{X} |f(x, y)| d\mu(x) < \infty \text{ for a.e. } y \in Y$$

3.
$$x \mapsto \int_{Y} f(x, y) d\nu(y) \text{ is } \mathscr{P}\text{-measurable}$$

4.
$$y \mapsto \int_{X} f(x, y) d\mu(x) \text{ is } \mathscr{P}\text{-measurable}$$

5.
$$\int_{X \times Y} fd(\mu \times \nu) = \int_{X} \int_{Y} f(x, y) d\nu(y) d\mu(x) = \int_{Y} \int_{X} f(x, y) d\mu(x) d\mu(y)$$

2.8 Lebesgue Integration on \mathbb{R}^n

Definition 2.44

If $x \in \mathbb{R}^n$, $\delta > 0$, we define

$$\mathsf{B}(x,\delta) = \{ y \in \mathbb{R}^n : \|y - x\|_{\infty} < \delta \}$$

to be the **open cube**.

Definition 2.45

A set $G \subseteq \mathbb{R}^n$ is **open** if $\forall x \in G$ there exists $\delta > 0$ such that $B(x, \delta) \subseteq G$.

Remark

$$B(x,\delta) \in \mathbb{R}^m \times B(y,\delta) \in \mathbb{R}^n = B((x,y),\delta) \in \mathbb{R}^{m+n}$$

Remark

Let $G_1 \subseteq \mathbb{R}^m$ open and $G_2 \subseteq \mathbb{R}^n$ open. Then

$$G_1 \times G_2 = \mathbb{R}^{m+n}$$

Definition 2.46

Borel Set in \mathbb{R}^n is an element of the smallest σ -algebra on \mathbb{R}^n which contains all open subsets of \mathbb{R}^n . Denote this σ -algebra \mathbb{B}_n

Theorem 2.58

 $G \subseteq \mathbb{R}^n$ is open $\iff G$ is a countable union of open cubes in \mathbb{R}^n

Remark

 \mathbb{B}_n is the smallest σ -algebra containing all the open cubes in \mathbb{R}^n

Theorem 2.59

 $\mathbb{B}^{m+n} = \mathbb{B}^n \otimes \mathbb{B}^m$

Definition 2.47

$$(\mathbb{R}^2, \mathbb{B}_2, \lambda_2) = (\mathbb{R}, \mathbb{B}, \lambda) \times (\mathbb{R}, \mathbb{B}, \lambda)$$

Lebesgue Measure on \mathbb{R}^n is denoted λ_n and defined as

 $\lambda_n = \lambda_{n-1} \times \lambda_1$

Remark

Let $(\mathbb{R}^n, \mathbb{B}_n, \lambda_n)$ be a measure space. Then

$$\mathbb{B}_n = \mathbb{B}_{n-1} \times \mathbb{B}_1$$

So for $E \in \mathbb{B}^n$,

$$\lambda_n(E) = \int_{\mathbb{R}^n} \chi_E(x) d\lambda_n(x)$$
$$= \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \chi_E(x_1, x_2) d\lambda(x_1) d\lambda_{n-1}(x_2)$$
$$\vdots$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \dots \int_{\mathbb{R}} \chi_E(x_1, x_2, \dots, x_n) d\lambda(x_1) d\lambda(x_2) \dots d\lambda(x_n)$$

Chapter 3 Hilbert Spaces (MTH 513)

3.1 Banach Spaces

3.1.1 Integration on ℂ

Definition 3.1

The set of all complex numbers ℂ is given by

 $\mathbb{C} = \{z = a + bi : a, b \in \mathbb{R}, i^2 = -1\}$

Definition 3.2

Given $z \in \mathbb{C}$ where z = a + bi, the **Real** and **Imaginary** parts of z are given by

 $\Re(z) = a$ $\Im(z) = b$

Note that both $\Re(z)$, $\Im(z) \mapsto \mathbb{R}$ and $z = \Re(z) + \Im(z)i$

Definition 3.3

The **modulus** of $z \in \mathbb{C}$ is given by

 $|z| = (a^2 + b^2)^{1/2}$

Definition 3.4

The **complex conjugate** of $z \in \mathbb{C}$ is given by

$$\bar{z} = \Re(z) - \Im(z)i$$

Theorem 3.1

Properties of complex conjugates:

products:

 $z\bar{z} = |z|^2$

sums and differences

$$z + \bar{z} = 2\Re(z)$$
$$z - \bar{z} = 2\Im(z)$$

multiplicativity and additivity

 $\overline{w+z} = \overline{w} + \overline{z}$ $\overline{wz} = \overline{w}\overline{z}$

conjugates of conjugates

 $\overline{\overline{z}} = z$

absolute value

 $|\bar{z}| = |z|$

integral of conjugate function

$$\int \bar{f} d\mu = \overline{\int f du}$$

Definition 3.5

Let (X, \mathscr{S}) be a measurable space. $f : X \to \mathbb{C}$ is \mathscr{S} -measurable if both $\mathfrak{R}(f) : X \to \mathbb{R}$ and $\mathfrak{I}(f) : X \to \mathbb{R}$ are \mathscr{S} -measurable.

Theorem 3.2

Suppose (X, \mathscr{S}) is a measurable space, $f : X \to \mathbb{C}$ is \mathscr{S} -measurable, and $0 . Then <math>|f|^p$ is also \mathscr{S} -measurable.

Definition 3.6

Suppose $(X, \mathcal{S}, /mu)$ is a measure space and $f : X \to \mathbb{C}$ is \mathcal{S} -measurable. Assume $f \in \mathcal{L}^1(\mu)$. We define

$$\int_{X} f d\mu = \int_{X} \Re(f) d\mu + i \int_{X} \Im(f) d\mu$$

Remark

If $f, g: X \to \mathbb{C}$ are \mathscr{S} -measurable and $f, g \in \mathscr{L}^1(\mu)$, then

1.
$$\int (f+g)d\mu = \int fd\mu + \int gd\mu$$

2.
$$\int \alpha fd\mu = \alpha \int fd\mu, \forall \alpha \in \mathbb{C}$$

Theorem 3.3

Suppose (X, \mathcal{S}, μ) is a measure space and $f : X \to \mathbb{C}$ is \mathcal{S} -measurable. Assume $f \in \mathcal{L}^1(\mu)$. Then

$$\left|\int_{X} f d\mu\right| \leq \int_{X} |f| d\mu$$

3.1.2 Bounded Linear Operators

Definition 3.7

For notation, we let the field $\mathbb F$ denote either $\mathbb R$ or $\mathbb C$

Definition 3.8

Let V, W be vector spaces. A function $T: V \rightarrow W$ is a **linear operator** or **linear map** if

1. $T(f + g) = Tf + Tg, \forall f, g \in V$

2. $T(\alpha f) = \alpha T f, \forall \alpha \in \mathbb{F} \text{ and } \forall f \in V$

Definition 3.9

Let $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ be NLS and $T: V \to W$. Recall that the **Operator Norm** on T is given by

$$|||T||| = \sup_{\||f\||_{V} \le 1} \{||Tf||_{W} \}$$

= $\sup_{\||f\||_{V} = 1} \{||Tf||_{W} \}$
= $\sup \{ \frac{||Tf||_{W}}{\||f\||_{V}} : \|f\||_{V} \neq 0 \}$

If $|||T||| < \infty$, then *T* is a **bounded linear operator**. The set of all bounded linear operators $T : V \rightarrow W$ is denoted

B(V, W)

and we sometimes write

 $|||T||| = ||T||_{B(V,W)}$

Remark

B(V, W) is a vector space. Moreover, ||T|| is a norm on B(V, W) so

 $(B(V, W), ||T||_{B(V, W)})$

is a NLS.

Theorem 3.4

Suppose $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ are NLSs and $T : V \to W$ is a bounded linear operator. T is <u>not</u> a bounded function.

Proof. Let $\alpha \in \mathbb{F}$ and $f \in V$ such that $Tf \neq 0$.

 $\|T(\alpha f)\|_{W} = \|\alpha Tf\|_{W}$ $= |\alpha|\|Tf\|_{W} \to \infty$ $as |\alpha| \to \infty$

So AR > 0 such that $\|Tf\|_W \le R$, $\forall f \in V$. Therefore T is not a bounded function.

Theorem 3.5

Let C[a, b] be the set of all continuous functions on [a, b] and let $C^1[a, b]$ be the set of all functions with continuous first order derivatives on [a, b]. If we define the norms

$$||f||_{C^{1}[a,b]} = ||f||_{\infty} + ||f'||_{\infty}$$

and

$$\|f\|_{C[a,b]} = \|f\|_{\infty}$$

then $T: (C^1[a, b], ||f||_{C^1[a,b]}) \rightarrow (C[a, b], ||f||_{C[a,b]})$, where Tf = f', is a bounded linear operator.

Theorem 3.6

Suppose $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ are NLSs with $V \neq \{0\}$ and $T : V \rightarrow W$ is a linear map. Then

$$||T||| = \sup_{\|f\|_{V}} \{ ||Tf||_{W} \} = \sup_{f \neq 0} \{ \frac{||Tf||_{W}}{||f||_{V}} \}$$

So we can write the inequality

$$||Tf||_W \le |||T||| ||f||_V$$

This shows that **T** can be thought of as the smallest value such that the above inequality holds.

Theorem 3.7

If $(W, \|\cdot\|_W)$ is a Banach Space and $(V, \|\cdot\|_V)$ is any NLS (not necessarily complete) then B(V, W) is also a Banach Space.

Theorem 3.8

Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be NLS. A linear map $T : V \to W$ is continuous if and only if it is bounded.

3.2 Baire Category Theorem

Definition 3.10

Let $U \subseteq V$ where V is a metric space. Recall that the **interior** of U is

$$int(U) = \{f \in U : \exists r > 0 \text{ s.t. } B_r(f) \subseteq U\}$$

IS Remark int(U) is open in V.

Definition 3.11

Recall that U is **dense** in V:

- $\iff \overline{U} = V$
- \iff *f* is a limit point of *U* for all *f* \in *V*.
- $\iff \forall f \in V \text{ and } \forall r > 0, B_r(f) \cap U \neq \emptyset$

Definition 3.12

A subset $E \subseteq V$ is **nowhere dense** in V $\iff \frac{V - \overline{U}}{V - \overline{E}} = V$ $\iff \operatorname{int}(\overline{E}) = \emptyset$

Example 3.1

- ✿ Z is nowhere dense in \mathbb{R} ($\mathbb{R} \overline{\mathbb{Z}} = \mathbb{R} \mathbb{Z}$
- A line is nowhere dense in \mathbb{R}^2
- \clubsuit A line or a plane is nowhere dense in \mathbb{R}^3

Theorem 3.9 Baire Category Theorem

- (a) A complete metric space is not the countable union of closed subsets with empty interiors.
- (b) The countable intersection of dense, open subsets of a complete metric space is non-empty.

Remark

(a) says that a complete metric space is not the countable union of nowhere dense sets. So, for example, we cannot represent \mathbb{R}^3 as the countable union of planes.

(a) also implies that, if X is a complete metric space and the countable union of closed sets G, then at least one G is non-empty, so that G contains a non-empty open set.

? Uniform Boundedness Principle

Theorem 3.10

Assume V is a Banach Space and W is any NLS. Let \mathscr{A} be the set of bounded linear maps from $V \rightarrow W$ such that

$$\sup\{\|Tf\|_W: T \in \mathscr{A}\} < \infty$$

Then $\sup\{|||T||| : T \in \mathscr{A}\} < \infty$ (i.e. the Ts are uniformly bounded).

3.2.1 Open Mapping Theorem

Theorem 3.11

Let V, W be Banach Spaces and T be a bounded linear surjection. If G is open in V, then T(G) is open in W.

Corollary 3.1

Let V, W be Banach Spaces and T be a bounded linear bijection, then T^{-1} is a bounded linear map. (i.e. $T^{-1}: W \rightarrow V$ is continuous).

3.3 *L^p* Spaces

3.3.1 \mathscr{L}^p Spaces

Definition 3.13

Let (X, \mathscr{S}, μ) be a measure space, fix $p \in (0, \infty)$ and let $f : X \to \mathbb{F}$ be \mathscr{S} -measurable. Then the **p-norm** of *f* is

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

Definition 3.14

The essential supremum of f is

$$||f||_{\infty} = \inf\{t > 0 : |f(x)| \le t \text{ a.e.}\}$$

In other words, the smallest upper bound of the function on all sets, except those of measure 0.

Remark Motivation for 1/p in **p-norm** definition Consider $0 and <math>\alpha \in \mathbb{F}$. Take some $f : X \to \mathbb{F}$. Then

$$\|\alpha f\|_{p} = \left(\int_{X} |\alpha f|^{p} d\mu\right)^{1/p}$$
$$= \left(\int_{X} |\alpha|^{p} |f|^{p} d\mu\right)^{1/p}$$
$$= |\alpha|^{p} \left(\int_{X} |f|^{p} d\mu\right)^{1/p}$$
$$= |\alpha| ||f||_{p}$$

But without the exponent 1/p, we get $||\alpha f||_p = |\alpha|^p ||f||_p$, which violates the definition of a norm! So we really do need the 1/p to make $||f||_p$ a norm on f.

Definition 3.15

Let (X, \mathcal{S}, μ) be a measure space and $0 . Lebesgue Space, <math>\mathcal{L}^{p}(\mu)$ is the set of all \mathcal{S} -measurable functions $f : X \to \mathbb{F}$ such that

 $\|f\|_p < \infty$

Intuition for $\|\cdot\|_p$

Remark

1. What does $||f||_p$ tell us about f locally?

Say the function $f : X \to \mathbb{F}$ blows up (i.e. grows unbounded) near some $x \in X$. Then f is not Riemann integrable, but f may be integrable in some \mathscr{L}^p space. For example, consider the function

$$f(x) = \frac{1}{|x|}$$

Where $f : B(0, 1) \to \mathbb{R}$ and $B(0, 1) \in \mathbb{R}^2$. Note that as $x \to 0, f \to \infty$. However we can show that

$$\|f\|_1 = \int_{B(0,1)} |f| d\lambda$$

(by change of coordinates)

$$= 2\pi k \int_0^1 r \frac{1}{r} dr$$
$$= 2\pi k < \infty$$

Now consider the following:

$$\|f\|_{3/2}^{3/2} = \int_{B(0,1)} \frac{1}{|x|^{3/2}} d\lambda$$

(by change of coordinates)

$$=2\pi k \int_0^1 r \frac{1}{r^{3/2}} dr < \infty$$

In fact, we can show that $f \in \mathscr{L}^p$ for all p < 2, but $f \notin \mathscr{L}^p$ for $p \ge 2$ **Take away:** Given $f \in \mathscr{L}^p$, the larger p is, the slower the localized function grows unbounded. So if $f \in \mathscr{L}^1$, then the function grows unbounded rapidly, but if $f \in \mathscr{L}^{100}$, the function grows unbounded much slower!

2. What does $||f||_p$ tell us about how the function decays as $|x| \to \infty$? Consider some $p \in [1, \infty)$. In order for $f \in \mathscr{L}^p$ to hold, we need the function to decay (i.e. approach 0) as $|x| \to \infty$. But when we take

$$\int_{X} |f|^{p} d\mu$$

raising the function the *p*-th power results in even faster decay at $x = \infty$. **Take Away:** Given $f \in \mathscr{L}^p(\mathbb{R}^n)$, then the smaller *p* is, the faster *f* decays at ∞ because it needs less help from the power of *p* to make the norm finite!

Definition 3.16

Let $1 \le p \le \infty$. Then the **dual exponent** of *p*, denoted *q* (or sometimes p') is the number that satisfies

$$\frac{1}{p} + \frac{1}{q} = 1$$

Note: for $p = \infty$, q = 1.

Theorem 3.12 Young's Inequality

Let $p \in (0, \infty)$ and q be the dual exponent of p. Then $\forall a, b \ge 0$,

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

Theorem 3.13 H"older's Inequality

Let $p \in [0, \infty]$, (X, \mathcal{S}, μ) be a measure space, and $f, g : X \to \mathbb{F}$ be \mathcal{S} -measurable functions. Then

$$\|fg\|_{1} \leq \|f\|_{p} \|g\|_{q}$$
$$\int_{X} |fg|d\mu \leq \left[\int_{X} |f|^{p} d\mu\right]^{1/p} \left[\int_{X} |g|^{q} d\mu\right]^{1/q}$$

Theorem 3.14

Let (X, \mathcal{S}, μ) be a finite measure space $(\mu(X) < \infty)$ and 0 (note:*s*not necessarily the dual exponent of*p*). Then

$$||f||_{p} \le \mu(X)^{\frac{s-p}{p}} ||f||_{s}$$

This implies that when $\mu(X) < \infty$ and p < s,

$$f \in \mathcal{L}^{s} \Rightarrow f \in \mathcal{L}^{p}$$
so,
$$\mathcal{L}^{s} \subset \mathcal{L}^{p}$$

Furthermore, consider the case where 0 . Then

$$||f||_{p} = \left[\int_{X} |f|^{p} d\mu\right]^{1/p} \le \left[\int_{X} ||f||_{\infty} d\mu\right]^{1/p}$$

Recall that $||f||_{\infty} = \inf_{x \in X} \{M : |f(x)| \le M \text{ a.e.} \}$. So,

$$\int_X \|f\|_{\infty} d\mu \Big]^{1/p} = \|f\|_{\infty} \Big(\int_X 1 d\mu \Big)^{1/p} = \|f\|_{\infty} \mu(X)^{1/p}.$$

Therefore, if $\mu(X) < \infty$,

$$\mathscr{L}^{\infty}(\mu) \subseteq \mathscr{L}^{p}(\mu), \ \forall p < \infty$$

3.3.2 L^p Spaces

Definition 3.17

Let (X, \mathcal{S}, μ) be a measure space and 0 .

- (i) $Z(\mu)$ is the set of all \mathscr{S} -measurable functions $X \mapsto \mathbb{F}$ which are equal almost everywhere on X
- (ii) For $f \in L^{p}(\mu)$, let \tilde{f} denote the subset of $\mathscr{L}^{p}(\mu)$,

$$\tilde{f} = \{f + z : z \in Z(\mu)\} = f + Z(\mu)$$

Remark

Let $f_1, f_2 \in \tilde{f}$. Then $\exists z_1, z_2 \in Z(\mu)$ such that

$$f_1 = f + z_1$$

$$f_2 = f + z_2$$

$$f_1 - f_2 = z_1 - z_2 = 0 \text{ a.e.}$$

So $f_1 = f_2$ a.e.

Remark

Suppose $\tilde{f} = \tilde{g}$. Then $f + Z(\mu) = g + Z(\mu)$, so $f = f + 0 \in g + Z(\mu) \Rightarrow \exists z \in Z(\mu)$ such that f = g + z. Therefore f = g a.e.

Definition 3.18 L^p

Let 0

 $L^p(\mu) = \{ \tilde{f} : f \in \mathcal{L}^p(\mu) \}$

Definition 3.19

Let $0 . We define <math>\|\cdot\|_p$ on $L^p(\mu)$ by

 $\|\tilde{f}\|_p = \|f\|_p, \ \forall f \in \mathcal{L}^p(\mu)$

If we restrict $p \in [1, \infty]$, then $\|\cdot\|_p$ is a norm on $L^p(\mu)$.

Remark

Consider $\tilde{f} = \tilde{g}$. Then $\|\tilde{f}\|_{\rho} = \|\tilde{g}\|_{\rho}$.

3.3.3 Dual of *L^p*

Theorem 3.15

Let (X, \mathcal{S}, μ) be a measure space, $p \in [1, \infty)$, q be the dual exponent of p, and $f \in L^p(\mu)$. Then

$$\|f\|_p = \sup\left\{\left|\int_X fhd\mu\right| : h \in \mathcal{L}^q(\mu), \|h\|_q \le 1\right\}$$

Remark

The above holds for $p = \infty \iff \mu$ is σ -finite.

Remark

Recall that the **dual space** of an NLS X, denoted X^* is defined as the the set of all bounded linear functionals on X

$$X^* = \{f : f : X \to \mathbb{F}\}$$

Theorem 3.16

Let (X, \mathcal{S}, μ) be a measure space, $1 , and q be the dual exponent of p. For <math>h \in L^q(\mu)$, define $\phi_h : L^p(\mu) \to \mathbb{F}$ by

$$\phi_h(f) = \int_X fhd\mu$$

Note the following are true:

(i)
$$h \mapsto \phi_h$$
 is 1:1, linear, and maps $L^q(h)$ into $(L^p(\mu))^*$

(ii)
$$\|\phi_h\| = \|h\|_q$$
, $\forall h \in L^q(\mu)$

In fact, since $L^{q}(\mu)$ has a 1:1 correspondence with $(L^{p}(\mu))^{*}$, we can show that $L^{q}(\mu) = (L^{p}(\mu))^{*}$.

Theorem 3.17

Let $T(h) = \phi_h$. We can show that T is linear and $h \stackrel{T}{\leftrightarrow} \phi_h$ is 1:1, so $(L^p(\mu), \|\cdot\|_p)$ is an NLS.

Furthermore, for $1 \le p \le \infty$, $(L^p(\mu), \|\cdot\|_p)$ is complete, therefore

 $(L^{p}(\mu), \|\cdot\|_{p})$ is a Banach Space.

Remark

Let (X, \mathcal{S}, μ) be a measure space. Recall that for $f \in \mathcal{L}^{p}(\mu)$, $\forall \epsilon > 0$, $\exists \phi \in \mathcal{L}^{1}(\mu)$, where ϕ is a simple function, such that

 $\|f-\phi\|_1 < \epsilon$

Theorem 3.18

The above also holds for $L^{p}(\mu)$, $\forall 1 \leq p \leq \infty$.

Theorem 3.19

Let $f \in L^{\infty}(\mu)$ and $\epsilon > 0$. There exists $\phi \in L^{\infty}(\mu)$ where ϕ is simple and

 $\|f-g\|_\infty$

Theorem 3.20

Suppose $f \in L^p(\mathbb{R})$ and $0 . Then <math>\forall \epsilon > 0 \exists$ a step function $g \in L^p(\mathbb{R})$ such that

 $\|f-g\|_p < \epsilon$

3.4 Hilbert Spaces

3.4.1 Inner Product Spaces

Definition 3.20

Let V be a vector space over F. An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that

(i)
$$\langle f, f \rangle \in [0, \infty)$$

- (ii) $\langle f, f \rangle = 0 \iff f = 0$
- (iii) $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$
- (iv) $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$
- (v) $\langle f, g \rangle = \overline{\langle g, f \rangle}$

Definition 3.21

An Inner Product Space (IPS) is a vector space with an inner product.

Remark Let $f, g \in L^2(\mu)$ and define

$$\langle f,g
angle = \int_X f\bar{g}d\mu$$

Then $L^2(\mu)$ is an IPS.

Theorem 3.21

Suppose V is an IPS. Then the following properties also hold:

(a) $\langle 0, g \rangle = \langle g, 0 \rangle$ (b) $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$ (c) $\langle f, \alpha g \rangle = \overline{\alpha} \langle f, g \rangle$

Definition 3.22

Let V be an IPS. We can induce a norm on V ny

 $\|f\| = \sqrt{\langle f, f \rangle}$

Theorem 3.22 Properties of || • ||

1.
$$||f|| = \sqrt{\langle f, f \rangle} \ge 0 \ \forall f \in V$$

2. $||f|| = \sqrt{\langle f, f \rangle} = 0 \iff f = 0$
3. $||\alpha f|| = \alpha ||f||$

Definition 3.23

Let V be an IPS and $x, y \in V$. x, y are **orthogonal** if $\langle x, y \rangle = 0$. We write this $x \perp y$.

Theorem 3.23 Pythagorean Theorem Assume V is an IPS and $f, g \in V$ with $\langle f, g \rangle = 0$. Then

$$||f + g||^2 = ||f||^2 + ||g||^2$$

Theorem 3.24 Cauchy Schwarz Let V be an IPS and $f, g \in V$. Then

 $|\langle f,g\rangle| \le \|f\| \|g\|$

Theorem 3.25

Let V be an IPS and $f, g \in V$. Then

 $\|f+g\| \leq \|f\| + \|g\|$

3.4.2 Angles in an IPS

Definition 3.24

Define the angle θ between f, g in an IPS by

$$\cos \theta = \frac{\langle f, g \rangle}{\|f\| \|g\|} \in [-1, 1]$$

Theorem 3.26 Law of Cosines Let a = ||f||, b = ||g||, c = ||f - g||.

 $c^2 = a^2 + b^2 - 2ab\cos\theta$

Theorem 3.27 Parallelogram Equality Let V be an IPS and $f, g \in V$. Then

$$\|f + g\|^2 + \|f - g\|^2 = 2\|f\|^2 + 2\|g\|^2$$

3.4.3 Orthogonality

Definition 3.25 Hilbert Space

A Hilbert Space is any IPS that is complete under the norm induced by the inner product.

Definition 3.26

Suppose U is a non-empty subset of an NVS V and $f \in V$. The distance from f to U is

distance(f, U) = inf{ $||f - g|| : g \in U$ }

Remark

If U is open, then

$$\inf\{\|f - g\| : g \in U\} \neq \min\{\|f - g\| : g \in U\}$$

Remark

distance
$$(f, U) = 0 \iff f \in \overline{U}$$

Definition 3.27

Suppose *V* is a vector space and $U \subseteq V$. *U* is **convex** if $\forall f, g, \in U$ and $t \in [0, 1]$

 $(1-t)f + tg \in U$

Remark

Every vector space is convex since it is closed under linear combination

3.4.4 Orthogonal Projection

Theorem 3.28

let V be a Hilbert Space, $U \subseteq V$ be closed, convex, and non-empty, and $f \in V$. Then $\exists !g \in U$ such that

$$||f - g|| = distance(f, U)$$

Definition 3.28

Suppose V is a Hilbert Space and $U \in V$ is a closed, non-empty, convex subset of V. The orthogonal

projection of *V* onto *U* is the function

 $P_U: V \rightarrow U$

where $P_U f$ is the unique element of U that best approximates $f \in V$.

Remark

(a)
$$P_U f = 0 \iff f \in U$$

(b) $P_U \circ P_U = P_U^2 = P_U$

Theorem 3.29

Suppose U is a closed subspace of a Hilbert Space V. For $f \in V$:

(a) $f - P_U f \perp g \forall g \in U$ (b) If $h \in U$ and $f - h \perp g \forall g \in U$, $h = P_U h$ (c) $P_U : V \rightarrow U$ is a linear map (d) $\forall f \in V$, $||P_U f|| \le ||f||$ and $||P_U f|| = ||f|| \iff f \in U$

Example 3.2

Recall

$$\mathcal{Q}^2 = \{a = (a_1, a_2, \dots), a_j \in \mathbb{F}, \sum_{j=1}^{\infty} |a_j|^2 < \infty\}$$

So $\forall x, y \in \ell^2$,

$$\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}$$

Consider the subset

$$U = \{a \in \ell^2 : a = (a_1, 0, a_3, 0, a_5, 0, \dots)\}$$

So, given $x \in \ell^2$,

$$P_U x = (x_1, 0, x_3, 0, x_5, 0, \dots)$$

Then we have

$$x - P_U x = (0, x_2, 0, x_4, 0, x_6...)$$

so

$$\langle x, x - P_U \rangle = \sum_{j=1}^{\infty} (x_j) \overline{(x_j - P_U x_j)} = 0$$

 $\Rightarrow x \perp x - P_U x$

Definition 3.29

Suppose U is a subset of an IPS V. The orthogonal complement of U in V is

$$U^{\perp} = \{h \in U : \langle h, g \rangle = 0 \; \forall g \in U\}$$

Example 3.3

Let V be an IPS and $U \subseteq V$ If $U = V \Rightarrow U^{\perp} = \{0\}$. Suppose $U = B(0, 1) = \{g \in V : ||g|| = 1\}$. Then $U^{\perp} = \{0\}$ because for $x \in U^{\perp}$, $\langle x, y \rangle = 0 \quad \forall y \in U^{\perp}$ $h \in V^{\perp} \Rightarrow \langle x, h \rangle = \langle x, ||h|| \frac{h}{||h||} \rangle$ $= ||h|| \langle x, \frac{h}{||h||} \rangle = 0$ Since $\frac{h}{||h||} \in B(0, 1)$.

3.4.5 Properties of Orthogonal Projections

Theorem 3.30

Let V be an IPS and $U \subseteq V$. Then

(a) U^{\perp} is a closed subspace of V

(b) $U \cap U^{\perp} = \{0\}$ if $0 \in U$, otherwise \emptyset . So $U \cap U^{\perp}$ subset eq $\{0\}$

(c) If $W \subset U, U^{\perp} \subseteq W^{\perp}$

(d) $\overline{U^{\perp}} = U^{\perp}$

(e) $U \subseteq (U^{\perp})^{\perp}$

Theorem 3.31 Orthogonal Decomposition

Let U be a closed subspace of a Hilbert Space V. Then any $f \in V$ can be written as

f = g + h

where $g \in U$ and $h \in U^{\perp}$

Theorem 3.32 Range and Null Space of P_U Suppose U is a closed subspace of a Hilbert Space V. Then the following are true:

(a) $Range(P_U) = U$, $Null(P_U) = U^{\perp}$

(b) Range $(P_{11^{\perp}}) = U^{\perp}$, $Null(P_{11^{\perp}}) = U$

(c) $P_{U^{\perp}} = \mathbf{I} - P_U$ where **I** is the identity function

Example 3.4

Let

 $U = \{ f \in L^2(\mathbb{R}) : f(x) = 0 \text{ a.e. } x < 0 \}$

We can show that U is a closed subspace of L^2 . So

$$U^{\perp} = \{ f \in L^{2}(\mathbb{R}) : f(x) = 0 \text{ a.e. } x \ge 0 \}$$

Theorem 3.33 Riesz Representation Theorem

Let V be a Hilbert Space. Suppose $\phi \in V^*$. Then $\exists !h \in V$ such that $\phi(g) = \langle g, h \rangle \forall g \in V$, so ϕh and $\|\phi\| = \|h\|$

3.4.6 Orthonormal Bases

Definition 3.30

Let V be an NLS and consider $\{e_k\}_{k \in \Gamma} \subset V$ where

$$\Gamma = \{1, 2, 3, ..., n\}$$

or
 $\Gamma = \mathbb{N}$

A family $\{e_k\}_{k\in\Gamma}$ in an IPS is an **orthonormal family** if

$$\langle e_j, e_k \rangle = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

Example 3.5 Example: \mathbb{R}^n

$$e_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} e_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \dots e_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

 $\{e_k\}_{k\in\Gamma}$ is an orthonormal family.

Example 3.6

Example: $l^2(\mathbb{F})$]

 $e_k = (0, 0, 0, ..., 0, 1, 0, ..., 0, 0, 0)$

where the *k*-th element is 1. $\{e_k\}_{k\in\Gamma}$ is an orthonormal family.

3.4.7 Basis of a Hilbert Space

Definition 3.31

Recall: A metric space is **seperable** if it has a countable, dense subset.

Theorem 3.34

Every seperable Hilbert Space has a countable orthonormal basis. Moreover, if V is an infinite dimensional Hilbert Space, then there exists a countable orthonormal family $\{e_k\}_{k\in\mathbb{N}}$ such that $\forall f \in V$,

 $\exists !$ sequence $\{c_k\}_{k \in \mathbb{N}}, c_k \in \mathbb{F}$, such that

$$\|f - \sum_{k=1}^{N} c_k e_k\| \to 0$$

as
$$N \to \infty$$
. So $f = \sum_{k=1}^{\infty} c_k e_k$

Example 3.7

Example: \mathbb{R}^2 Let $\{q_1, q_2\}$ be an orthonormal family in \mathbb{R}^2 and $f \in \mathbb{R}^2$. Then

 $f = \langle f, q_1 \rangle + \langle f, q_2 \rangle q_2$

Example 3.8 Example: \mathbb{R}^2

Let $\{q_k\}_{1 \le k \le n}$ be an orthonormal family in \mathbb{R}^n and $f \in \mathbb{R}^n$. Then $\exists !$ collection $\{c_1, c_2, ..., c_n\}$ such that

$$f=\sum_{k=1}^n c_k q_k$$

What are the *c_k*s?

$$\langle f, q_k \rangle = \langle \sum_{j=1}^n c_j q_j, q_k \rangle$$
$$= \sum_{j=1}^n c_j \langle q_j, q_k \rangle$$
$$= c_k(1)$$
$$= c_k$$

$$\operatorname{so} f = \sum_{k=1}^{\infty} \langle f, q_k \rangle q_k.$$

Example 3.9 Example: Infinite Dimensional Hilbert Space

Let V be an infinite dimensional, seperable, Hilbert Space. Let $\{e_k\}_{k \in \mathbb{N}}$ be an orthonormal family in V. Moreover, assume $\{e_k\}_{k \in \mathbb{N}}$ is an orthonormal basis for V. So, given $f \in V$:

$$f = \sum_{k=1}^{\infty} c_k e_k$$

for some $\{c_k\}_{k \in \mathbb{N}}$. It can be shown that

$$\{c_k\}_{k\in\mathbb{N}} = \{\langle f, e_1 \rangle, \langle f, e_2 \rangle, \langle f, e_3 \rangle, \dots, \langle f, e_n \rangle\}$$

3.4.8 Bessel's Inequality

Theorem 3.35

Let $\{e_k\}$ be an orthonormal family in a Hilbert Space V. then $\forall f \in V$ and $\forall n \in \mathbb{N}$,

$$|f||^2 \ge \sum_{j=1}^n |\langle f, e_j \rangle|^2$$

Furthermore,

$$||f||^2 \ge \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2$$

3.4.9 Parceval's Identity

Theorem 3.36

Suppose $\{e_k\}_{k \in \mathbb{N}}$ is an orthonormal **basis** for a seperable Hilbert Space V. let $f \in V$. Then

$$||f||^2 = \sum_{j=1}^n |\langle f, e_j \rangle|^2$$

3.4.1(Linear Maps on Hilbert Spaces

Definition 3.32

Let *V*, *W* be Hilbert Spaces and $T : V \to W$ be a bounded linear map. The **adjoint** of $T, T^* : W \to V$ is defined as

$$\langle Tf, g \rangle = \langle f, T^*g \rangle$$

 $\forall f \in V, \forall g \in W.$

Remark Intuition:

Fix $g \in W$. Consider a linear functional $\phi_a^T \in V$ defined by

$$\phi_q^T(f) = \langle Tf, g \rangle$$

(Note: since T is linear and $\langle \cdot, \cdot \rangle$ is linear in the first slot, ϕ_a^T is linear).

$$|\phi_{g}^{T}(f)| = |\langle Tf, g \rangle| \le ||Tf|| ||g|| \le ||T|| ||f|| ||g||$$

so $\|\phi_g^T\| \le \|T\|\|g\|$, which implies $\phi_g^T \in V^*$. Now, by the Riesz Representation Theorem, $\exists !h \in V$ such that

$$\phi_{a}^{T}(f) = \langle f, h \rangle$$

 $\forall f \in V$. So for $g \in W$, set $T^*g = h$ where h is the unique element of V given by the RRT.

Example: Let (X, \mathcal{S}, μ) be a measure space and $h \in L^{\infty}(\mu)$. Define $M_h : L^2(\mu) \to L^2(\mu)$ by

$$M_h(f) = fh$$

 $\forall f \in L^2(\mu)$. Then

$$||M_h f||_2 \le ||fh||_2 \le ||f||_2 ||h||_{\infty}$$

which implies $||M_h|| \le ||h||_{\infty}$, so M_h is a bounded linear functional. Therefore,

So $M_h^* = M_{\overline{h}}$.

Theorem 3.37

Suppose V, W are Hilbert Spaces and let $T \in \mathcal{B}(V, W)$. Then the following are true:

- 1. $T^* \in \mathscr{B}(W, V)$
- **2.** $(T^*)^* = T$
- **3.** $||T^*||_{\mathscr{B}(W,V)} = ||T||_{\mathscr{B}(V,W)}$

Definition 3.33

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space. Then T is **self adjoint** if $T = T^*$, i.e., $\forall f, g \in V$

 $\langle Tf, g \rangle = \langle f, Tg \rangle$

Theorem 3.38

Let V be a Hilbert Space and $T \in \mathscr{B}(V)$. Assume $\langle Tf, f \rangle = 0, \forall f \in V$.

1. If $\mathbb{F} = \mathbb{C}$

2. If $\mathbb{F} = \mathbb{R}$ and T is self-adjoint, T = 0.

Theorem 3.39

Let $T \in \mathscr{B}(V)$, where V is a Hilbert Space over \mathbb{C} . Then T is self-adjoint if and only if $\langle Tf, f \rangle \in \mathbb{R}$, $\forall f \in V$.

3.4.11 Operators

Definition 3.34

Let V be an NLS. A function $T : V \rightarrow V$ is called an **operator**.

If T is bounded, we write $T \in \mathscr{B}(V, V)$, or, more succinctly, $T \in \mathscr{B}(V)$.

Definition 3.35

An operator *T* is **invertible** if it is 1:1 and onto. We define the inverse as

$$T^{-1}: V \to V$$

and
$$T \circ T^{-1} = I: V \to V$$

Note: Since T is linear, T^{-1} is also linear.

Definition 3.36

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space.

- 1. *T* is **left invertible** iff $\exists S$ such that ST = I
- **2**. *T* is **right invertible** iff $\exists S$ such that TS = I
- 3. if T is left and right invertible, T is invertible. (Suppose $S_1T = I$ and $TS_2 = I$, then

$$S_1T = I \Rightarrow S_1TS_2 = S_2 \Rightarrow S_1I = S_2 \Rightarrow S_1 = S_2)$$

Theorem 3.40

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space. T is left invertible iff $\exists \alpha \in (0, \infty)$ such that $\forall f \in V$,

 $\|f\| \le \alpha \|Tf\|$

(3.1)

Theorem 3.41

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space. If T is left invertible, T^* is right invertible.

Remark

Let $T \in \mathscr{B}(V)$ be invertible. Let V be a Banach Space. By the Open Mapping Theorem, T is an open map. Therefore T^{-1} is continuous, so $T^{-1} \in \mathscr{B}(V)$.

Remark By convention, we write:

- 1. $T: V \rightarrow V$
- **2**. $T \circ T = TT = T^2 : V \rightarrow V$
- 3. $T \circ (T \circ T) = TTT = T^3 : V \rightarrow V$

Theorem 3.42

Let U, V, W be an NLS and $T \in \mathcal{B}(U, V)$, $S \in \mathcal{B}(V, W)$. Then

 $\|ST\| \le \|S\| \|T\|$

Theorem 3.43

Let $T^k = T \circ T \circ T \circ \dots \circ T$ (k times). Then

 $\|T^k\| \leq \|T\|^k$

Theorem 3.44

Let $T \in \mathscr{B}(V)$ where V is a Banach Space. Assume ||T|| < 1. Then $I - T : V \to V$ is invertible and

$$(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$$

Note: this is similar to the fact that for $z \in \mathbb{C}$ with |z| < 1,

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$$

Theorem 3.45

Let V be an NLS. Then V is a Banach Space if and only if, for every $\{g_k\}$ satisfying

$$\sum_{k=1}^{\infty}\|g_k\|<\infty$$

 $\sum_{k=1}^{\infty} g_k \text{ converges in V}.$

Corollary 3.2

Suppose V is a Banach Space. The set of all invertible operators:

 $\mathscr{A} = \{T \in \mathscr{B}(V) : T \text{ is invertible}\}\$

is an open set in $\mathscr{B}(V)$.

Note: this implies the set of non-invertible operators in $\mathscr{B}(V)$ is closed, so a sequence of non-invertible operators converges.

3.4.12 Spectrum of an Operator

Definition 3.37

Let $T \in \mathcal{B}(V)$.

1. $\alpha \in \mathbb{F}$ is an **eigenvalue** of *T* if $T - \alpha I$ is not injective. (i.e. $(T - \alpha I) = 0$, $f \neq 0$ implies $Tf = \alpha f$.

2. $f \in V$ with $f \neq 0$ is an **eigenvector** of T corresponding to an eigenvalue of f, α if $Tf = \alpha f$

3. The **spectrum** of *T* is denoted sp(T):

$$sp(T) = \{ \alpha \in \mathbb{F} : T - \alpha I \text{ is not injective} \}$$

Remark on 1.

 $T - \alpha I$ is injective if and only if $null(T - \alpha I) = \{0\}$. In other words, $T - \alpha I$ is not injective if and only if $\exists z \in V$ with $z \neq 0$ and $z \in null(T - \alpha I)$. Therefore, $(T - \alpha I)z = 0 \Rightarrow Tz = \alpha z$.

3.4.15 Compact Operator

Definition 3.38

An operator $T : V \rightarrow V$, where V is a Hilbert Space, is **compact** if for all bounded sequences $\{f_k\}_{k=1}^{\infty}$ in V, $\{Tf_k\}_{k=1}^{\infty}$ has a convergent subsequence. We denote the set of compact operators on V as C(V).

Theorem 3.46

Every compact operator on Hilbert Space is bounded, and therefore continuous.

3.4.14 Spectrum of A Compact Operator

Theorem 3.47

If $T: V \to V$ is compact on an infinite dimensional Hilbert Space V, then $0 \in sp(T)$.

I Remark

The above implies that T = T - 0I is not invertible, so T is not invertible.

Theorem 3.48

Let $T \in C(V)$ then Range(T) cannot contain an infinite dimensional, closed subspace of V.

Example 3.10

Consider the measure space ([0, 1]), \mathbb{B} , λ). and define $T : L^2([0, 1]) \rightarrow L^2([0, 1])$ by

$$Tf(x) = \int_0^1 K(x, y) f(y) dy$$

where $K \in C([0, 1] \times [0, 1])$ is a fixed kernel function. We claim that *T* is a compact operator. **Proof.** First, note that

$$\|Tf\|_{L^{2}} = \left(\int_{0}^{1} |Tf(x)|^{2} dx\right)^{1/2}$$
$$\leq \|Tf\|_{L^{\infty}} \left(\int_{0}^{1} 1 dx\right)^{1/2}$$
$$= \|Tf\|_{L^{\infty}}$$

Also note that, $\forall x \in [0, 1]$,

$$|Tf(x)| = \left| \int_0^1 K(x, y) f(y) dy \right|$$
$$\leq K(x, y) \int_0^1 |f(y)| dy$$

$\leq K(x,y) \|f\|_{L^2}$

So we have $||Tf||_{L^{\infty}([0,1])} \le K(x, y)||f||_{L^{2}([0,1])}$, therefore

 $\|Tf\|_{L^{2}([0,1])} \leq \|Tf\|_{L^{\infty}([0,1])} \leq K(x,y)\|f\|_{L^{2}([0,1])}$

So *T* is bounded, linear (by linearity of the integral), and maps $L^2([0, 1])$ to $L^2([0, 1])$, which means *T* is bounded operator.

Now let $\{f_n\}_{n=1}^{\infty}$ be a bounded sequence in $L^2([0, 1])$. We want to show that $\{Tf_n\}$ has a convergent subsequence. In order to do this, we can show that Arzela-Ascoli applies:

Note that $||f||_2 \le ||f||_{\infty}$. Now, by the fact that $K \in C([0, 1] \times [0, 1])$, given $\epsilon > 0$, there exists $\delta > 0$ such that $\forall x, y, z \in [0, 1]$, whenever $|x - z| < \delta$, $|K(x, y) - K(z, y)| < \epsilon$. So

$$\begin{aligned} |Tf_n(x) - Tf_n(z)| &\leq \int_0^1 |K(x, y) - K(z, y)| |f_n(y)| dy \\ &\leq \epsilon \int_0^1 |f_n(y)| dy \\ &\leq \epsilon ||f_n||_{L^2([0, 1])} \\ &\leq C\epsilon \end{aligned}$$

which implies that $\{Tf_n\}$ is equicontinuous. We have already shown that $|Tf_n(x)| \leq ||K||_{L^{\infty}([0,1]\times[0,1])} \int_{0}^{1} |f_n(y)| dy \leq K(x, y) ||f_n||_{L^2([0,1])}$, so $\{Tf_n\}$ is equibounded. So, by Arzela-Ascoli, \exists some subsequence of $\{Tf_n\}$ that converges uniformly to some g. But then

$$|Tf_{n_k} - g||_{L^2([0,1])} = \left(\int_0^1 |Tf_{n_k} - g|\right)^{1/2}$$

$$\leq ||Tf_{n_k} - g||_{L^\infty([0,1])} \left(\int_0^1 1dy\right)^{1/2}$$

$$= ||Tf_{n_k} - g||_{L^\infty([0,1])} \to 0$$

So T is compact.