Real Analysis Notes

Forrest Corcoran

Fall, Winter, Spring 2021-2022

Chapter 1 Metric Spaces (MTH 511)

1.1 Metric Spaces and Normed Vector Spaces

1.1.1 Metrics

Definition 1.1

Let M be any set. A function $d: M \times M \rightarrow[0, \infty)$ is a metric on M if it satisfies the following:

1. $0 \leq d(x, y)<\infty, \forall x, y \in M$
2. $d(x, y)=d(y, x), \forall x, y \in M$
3. $d(x, y)=0 \Longleftrightarrow x=y$
4. $d(x, y) \leq d(x, z)+d(z, y)$

1.1.2 Discrete Metric

Example 1.1

The discrete metric is defined by:

$$
d(x, y)= \begin{cases}1 & x \neq y \tag{1.1}\\ 0 & x=y\end{cases}
$$

1.1.3 Norms

Definition 1.2

Let V be a vector space. A norm on V is a function $\|\cdot\|: V \rightarrow[0, \infty)$ satisfying the following properties:

1. $0 \leq\|\mathbf{x}\|<\infty, \forall x \in V$
2. $\|x\|=0 \Longleftrightarrow x=0$
3. $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$
4. $\|x+y\| \leq\|x\|+\|y\|$

1.1.4 Common Norms

Example 1.2

$$
\begin{gather*}
\|\mathbf{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \tag{1.2}\\
\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2} \tag{1.3}
\end{gather*}
$$

$$
\begin{align*}
\|\mathbf{x}\|_{p} & =\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p} \tag{1.4}\\
\|\mathbf{x}\|_{\infty} & =\max _{1 \leq i \leq N}\left(\left|x_{i}\right|\right) \tag{1.5}
\end{align*}
$$

1.1.5 Norms of Continuous Functions

Definition 1.3

Consider the set of all continuous function on $[a, b]$. The following are norms on $C([a, b])$.

$$
\begin{gather*}
\|f\|_{1}=\int_{a}^{b}|f(t)| d t \tag{1.6}\\
\|f\|_{2}=\left(\int_{a}^{b}|f(t)|^{2} d t\right)^{1 / 2} \tag{1.7}\\
\|f\|_{p}=\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p} \tag{1.8}\\
\|f\|_{\infty}=\sup _{t \in[a, b]}(|f(t)|) \tag{1.9}
\end{gather*}
$$

1.1.6 ℓ_{p} Spaces

Definition 1.4

For p satisfying $1 \leq p<\infty, \ell_{p}$ is the set of all sequences of real numbers $\chi=\left(x_{i}\right)_{i \in \mathbb{N}}$ for which the following is true:

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty \tag{1.10}
\end{equation*}
$$

Definition 1.5

ℓ_{∞} is the set of all bounded sequences of reals.

$$
\begin{array}{r}
\|x\|_{\infty}=\sup _{i \in \mathbb{N}}\left\{\left|x_{i}\right|\right\}<c \tag{1.11}\\
\text { for some } c>0
\end{array}
$$

$$
\ell_{q} \subseteq \ell_{p}, \forall q \leq p
$$

Theorem 1.1 Hölder's Inequality
Let $p \in(1, \infty)$ and let q satisfy $\frac{1}{p}+\frac{1}{q}=1$. Given $x \in \ell_{p}$ and $y \in \ell_{q}$, we have the following inequality:

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|x_{i} y_{i}\right|=\|x y\|_{\ell_{1}} \leq\|x\|_{\ell_{p}}\|y\|_{\ell_{q}} \tag{1.12}
\end{equation*}
$$

1.1.7 Metric Spaces

Definition 1.6

The set M, equipped with the metric d defines a metric space (M, d).

Definition 1.7

Given $x \in(M, d)$ and $r>0$, the Open Ball of radius r centered at x is defined by

$$
\begin{equation*}
B_{r}(x)=\{y \in M \mid d(x, y)<r\} \tag{1.13}
\end{equation*}
$$

Definition 1.8

$A \subseteq M$ is bounded if and only if given any $x \in M, \exists r>0$ such that $A \subseteq B_{r}(x)$.

Definition 1.9

The diameter of A is defined as

$$
\begin{equation*}
\operatorname{diam}(A)=\sup \{d(x, y) \mid x, y \in A\} \tag{1.14}
\end{equation*}
$$

Definition 1.10

A neighborhood of $x \in M$ is any set containing an open ball centered at x.

1.1.8 Convergent and Cauchy Sequences

Definition 1.11 Convergence
A sequence $\left(x_{n}\right) \in M$ converges to $x \in M$ if $d\left(x_{n}, x\right) \rightarrow x$ as $n \rightarrow \infty$.
Definition 1.12 Convergence
A sequence $\left(x_{n}\right) \in M$ converges to $x \in M$ if, given some $\epsilon>0, \exists N \in \mathbb{N}$ such that $\forall n \geq N$ we have $d\left(x_{n}, x\right)<\epsilon$.

Definition 1.13 Convergence

A sequence $\left(x_{n}\right) \in M$ converges to $x \in M$ if, given some $\epsilon>0, \exists N \in \mathbb{N}$ such that $\left\{x_{n} \mid n \geq\right.$ $N\} \subseteq B_{\epsilon}(x)$.

Definition 1.14 Cauchy
A sequence $\left(x_{n}\right)$ is Cauchy if, given some $\epsilon>0, \exists N \in \mathbb{N}$ such that $\forall m, n \geq N$ we have $d\left(x_{m}, x_{n}\right)<\epsilon$.

[1) Remark

Every convergent sequence in (M, d) is Cauchy.
nas Remark
Any Cauchy sequence with a convergent subsequence in (M, d) converges in (M, d).

1.2 Topology of Metric Spaces

1.2.1 DeMorgan's Laws

Definition 1.15

$$
\begin{align*}
& \left(\bigcap_{i \in \mathbb{D}} A_{i}\right)^{c}=\bigcup_{i \in \mathbb{D}} A_{i}^{c} \tag{1.15}\\
& \left(\bigcup_{i \in \mathbb{D}} A_{i}\right)^{c}=\bigcap_{i \in \mathbb{D}} A_{i}^{c} \tag{1.16}
\end{align*}
$$

1.2.2 Limit Points

Definition 1.16

Let A be a subset of $(M, d) . x \in M$ is a limit point of A if

$$
\begin{equation*}
\left(B_{\epsilon}(x)-\{x\}\right) \cap A \neq \varnothing \tag{1.17}
\end{equation*}
$$

for all $\epsilon>0$.

Definition 1.17

Let A be a subset of $(M, d) . x \in M$ is an isolated point of A if

$$
\begin{equation*}
\left(B_{\in}(x)-\{x\}\right) \cap A=\varnothing \tag{1.18}
\end{equation*}
$$

If x is not a limit point, it is an isolated point (and vice versa).

Definition 1.18 Boundary Points

Let A be a subset of $M . x \in M$ is a boundary point of A if and only if

$$
\begin{array}{r}
\left(B_{\epsilon}(x)-\{x\}\right) \cap A \neq \varnothing \\
\text { and } \tag{1.19}\\
\left(B_{\epsilon}(x)-\{x\}\right) \cap A^{c} \neq \varnothing
\end{array}
$$

1.2.3 Open Sets

Definition 1.19

A set $U \subseteq(M, d)$ is open if $\forall x \in U, \exists \epsilon>0$ such that $B_{\epsilon}(x) \subset U$.

Ifaz Remark

$\forall x \in M$ and $\forall \epsilon>0, B_{\epsilon}(x)$ is an open set.
Theorem 1.2
An arbitrary union of open sets is open.

$$
\begin{equation*}
V=\bigcup_{\alpha \in A} U_{\alpha} \text { is open. } \tag{1.20}
\end{equation*}
$$

Theorem 1.3

A finite intersection of open sets is open.

$$
\begin{equation*}
V=\bigcap_{i=1}^{N} U_{\alpha} \text { is open. } \tag{1.21}
\end{equation*}
$$

Theorem 1.4
If U is open and $U \subset \mathbb{R}$, then U is a countable union of disjoint, open intervals.

$$
\begin{array}{r}
U=\bigcap_{n=1}^{\infty} I_{n} \\
I_{n}=\left(a_{n}, b_{n}\right) \tag{1.22}\\
I_{n} \cap I_{m}=\varnothing \\
n \neq m
\end{array}
$$

Theorem 1.5

A set U is open if and only if, whenever $\left(x_{n}\right) \in M \rightarrow x \in U$, for all but finitely many $n, x_{n} \in U$.

Definition 1.20

let $\left(U_{\alpha}\right)$ be the set of all open sets in M. $\left(U_{\alpha}\right)$ is an open base for M if

$$
\begin{equation*}
M=\bigcup\left(U_{\alpha}\right) \tag{1.23}
\end{equation*}
$$

1.2.4 Closed Sets

Definition 1.21

A set $F \subseteq(M, d)$ is closed if and only if $F^{C}=M-F$ is open.

Definition 1.22

A set $F \subseteq(M, d)$ is closed if and only if, given $x \in M, \forall \epsilon>0$,

$$
\begin{equation*}
B_{\epsilon}(x) \cap F \neq \varnothing \Rightarrow x \in F \tag{1.24}
\end{equation*}
$$

Definition 1.23

A set $F \subseteq(M, d)$ is closed if and only if, given a sequence $\left(x_{n}\right) \subseteq F$

$$
\begin{equation*}
\left(x_{n}\right) \rightarrow x \in M \Rightarrow x \in F \tag{1.25}
\end{equation*}
$$

In other words, F is closed if it contains all its limit points.
Definition 1.24 Interior
The interior of A is defined as

$$
\begin{equation*}
\operatorname{int}(A)=A^{\circ}=\left\{x \in A \mid B_{\epsilon}(x) \subset A \text { for some } \epsilon>0\right\} \tag{1.26}
\end{equation*}
$$

Definition 1.25 Closure
The closure of A is defined as

$$
\begin{equation*}
\mathrm{cl}(A)=\bar{A}=\bigcap\{F \mid F \text { is closed and } A \subseteq F\} \tag{1.27}
\end{equation*}
$$

Theorem 1.6

$x \in \bar{A} \Longleftrightarrow B_{\epsilon}(x) \cap A \neq \varnothing, \forall \epsilon>0$.

Theorem 1.7

$x \in \bar{A} \Longleftrightarrow \exists\left(x_{n}\right) \subset A$ with $\left(x_{n}\right) \rightarrow x$.

1.2.5 Relative Metrics

4 Remark Notation

For $x \in A$ with $A \subseteq M$:

$$
\begin{equation*}
B_{\epsilon}^{A}(x)=\{y \in A \mid d(x, y)<\epsilon\}=A \cap\{y \in M \mid d(x, y)<\epsilon\}=A \cap B_{\epsilon}^{M}(x) \tag{1.28}
\end{equation*}
$$

Definition 1.26

A subset $G \subseteq A$ is open relative to A if, given $x \in G, \exists \epsilon>0$ such that

$$
\begin{equation*}
B_{\epsilon}^{A}(x)=A \cap B_{\epsilon}^{M}(x) \subseteq G \tag{1.29}
\end{equation*}
$$

Corollary 1.1

A subset $G \subseteq A$ is open relative to A if and only if

$$
\begin{equation*}
A=G \cap U \tag{1.30}
\end{equation*}
$$

for some U open in A.

Definition 1.27

A set $F \subseteq A$ is closed relative to A if $F^{C}=A-F$ is open in A.

Corollary 1.2

A subset $F \subseteq A$ is closed relative to A if and only if

$$
\begin{equation*}
F=A \cap V \tag{1.31}
\end{equation*}
$$

for some V closed in A.

1.2.6 Seperable Sets

Definition 1.28

A subset of a metric space, $D \subseteq M$, is dense in M if it satisfies any of the following:

1. $x \in M \Rightarrow x \in D^{\prime}$
2. $\forall x \in M$ and $\forall \epsilon>0, B_{\epsilon}(x) \cap D \neq \varnothing$
3. $U \cap D \neq \varnothing$ for all non-empty U in M
4. $\left(D^{c}\right)^{\circ}=\varnothing$

Definition 1.29

A set D is countable if there exists

$$
\begin{equation*}
f: D \rightarrow \mathbb{N}, f \text { is injective. } \tag{1.32}
\end{equation*}
$$

Definition 1.30

A subset of a metric space, $D \subseteq M$, is seperable if it is countable and dense in M.

1.3 Continuity

1.3.1 Continuous Functions

Definition 1.31

Let $f:(M, d) \rightarrow(N, \rho) . f$ is continuous at $x \in M$ if, given $\epsilon>0, \exists \delta>0$ such that

$$
\begin{equation*}
d(x, y)<\delta \Rightarrow \rho(f(x)-f(y))<\epsilon \tag{1.33}
\end{equation*}
$$

If f is continuous for all $x \in M$, we say f is continuous on M.

Definition 1.32 Pre-Image

For $A \subseteq N$, the pre-image of f is

$$
\begin{equation*}
f^{-1}(A)=\{x \in M \mid f(x) \in A\} \tag{1.34}
\end{equation*}
$$

Theorem 1.8

Given $f:(M, d) \rightarrow(N, \rho)$, the following statements are equivalent:

1. f is continuous on M.
2. $\forall x \in M$, if $x_{n} \rightarrow x$ in (M, d) then $f\left(x_{x}\right) \rightarrow f(x)$ in (N, ρ)
3. If E is closed in $N, f^{-1}(E)$ is closed in M.
4. if V is open in $N, f^{-1}(V)$ is open in M.

Theorem 1.9

Let $f: L \rightarrow M$ and $g: M \rightarrow N$. If f is continuous at $x \in L$ and g is continuous $f(x) \in M, f \circ g: L \rightarrow N$ is continuous at $\chi \in L$.

Definition 1.33 Lipschitz

A function $f:(M, d) \rightarrow(N, \rho)$ is Lipschitz continuous if $\exists K<\infty$ such that $\rho(f(x), f(y)) \leq$ $K d(x, y)$ for all $x, y \in M$.

1.3.2 Homeomorphisms

Definition 1.34

The metric spaces (M, d) and (N, ρ) are homeomorphic if there exists a bijection $f:(M, d) \rightarrow$ (N, ρ) such that f and f^{-1} are continuous on M and N, respectively.

Definition 1.35

Two metrics d and ρ on M are equivalent if

$$
\begin{equation*}
d\left(x_{n}, x\right) \rightarrow 0 \Longleftrightarrow \rho\left(f\left(x_{n}\right), f(x)\right) \rightarrow 0 \text { as } n \rightarrow 0 \tag{1.35}
\end{equation*}
$$

Corollary 1.3

Two metrics d and ρ are equivalent if $(M, d),(M, \rho)$ have convergent sequences which converge to the same limit:

$$
\begin{equation*}
x_{n} \xrightarrow{d} x \Longleftrightarrow x_{n} \xrightarrow{\rho} x \tag{1.36}
\end{equation*}
$$

Theorem 1.10

Let $f:(M, d) \rightarrow(N, \rho)$ be a bijection. The following statements are equivalent:

1. f is a homeomorphism
2. $x_{n} \xrightarrow{d} x \Longleftrightarrow f\left(x_{n}\right) \xrightarrow{\rho} f(x)$
3. G is open in $M \Longleftrightarrow f(E)$ is open in N.
4. E is closed in $M \Longleftrightarrow f(E)$ is closed in N.
5. $\hat{d}(x, y)=\rho(f(x), f(y))$ if equivalent to d.

[198) Remark

$\left(\mathbb{R},\|\cdot\|_{1}\right),\left(\mathbb{R},\|\cdot\|_{2}\right),\left(\mathbb{R},\|\cdot\|_{\infty}\right)$ are all homeomorphic.

1.4 Connected Sets

Definition 1.36

A metric space M is disconnected if it can be written as the union of two non-empty, disjoint, open sets.

$$
\begin{array}{r}
M=A \cup B \\
A \neq \varnothing, B \neq \varnothing \tag{1.37}\\
A \cap B=\varnothing
\end{array}
$$

Definition 1.37 Clopen Sets
A set which is both closed and open is said to be clopen.
[1:2 Remark

$$
\begin{equation*}
M \text { is disconnected } \Longleftrightarrow \exists A \subset M \text { such that } \mathrm{A} \text { is clopen } \tag{1.38}
\end{equation*}
$$

In 2 Remark

Let $E \subset M$.

$$
\begin{equation*}
E \text { is a disconnected subset of } M \Longleftrightarrow \exists U, V \subset M \text { such that } E=(E \cap U) \cup(E \cap V) \tag{1.39}
\end{equation*}
$$

Where U, V are open in M and satisfy:

1. $(E \cap U) \neq \varnothing$
2. $(E \cap V) \neq \varnothing$
3. $(E \cap U) \cap(E \cap V)=\varnothing$

Theorem 1.11 Intermediate Value Theorem
A subset $E \subseteq \mathbb{R}$ containing more than 1 point is connected if and only if, $\forall x, y \in E$ satisfying $x<y$, we have $[x, y] \subseteq E$.

Corollary 1.4

A subset $E \subseteq \mathbb{R}$ is connected if and only if it is an interval.

Theorem 1.12

A metric space M is disconnected if and only if there exists a continuous map from M on $(\{0,1\}, d)$, where d is the discrete metric.

1.5 Completeness

1.5.1 Totally Bounded Sets

Theorem 1.13
A set A in (M, d) is totally bounded if and only if, given any $\epsilon>0$, there exists finitely many points $x_{1}, x_{2}, \ldots, x_{n} \in M$ such that

$$
\begin{equation*}
A \subseteq \bigcup_{i=1}^{n} B_{\epsilon}\left(x_{i}\right) \tag{1.40}
\end{equation*}
$$

Corollary 1.5

A set A in (M, d) is totally bounded if and only if, given any $\epsilon>0$, there exists finitely many set $A_{1}, A_{2}, \ldots, A_{n} \subseteq A$ with $\operatorname{diam}\left(A_{i}\right)<\epsilon$ for $i=1,2, \ldots, n$ such that

$$
\begin{equation*}
A \subseteq \bigcup_{i=1}^{n} A_{i} \tag{1.41}
\end{equation*}
$$

[198) Remark

Totally bounded \Rightarrow bounded, but Bounded \nRightarrow totally bounded.

1.5.2 Totally Bounded Sets vs. Cauchy Sequences

Theorem 1.14

Let $\left(x_{n}\right)$ be a sequence in a metric space and let

$$
\begin{equation*}
A=\left\{x_{n} \mid n \geq 1\right\} \tag{1.42}
\end{equation*}
$$

1. if $\left(x_{n}\right)$ is a Cauchy Sequence, A is totally bounded.
2. If A is totally bounded, $\left(x_{n}\right)$ has a Cauchy subsequence.

1.5.3 Complete Metric Spaces

Definition 1.38

(M, d) is complete if every Cauchy sequence in M converges to a point in M.

Theorem 1.15

Let (M, d) be a complete metric space and let A be a subset of $M .(A, d)$ is complete if and only if A is closed in M.

Theorem 1.16 Nested Set Theorem
For a metric space (M, d), the following statements are equivalent:

1. (M, d) is complete
2. let $\left(F_{n}\right)$ be a sequence of closed, non-empty sets satisfying

$$
\begin{equation*}
F_{1} \supseteq F_{2} \supseteq F_{3} \supseteq \ldots \tag{1.43}
\end{equation*}
$$

such that $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\begin{equation*}
\bigcap_{n=1}^{\infty} F_{n} \neq \varnothing . \tag{1.44}
\end{equation*}
$$

3. Every infinite, totally bounded subset of M has a limit point in M.

Theorem 1.17

ℓ_{2} is complete.

1.5.4 Banach Spaces

Definition 1.39

A complete, normed, linear space is a Banach Space.
Definition 1.40 Strict Contraction
Let (M, d) be a metric space and define $f: M \rightarrow M$. This f is a strict contraction if $\exists \alpha<1$ such that $d(f(x), f(y)) \leq \alpha d(x, y)$ for all $x, y \in M$.
[1] Remark
A contraction $f: M \rightarrow M$ is automatically continuous.
Theorem 1.18 Banach Fixed Point
Let (M, d) be complete and $f: M \rightarrow M$ be a strict contraction. The $\exists!x \in M$ such that $f(x)=x . x$ is called a fixed point in M.
Moreover, given any $x \in M$, the sequence $\left(f^{n}\left(x_{\circ}\right)\right)_{n=1}^{\infty}$ converges to the fixed point $x=f(x)$ as $n \rightarrow \infty$.

1.5.5 Completions

Definition 1.41 Isometry
$f:(M, d) \rightarrow(N, \rho)$ is an isometry if it satisfies:

$$
\begin{equation*}
\rho(f(x), f(y))=d(x, y) \tag{1.45}
\end{equation*}
$$

In other words, isometries preserve distances.

Definition 1.42

A metric space (\hat{M}, \hat{d}) is a completion of (M, d) if:

1. (\hat{M}, \hat{d}) is complete.
2. (M, d) is isometric to a dense subset of (\hat{M}, \hat{d}).

In 2 Remark

If M is dense in $\hat{M},(\hat{M}, \hat{d})$ is a completion of (M, d).

Theorem 1.19

Every metric space (M, d) has a completion. Moreover, if $\left(\hat{M}_{1}, \hat{d}_{1}\right)$ and $\left(\hat{M}_{2}, \hat{d}_{2}\right)$ are both completions of (M, d), then $f:\left(\hat{M}_{1}, \hat{d}_{1}\right) \rightarrow\left(\hat{M}_{2}, \hat{d}_{2}\right)$ is an isometry.

1.6 Compactness

Definition 1.43
A metric space (M, d) is compact if it is both totally bounded and complete.

䀦 Remark Heine-Borel

A subset $K \subseteq \mathbb{R}$ is compact if and only if K is closed.
Additionally, K is totally bounded if and only iff K is bounded.
So K is compact if and only if it is closed and bounded.

Theorem 1.20

(M, d) is compact if and only if every sequence in M has a subsequence that converges to a point in M.

Corollary 1.6
 compact \Rightarrow closed

Corollary 1.7

```
compact }=>\mathrm{ bounded
```


Corollary 1.8

Closed subsets of compact metric spaces are compact.

Theorem 1.21

Let $f:(M, d) \rightarrow(N, \rho)$ be continuous on M. If K is compact in M, then $f(K)$ is compact in N.

Theorem 1.22 Extreme Value Theorem

Let (M, d) be a complete metric space. and let $f: M \rightarrow \mathbb{R}$ be continuous. Then $f(M)$ is bounded and achieves its maximum and minimum values.

Corollary 1.9

If $f:[a, b] \rightarrow M$ is continuous, then $\exists c, d, \in \mathbb{R}$ with $c<d$ such that $f([a, b])=[c, d]$.

Theorem 1.23

In a metric space (M, d), the following are equivalent:

1. If \mathcal{G} is any collection of open sets in M and $M \subseteq \bigcup\{G: G \in \mathcal{G}\}$, then there exists G_{1}, \ldots, G_{n} such that

$$
M \subseteq \bigcup_{i=1}^{n} G_{i}
$$

In other words, every open cover of M has a finite subcover.
2. If \mathcal{F} is any collection of closed sets in M with $\bigcap_{i=1}^{n} F_{i} \neq \varnothing$, then

$$
\bigcap\{F: F \in \mathcal{F}\} \neq \varnothing
$$

1.7 Uniform Continuity

Definition 1.44

$f:(M, d) \rightarrow(N, \rho)$ is uniformly continuous if, given any $\epsilon>0$, there exists $\delta>0$ such that, $\forall x, y \in M$ with $d(x, y)<\delta$,

$$
\rho(f(x), f(y))<\epsilon
$$

na

Lipschitz functions are uniformly continuous. Given any $\epsilon>0$, choose $\delta<\frac{\epsilon}{K}$ where K is the Lipschitz constant.

Theorem 1.24

If $f: M \rightarrow N$ is uniformly continuous and M is totally bounded, then N is also totally bounded. (Uniformly continuous functions map totally bounded sets to totally bounded sets).

Theorem 1.25

If M is compact and $f: M \rightarrow N$ is continuous, then f is uniformly continuous.

Theorem 1.26

Assume $(V,\|\cdot\|)$ and $(W,\| \| \cdot \|)$ are normed linear spaces and consider the map $T: V \rightarrow W$, where T is linear, i.e. T satisfies:

$$
T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)
$$

for all $x, y \in M$ and for all scalars α, β.
Then the following are equivalent:

1. T is Lipschitz:

$$
\exists c>0 \text { such that, } \forall x, y \in V
$$

$$
\|\mid T(x)-T(y)\|\|\leq c\| x-y \|
$$

2. T is uniformly continuous
3. T is continuous on V.
4. T is continuous at $\mathbf{0} \in V$.
5. $\exists c>0$ such that

$$
\|T(x)\| \leq c\|x\|
$$

Definition 1.45

A linear map $T:(V,\|\cdot\|) \rightarrow(W,\|\cdot\|)$ is bounded if $\exists c>0$ such that

$$
\|\|T(x)\| \leq c\| x \|
$$

Definition 1.46

We denote the set of all bounded, linear mappings from V to W as $\mathbf{B}(\mathbf{V}, \mathbf{W})$.

Theorem 1.27

$B(V, W)$ is a normed linear space.

Definition 1.47

Let $T \in B(V, W)$. We define the norm of T (known as the Operator Norm) as follows:

$$
\begin{array}{r}
\|T\|_{B(V, W)}=\inf \{c \geq 0:\|T(x)\| \leq c\|x\|, \forall x \in V\} \\
=\sup _{x \in V,\|x\| \neq 0} \frac{\|T(x)\|}{\|x\|} \\
=\sup _{\|x\| \leq 1}\|T(x)\|
\end{array}
$$

ne9 Remark

For all $x \in V$:

$$
\|T(x)\|\|\leq\| T(x) \|_{B(V, W\|x\|}
$$

1.8 Sequences of Functions

1.8.1 Pointwise vs. Uniform Convergence

Definition 1.48

Let X be a set and (Y, ρ) a metric space. Let $f: X \rightarrow Y$ and $\left(f_{n}\right)_{i=1}^{\infty}$ be a sequence of functions such that $f_{n}: X \rightarrow Y$ for all $n \in \mathbb{N}$.
We say $\left(f_{n}\right)$ converges to f point-wise on X if, for every $\hat{x} \in X$,

$$
f_{n}(\hat{x}) \xrightarrow{\rho} f(\hat{x})
$$

Definition 1.49

We say $\left(f_{n}\right)$ is uniformly convergent if, given any $\epsilon>0$ and $x \in X$, there exists $N \in \mathbb{N}$ such that, for all $n \geq N$,

$$
\rho\left(f_{n}(x), f(x)\right)<\epsilon
$$

for each $\epsilon>0$.

Theorem 1.28

Let (X, d) and (Y, ρ) be metric spaces and $f_{n}: X \rightarrow Y \forall n \in \mathbb{N}$. Asssume $f_{n} \rightarrow f$ uniformly on X and f_{n} is continuous at $\chi \in X \forall n \in \mathbb{N}$. Then f is also continuous at χ.

Theorem 1.29

Suppose $f_{n}:[a, b] \rightarrow \mathbb{R}$ is continuous $\forall n \in \mathbb{N}$ and assume $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then

$$
\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f
$$

1.8.2 Space of Bounded Functions

Definition 1.50

Given a set X, let $B(X)$ denote the space of all real valued, bounded functions on X. So $f \in B(X)$ means $f: X \rightarrow \mathbb{R}$ and $\sup _{x \in X}|f(x)|<\infty$. We equip $B(X)$ with the sup norm: $\|f\|_{B(X)}=\|f\|_{\infty}=$ $\sup _{x \in X}|f(x)|$

[198) Remark

$\|\cdot\|_{\ell \infty}$ refers specifically to sequences.

Iq) Remark

If $f_{n} \rightarrow f$ in $B(X)$, or $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$, then, given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left\|f_{n}-f\right\|_{\infty}=\sup _{x \in X}\left|f_{n}(x)-f(x)\right|<\epsilon$. But then $\forall n \geq N$ and $\forall x \in X,\left|f_{n}(x)-f(x)\right|<\epsilon$, so $f_{n} \rightarrow f$ uniformly on X.

Theorem 1.30

$B(X)$ is complete under the sup norm. This means, given any Cauchy sequence $\left(f_{n}\right) \in B(X), f_{n} \rightarrow$ $f \in B(X)$. Moreover, $\exists c>0$ such that $\left\|f_{n}\right\|_{\infty} \leq C$ for all $n \in \mathbb{N}$ and $\left\|f_{n}\right\|_{\infty} \rightarrow\|f\|_{\infty}$

Definition 1.51

A Cauchy sequence $\left(f_{n}\right) \in B(X)$ is called Uniformly Cauchy.

Definition 1.52

A bounded sequence in $B(X)$ is called Uniformly Bounded.

Theorem 1.31

Assume X is a coompact metric space. Then $C_{b}(x)=C(x)$. If X is compact and $f: X \rightarrow \mathbb{R}$ is continuous, then $f(x)$ is compact in \mathbb{R} so $f(x)$ is bounded. Therefore, $C(x)=c_{b}(x)$.

1.9 Equicontinuity

[19) Remark

If $f \in C(X)$ and X is compact, then f is uniformly continuous.

Definition 1.53

Let \mathcal{F} be a collection of real valued function on a metric space X. We say \mathcal{F} is equicontinuous if, given any $\epsilon>0$, there exists $\delta>0$ such that, $\forall x, y \in X$ with $d(x, y)<\delta,|f(x)-f(y)|<\epsilon$ for all $f \in \mathcal{F}$.

Theorem 1.32

Let X be a compact set. Any finite subset of $C(X)$ is equicontinuous.

Definition 1.54

Fix $k>0$ and $\alpha>0$. Consider the set of $\left\{f \in C([0,1]):|f(x)-f(y)| \leq k|x-y|^{\alpha}, \forall x, y \in\right.$ $[0,1]\}$. We call this set Lip $_{k}^{\alpha}$.

Theorem 1.33

Given $\epsilon>0$, choose $\delta=\left(\frac{\epsilon}{k}\right)^{\alpha}$. Then Lip ${ }_{k}^{\alpha}$ is equicontinuous

Definition 1.55

A collection of real valued functions \mathcal{F} on X is uniformly equibounded if $\{f(x): x \in X, f \in \mathcal{F}\}$ is
a bounded set in \mathbb{R}

$$
\sup _{x \in X, f \in \mathcal{F}}|f(x)|=\sup _{f \in \mathcal{F}}\|f\|_{\infty}<\infty
$$

1.10 Arzela-Ascoli Theorem

Definition 1.56 Uniformly Bounded
A collection of real values functions \mathcal{F} on a set X is is Uniformly Bounded if

$$
\begin{array}{r}
\{f(x): x \in X, f \in \mathcal{F}\} \\
\text { or } \\
\sup _{f \in \mathcal{F}, x \in X}|f(x)|=\sup _{f \in \mathcal{F}}\|f\|_{\infty}<\infty \\
\text { or } \\
\exists C>0 \text { such that }\|f\|_{\infty} \leq C \\
\forall f \in \mathcal{F}
\end{array}
$$

4

For $\mathcal{F} \subseteq C(X)$, where $C(X)$ is equipped with $\|\cdot\|_{\infty}, \mathcal{F}$ is uniformly bounded if and only if \mathcal{F} is a bounded subset of $C(X)$.

Theorem 1.34 Arzela-Ascoli
Let X be a compact metric space and let $\mathcal{F} \subseteq C(X)$. \mathcal{F} is compact if and only if \mathcal{F} is closed, uniformly bounded, and equicontinuous.

Corollary 1.10

Let X be a compact metric space. If $\left(f_{n}\right)$ is uniformly bounded and equicontinuous on $C(X)$, then there exists a subsequence of $\left(f_{n}\right)$ that converges uniformly on X.

Chapter 2 Measure Theory (MTH 512)

2.1 Riemann Integral

Definition 2.1

Let P be a partition of $[a, b]$,

$$
P=x_{0}, x_{1}, \ldots, x_{n}
$$

such that

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b
$$

Definition 2.2

Assume $f:[a, b] \rightarrow \mathbb{R}$ is bounded.

$$
L(f, P,[a, b])=\sum_{j=1}^{n}\left(\inf _{x \in\left[x_{j-1}, x_{j}\right]} f(x)\right)\left(x_{j}-x_{j-1}\right)
$$

is the Lower Riemann Sum of f.

Definition 2.3

Assume $f:[a, b] \rightarrow \mathbb{R}$ is bounded.

$$
U(f, P,[a, b])=\sum_{j=1}^{n}\left(\sup _{x \in\left[x_{j-1}, x_{j}\right]} f(x)\right)\left(x_{j}-x_{j-1}\right)
$$

is the Upper Riemann Sum of f.

Definition 2.4

$$
L(f,[a, b])=\sup _{P} L(f, P,[a, b])
$$

is the Lower Riemann Integral of f.

Definition 2.5

$$
U(f,[a, b])=\inf _{P} U(f, P,[a, b])
$$

is the Upper Riemann Integral of f.

Definition 2.6

A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann Integrable on $[a, b]$ if

$$
L(f,[a, b])=U(f,[a, b])
$$

Theorem 2.1

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, f is Riemann Integrable.

2.2 Measures

2.2.1 Outer Measures

Definition 2.7

If I is an open interval in \mathbb{R} with $a<b$ (i.e. $I=(a, b), I=(-\infty, a), I=(a, \infty)$, or $I=(-\infty, \infty)$). The length of I is given by

$$
\ell(I)=\left\{\begin{array}{l}
b-a, I=(a, b) \\
\infty, I=(-\infty, a), I=(a, \infty), I=(-\infty, \infty) \\
0, I=\varnothing
\end{array}\right.
$$

Definition 2.8

For $A \subseteq \mathbb{R}$, the Outer Measure of A is

$$
|A|=\inf \left\{\sum_{k=1}^{\infty} \ell\left(I_{k}\right): A \subseteq \bigcup_{k=1}^{\infty} I_{k}\right\}
$$

Where $\left\{I_{k}\right\}_{k=1}^{\infty}$ is a collection of open intervals and $|A|$ is the infimum over all such collections.

Theorem 2.2

The outer measure of any countable subset of \mathbb{R} is 0 .

Theorem 2.3

Suppose $A \subseteq B \subseteq \mathbb{R}$, then $|A| \leq|B|$.

Theorem 2.4

Assume $t \in \mathbb{R}$ and $A \subseteq \mathbb{R}$, then $|t+A|=|A|$, where

$$
t+A=\{t+a: a \in A\}
$$

Theorem 2.5

Suppose $\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}$ is a countable collection of subsets of \mathbb{R}. Then

$$
1 \bigcup_{k=1}^{\infty} A_{k}\left|\leq \sum_{k=1}^{\infty}\right| A_{k} \mid
$$

129 Remark

$\exists A_{1}, A_{2} \in \mathbb{R}$ with $A_{1} \bigcap A_{2}=\varnothing$ such that

$$
\left|A_{1} \cup A_{2}\right| \neq\left|A_{1}\right|+\left|A_{2}\right|
$$

Theorem 2.6

Let $a, b \in \mathbb{R}, a<b$. Then

$$
|[a, b]|=b-a
$$

Theorem 2.7

A a function μ with all the following properties:

1. μ maps all subsets of \mathbb{R} to $[0, \infty]$.
2. $\mu(I)=\ell(I)$ for all open intervals $I \in \mathbb{R}$.
3. $\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right)$ for all $\left\{A_{k}\right\}_{k=1}^{\infty}$ (pairwise disjoint).
4. $\mu(t+A)=\mu(A)$ for all $t \in \mathbb{R}, A \subseteq \mathbb{R}$.

2.2.2 σ-algebras

Definition 2.9σ-algebra

Let X be a set and \mathscr{S} be a collection of subsets of X. Then \mathscr{S} is a σ-algebra on X if:

1. $\varnothing \in \mathscr{S}$
2. If $E \in \mathscr{S}$ then $X-E \in \mathscr{S}$
3. If $\left\{E_{k}\right\}_{k=1}^{\infty}$ is a collection in \mathscr{S} then

$$
\bigcup_{k=1}^{\infty} E_{k} \in \mathscr{S}
$$

108 Remark

Suppose \mathscr{S} is a σ-algebra on X, then

1. $X \in \mathscr{S}$
2. $D, E \in \mathscr{S} \Rightarrow D \cap E \in \mathscr{S}$ and $D \cup E \in \mathscr{S}$ and $D-E \in \mathscr{S}$
3. If $\left\{E_{k}\right\}_{k=1}^{\infty}$ is a countable collection in \mathscr{S}, then $\bigcap_{k=1}^{\infty} E_{k} \in \mathscr{S}$

2.2.3 Measurable Spaces

Definition 2.10

A measurable space is an ordered pair (X, \mathscr{S}), where X is a set and \mathscr{S} is a σ-algebra on X. An element of \mathscr{S} is said to be \mathscr{S} measurable.

If

Consider $X=\mathbb{R}$. Let \mathscr{S} be the collection of all sets E such that E or $X-E$ is countable.

1. \mathbb{Q} is \mathscr{S} measurable
2. $\mathbb{R}-\mathbb{Q}$ is \mathscr{S} measurable
3. $(0,1)$ is not \mathscr{S} measurable

2.2.4 Borel Subsets

Theorem 2.8

Let X be a set and let \mathscr{A} be a collection of subsets of X. Then the intersection of all σ-algebras on X which contain \mathscr{A} is also a σ-algebra containing \mathscr{A}. Furthermore, the intersection is the smallest possible σ-algebra containing \mathscr{A}.

Definition 2.11

The smallest σ-algebra on \mathbb{R} containing all open subsets of \mathbb{R} is called the collection of Borel Subsets. An element of this σ-algebra is called a Borel Set.

n-

1. Open sets are Borel Sets
2. Closed sets are Borel Sets
3. $[a, b),(a, b]$ are Borel Sets
4. x is a Borel Set
5. Countable subsets of \mathbb{R} are Borel Sets
6. \mathbb{Q} and $\mathbb{R}-\mathbb{Q}$ are Borel Sets
7. Any countable union of countable intersection of (1)-(7) is a Borel Set

2.2.5 Measures

Definition 2.12

let X be a set and \mathscr{S} be a σ-algebra on X, then (X, \mathscr{S}) is a measurable space. A measure on (X, \mathscr{S}) is a function $\mu: \mathscr{S} \rightarrow[0, \infty]$ such that:
1.

$$
\mu(\varnothing)=0
$$

2.

$$
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} \mu\left(E_{k}\right)
$$

nq Remark

Let $X=\mathbb{R}$ and $\mathscr{S}=P(X)$, then (X, \mathscr{S}) is a measurable space but $\mu=|\cdot|$ is not a measure on (X, \mathscr{S}) because (2) fails.

Definition 2.13 Counting Measure
Let X be a set and $\mathscr{S}=P(X)$. Define $\mu: \mathscr{S} \rightarrow[0, \infty]$ as

$$
\mu(E)= \begin{cases}+\infty, & E \in \mathscr{S} \text { is infinite. } \\ n, & E \in \mathscr{S} \text { is finite. }\end{cases}
$$

where n is the number of elements in \mathscr{S}.

[1] Remark

Consider the set $X=\{1,2,3,4, \ldots, N-1, N\}$ and $\mathscr{S}=P(X)$ and let μ be a counting measure on (X, \mathscr{S}). Consider a sum of real numbers $a_{1}+a_{2}+a_{3}+a_{4}+\ldots+a_{N}$. Let $f(k)=a_{k}$ for each $1 \leq k \leq N(f: X \rightarrow \mathbb{R})$. Then

$$
\begin{array}{r}
\sum_{k=1}^{N} a_{k}=\sum_{k=1}^{N} f(k) \\
=\sum_{k=1}^{N} f(k) \cdot \mu(\{k\}) \\
=\int_{X} f \cdot d \mu
\end{array}
$$

Definition 2.14

A Measure Space (X, \mathscr{S}, μ) is a measurable space with a measure on it.

Theorem 2.9

Suppose (X, \mathscr{S}, μ) is a measure space. Let $D, E \in \mathscr{S}$ such that $D \subseteq E$, then

1. $\mu(D) \leq \mu(E)$
2. $\mu(D-E)=\mu(D)-\mu(E)$

Theorem 2.10 Countable Subadditivity
Let (X, \mathscr{S}, μ) be a measure space and $E_{1}, E_{2}, E_{3}, \ldots \in \mathscr{S}$ (not necessarily disjoint), then

$$
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(E_{k}\right)
$$

Theorem 2.11

Let (X, \mathscr{S}, μ) be a measurable space. Let $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \ldots$ be a nested sequence of sets in \mathscr{S}, then

$$
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\lim _{k \rightarrow \infty} \mu\left(E_{k}\right)
$$

Theorem 2.12

Let (X, \mathscr{S}, μ) be a measurable space. Let (X, \mathscr{S}, μ) be a measurable space. Let $E_{1} \supseteq E_{2} \supseteq E_{3} \supseteq \ldots$ be a nested sequence of sets in \mathscr{S} and $\mu\left(E_{1}\right)<\infty$, then

$$
\mu\left(\bigcap_{k=1}^{\infty} E_{k}\right)=\lim _{k \rightarrow \infty} \mu\left(E_{k}\right)
$$

Theorem 2.13

Assume (X, \mathscr{S}, μ) is a measure space and $D, E \in \mathscr{S}$ with $\mu(D \cup E)<\infty$. Then $\mu(D \cup) E=\mu(D)+$ $\mu(E)-\mu(D \cap E)$.

2.3 Lebesgue Measure

Iq8 Remark

In constructing the Lebesgue Measure, the idea is to show that the outer measure, when restricted to (\mathbb{R}, \mathbb{B}) where \mathbb{B} is the Borel Set of \mathbb{R}, is a measure. In other words, $(\mathbb{R}, \mathbb{B},|\cdot|)$ is a measure space.

Theorem 2.14

Let $A, G \subseteq \mathbb{R}, A \cap G=\varnothing$ and G open. Then $|A \cup G|=|A|+|G|$.

Theorem 2.15

Let $A, F \subseteq \mathbb{R}, A \cap G=\varnothing$ and F open. Then $|A \cup F|=|A|+|F|$.

Theorem 2.16

Let $B \subseteq \mathbb{R}$ be a Borel set. The $\forall \epsilon>0$, there exists a closed set $F \subseteq B$ such that $|B-F|<\epsilon$.

Theorem 2.17

Suppose $A, B \subseteq \mathbb{R}, A \cap B=\varnothing$, and B is a Borel Set. Then

$$
|A \cup B|=|A|+|B|
$$

Theorem 2.18

Outer Measure is a measure on the measurable space $(\mathbb{R}, \mathscr{B})$ where \mathscr{B} is the set of all Borel Sets. So $(\mathbb{R}, \mathscr{B},|\cdot|)$ is a measure space.

Definition 2.15 Lebesgue Measure
Lebesque Measure is the measure on $(\mathbb{R}, \mathcal{B})$ which assigns to each Borel set its outer measure.

2.3.1 Lebesgue Measurable Sets

Definition 2.16

If $A \subseteq \mathbb{R}, A$ is Lebesgue Measurable if \exists a Borel set $B \subseteq A$ such that $|A-B|=\varnothing$.

Definition 2.17

Let $A \subseteq \mathbb{R}$. The following statements are equivalent:

1. A is Lebesgue Measurable.
2. $\forall \epsilon>0, \exists F$ closed in A such that $|A-F|<\epsilon$.
3. \exists sequence of closed sets $F_{1}, F_{2}, F_{3}, \ldots \subseteq A$ such that

$$
\left|A-\bigcup_{i=1}^{\infty} F_{i}\right|=0
$$

4. $\forall \epsilon>0, \exists G$ open with $G \supseteq A$ such that $|G-A|<\epsilon$.
5. \exists sequence of open sets $G_{1}, G_{2}, G_{3}, \ldots \supseteq A$ such that

$$
\left|\left(\bigcap_{i=1}^{\infty} G_{i}\right)-A\right|=0
$$

6. \exists a Borel set $B \supseteq A$ such that $|B-A|=0$

Theorem 2.19

Outer Measure is a measure on $(\mathbb{R}, \mathcal{L})$, where \mathcal{L} is the σ-algebra of Lebesgue measurable sets.

Definition 2.18 Alternative Definition of Lebesgue Measure
Lebesgue Measure is the measure on $(\mathbb{R}, \mathcal{L})$ which assigns to each $A \in \mathcal{L}$ its outer measure.

1292 Remark
The two definitions of Lebesgue Measure are not equivalent, however

$$
\begin{array}{r}
\forall A \in \mathcal{L}, \\
A=B \cup(A-B)
\end{array}
$$

where B is Borel and $|A-B|=0$. So, in practice, the difference in definition doesn't matter.

Theorem 2.20

Every set A with $|A|=0$ is Lebesgue measurable.

[198) Remark

For any Lebesgue measurable set A,

$$
A=B \cup(A-B)
$$

where B is Borel and $|A-B|=0$. So \mathcal{L} is the smallest σ-algebra containing the Borel sets and the sets of outer measure 0 . (Note: non-Borel sets of outer measure 0 do exists, but they don't really matter for any reason.)

2.4 Measurable Functions

Definition 2.19
Suppose (X, \mathscr{S}) is a measurable space. A function $f: X \rightarrow \mathbb{R}$ is a measurable function if $f^{-1}(B) \in$ \mathscr{S} for all $B \in \mathbb{B}$.

2.4.1 Characteristic Functions

Definition 2.20

Let X be a set and $E \subseteq X$. The characteristic function of $E, \chi_{E}: X \rightarrow \mathbb{R}$, is defined by:

$$
\chi_{E}(x)= \begin{cases}1, & x \in E \\ 0, & x \notin E\end{cases}
$$

Theorem 2.21

Suppose (X, \mathscr{S}) is a measurable space. If $E \subseteq X$, then $c h i_{E}$ is measurable iff $E \subseteq \mathscr{S}$ (i.e. E is \mathscr{S} measurable).

Definition 2.21

Suppose $X \subseteq \mathbb{R}$, then $f: X \rightarrow \mathbb{R}$ is Borel Measurable if $f^{-1}(B)$ is a Borel set $\forall B \in \mathbb{B}$.

Definition 2.22

Suppose $A \subseteq \mathbb{R}$. Then $f: A \rightarrow \mathbb{R}$ is Lebesgue Measurable if $f^{-1}(B)$ is Lebesgue Measurable for all Borel sets.

Theorem 2.22

Suppose (X, \mathscr{S}) is a measurable space and $f: X \rightarrow \mathbb{R}$, then f is measurable iff $f^{-1}(A) \in \mathscr{S}$ for all open sets $A \subseteq \mathbb{R}$.

Theorem 2.23

Suppose (X, \mathscr{S}) is a measurable space and $f: X \rightarrow \mathbb{R}$, then f is measurable iff $f^{-1}((a, \infty)) \in \mathscr{S}$ for all $a \in \mathbb{R}$.

Theorem 2.24

Suppose (X, \mathscr{S}) is a measurable space and let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of measurable functions with $f_{k}: X \rightarrow \mathbb{R}$ for all k. Suppose, for all $x \in X, \lim _{k \rightarrow \infty} f_{k}(x)$ exists. Let

$$
f=\lim _{k \rightarrow \infty} f_{k}(x)
$$

for all $x \in X$. Then f is also measurable.

Corollary 2.1

Suppose (X, \mathscr{S}) is a measurable space and let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of measurable functions with $f_{k}: X \rightarrow \mathbb{R}$ for all k. Suppose, for all $x \in X, \lim _{k \rightarrow \infty} f_{k}(x)$ exists. Then for any $a \in \mathbb{R}$

$$
f^{-1}((a, \infty))=\bigcup_{j=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{m=k}^{\infty} f_{k}^{-1}\left(\left(a+\frac{1}{j}, \infty\right)\right) \in \mathscr{S}
$$

Theorem 2.25

If $f: X \rightarrow \mathbb{R}$ is continuous with $X \subseteq \mathbb{R}$, then f is both Borel and Lebesgue measurable.

2.4.2 Composition of Measurable Functions

Theorem 2.26

Let (X, \mathscr{S}) be a measurable space and $f: X \rightarrow \mathbb{R}$ be \mathscr{S} measurable. Assume $Y \subseteq f(X)$ and let $g: Y \rightarrow \mathbb{R}$ be Borel measurable. then $g \circ f: X \rightarrow \mathbb{R}$ is \mathscr{S} measurable.

Example 2.1

Assume f is \mathscr{S} measurable. Then $f^{2}, \frac{1}{2} f,-f,|f|$ are \mathscr{S} measurable.

Theorem 2.27

Suppose (X, \mathscr{S}) is a measurable set. Let $f, g: X \rightarrow \mathbb{R}$ be \mathscr{S} measurable. Then the following are also \mathscr{S} measurable:

1. $f+g$
2. $f-g$
3. $f g$
4. f / g (lf $g(x) \neq 0, \forall x \in X$)

2.4.3 Convergence of Measurable Functions

Theorem 2.28 Egorov's
Suppose (X, \mathscr{S}, μ) is a measure space with $\mu(x)<\infty$. Let $\left\{f_{k}\right\}$ be a sequence of measurable functions $f_{k}: X \rightarrow \mathbb{R}$ for all k, with $f_{k} \rightarrow f$ for all $x \in X$ (pointwise). Then $\forall \epsilon>0, \exists E \in \mathscr{S}$ such that $\mu(X-E)<\epsilon$ and $f_{k} \rightarrow f$ uniformly on E.

n- 2 Remark

We can assume $f_{k} \rightarrow f$ pointwise "almost everywhere", meaning everywhere except on a subset $A \subseteq X$ with $\mu(A)=0$.

2.4.4 Simple Functions

Definition 2.23

A subset $A \subseteq[-\infty, \infty]$ is called a Borel Set if $A \cap \mathbb{R}$ is a Borel set of \mathbb{R}.

418 Remark

The set of Borel Sets of $[-\infty, \infty]$ is a σ-algebra on $[-\infty, \infty]$.

Definition 2.24

Let (X, \mathscr{S}) be a measurable space. Then $f: X \rightarrow[-\infty, \infty]$ is \mathscr{S} measurable if $f^{-1}(B) \in \mathscr{S}$ for all Borel Sets B in $[-\infty, \infty]$.

Theorem 2.29

Suppose $(X \mathscr{S})$ is a measurable space. Then $f: X \rightarrow[-\infty, \infty]$ is \mathscr{S} measurable if and only if $f^{-1}((a, \infty]) \in \mathscr{S}$ for all $a \in \mathbb{R}$.

Definition 2.25

A function if called simple if it takes on finitely many values in \mathbb{R}
Let (X, \mathscr{S}) be a measurable space. Let $f: X \rightarrow \mathbb{R}$ be a simple function on the non-zero values
$c_{1}, c_{2}, c_{3}, \ldots, c_{n}$. Then

$$
f=c_{1} \chi_{E_{1}}+c_{2} \chi_{E_{2}}+c_{3} \chi_{E_{3}}+\ldots+c_{n} \chi_{E_{n}}
$$

Where $E_{k}=f^{-1}\left(\left\{c_{k}\right\}\right)$ for all $1 \leq k \leq n$.
Note that if f is \mathscr{S} measurable, then $E_{k}=f^{-1}\left(\left\{c_{k}\right\}\right) \in \mathscr{S}$ for all k. If $E_{k} \in \mathscr{S}$ for all k then $\xi_{E_{k}}$ is \mathscr{S} measurable, so

$$
f=\sum_{k=1}^{n} c_{k} \chi_{E_{k}}
$$

is \mathscr{S} measurable. fo f is \mathscr{S} measurable if and only if $E_{k} \in \mathscr{S}$ for all $1 \leq k \leq n$

2.4.5 Approximation by Simple Functions

Theorem 2.30

Let (X, \mathscr{S}) be a measurable space and $f: X \rightarrow[-\infty, \infty]$ be \mathscr{S}-measurable. Then \exists a sequence $f_{1}, f_{2}, \ldots, f_{k}: X \rightarrow \mathbb{R}$ for all k such that

1. Each f_{k} is a simple function
2. $\left|f_{k}(x)\right| \leq\left|f_{k+1}(x)\right| \leq|f(x)|$ for all $x \in X$ and $k \in \mathbb{N}$
3. $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$
4. If f is bounded, the $f_{k} \rightarrow f$ uniformly on X.

Theorem 2.31 Lusin's Theorem

Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable. Then given $\epsilon>0, \exists$ closed $F \subset \mathbb{R}$ such that $|\mathbb{R}-F| \leq \epsilon$ and $\left.g\right|_{F}$ is continuous.

Theorem 2.32

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue Measurable, there exists a Borel Measurable $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
|\{x: g(x) \neq f(x)\}|=0
$$

Theorem 2.33

Let $(X \mathscr{S})$ be a measurable space, f_{1}, f_{2}, \ldots be a sequence of \mathscr{S}-measurable functions with f_{k} : $\mathbb{R} \rightarrow \mathbb{R}$ for all $k \in \mathbb{N}$, then $\left\{x \in X: \lim _{k \rightarrow \infty} f_{k}(x)\right.$ exists in $\left.\mathbb{R}\right\}$

Theorem 2.34

If $f, g: X \rightarrow[-\infty, \infty]$ satisfy

$$
\mu(\{x \in X: f(x) \neq g(x)\})=0
$$

where μ is the Lebesgue measure, then we say f and g are equal almost everywhere.

2.5 Lebesgue Integration

n-
By convention, let

$$
\infty \times 0=0 \times \infty=0
$$

Definition 2.26

Let \mathscr{S} be a σ-algebra on X, then an \mathscr{S}-partition on X is a finite collection of disjoint sets $A_{1}, A_{2}, \ldots, A_{n}$ in \mathscr{S} such that

$$
\bigcup_{j=1}^{n} A_{j}=X
$$

Definition 2.27

Suppose (X, \mathscr{S}, μ) is a measure space and let $f: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable. Let $P=$ $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be an \mathscr{S}-partition on X. Then the Lower Lebesgue Sum is defined to be

$$
\mathcal{L}(f, P)=\sum_{j=1}^{n} \mu\left(A_{j}\right) \inf _{x \in A_{j}} f(x)
$$

Definition 2.28

Suppose (X, \mathscr{S}, μ) is a measure space and let $f: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable. The Integral With Respect To μ (i.e. Lebesgue Integration is defined to be

$$
\int_{X} f d \mu=\sup \{\mathcal{L}(f, P): P \text { is a partition on } X\}
$$

nq8) Remark

Suppose (X, \mathscr{S}, μ) is a measure space and $E \in \mathscr{S}$. Then

$$
\int_{X} \chi_{E} d \mu=\mu(E)
$$

2.5.1 Integrals of Simple Functions

Theorem 2.35

Suppose (X, \mathscr{S}, μ) is a measure space and $E_{1}, E_{2}, . ., E_{n}$ is a disjoint collection in \mathscr{S}. Let $c_{1}, c_{2}, \ldots, c_{n} \in[0, \infty]$. Then

$$
\int_{X} \sum_{k=1}^{n} c_{k} \chi_{E_{k}} d \mu=\sum_{k=1}^{n} c_{k} \mu\left(E_{k}\right)
$$

Theorem 2.36 Preservation of Order
Suppose (X, \mathscr{S}, μ) is a measure space. Let $f, g: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable. Assume $f(x) \leq$
$g(x)$ for all $x \in X$. Then

$$
\int_{X} f d \mu \leq \int_{X} g d \mu
$$

Theorem 2.37

Suppose (X, \mathscr{S}, μ) is a measure space and $f: X \rightarrow[0, \infty]$ is \mathscr{S}-measurable. Then

$$
\begin{aligned}
& \int_{X} f d \mu=\sup \left(\left\{\sum_{j=1}^{n} c_{j} \mu\left(A_{j}\right):\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \text { is a disjoint collection of sets in } \mathscr{S},\right.\right. \\
& \left.\left.\qquad c_{1}, c_{2}, \ldots, c_{n} \in[0, \infty) \text { and } f(x) \geq \sum_{j=1}^{m} c_{j} \chi_{A_{j}}(x) \forall x \in X\right\}\right)
\end{aligned}
$$

2.5.2 Monotone Convergence

Theorem 2.38 Monotone Convergence Theorem
Suppose (X, \mathscr{S}, μ) is a measure space. Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a sequence of functions such that $f_{k}: X \rightarrow$ $[0, \infty]$ is \mathscr{S}-measurable for all $k \in \mathbb{N}$ and

$$
0 \leq f_{1} \leq f_{2} \leq \ldots
$$

for all $x \in X$. Let $f(x)=\lim _{k \rightarrow \infty} f_{k}(x)$. Then

$$
\lim _{k \rightarrow \infty} \int_{X} f_{k} d \mu=\int_{X} \lim _{k \rightarrow \infty} f_{k} d \mu=\int_{X} f d \mu
$$

Theorem 2.39

Suppose (X, \mathscr{S}, μ) is a measure space and $E_{1}, E_{2}, \ldots, E_{n} \in \mathscr{S}$ are not necessarily disjoint and $c_{1}, c_{2}, \ldots, c_{n} \in[0, \infty]$. Then

$$
\int_{X} \sum_{k=1}^{n} c_{k} \chi_{E_{k}} d \mu=\sum_{k=1}^{n} c_{k} \mu\left(E_{k}\right)
$$

Theorem 2.40
Suppose (X, \mathscr{S}, μ) is a measure space. Assume $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n} \in[0, \infty]$, $A_{1}, A_{2}, \ldots, A_{m}, B_{1}, B_{2}, \ldots, B_{n} \in \mathscr{S}$ such that

$$
\sum_{j=1}^{m} a_{j} \chi_{A_{j}}=\sum_{k=1}^{n} b_{k} \chi_{B_{k}}
$$

Then

$$
\sum_{j=1}^{m} a_{j} \mu\left(A_{j}\right)=\sum_{k=1}^{n} b_{k} \mu\left(B_{k}\right)
$$

Theorem 2.41

Suppose (X, \mathscr{S}, μ) is a measure space. Let $f, g: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable. Then

$$
\int_{X}(f+g) d \mu=\int_{X} f d \mu+\int_{X} g d \mu
$$

Definition 2.29

Let $f: X \rightarrow[-\infty, \infty]$. Define:

$$
\begin{array}{r}
f^{+}: X \rightarrow[0, \infty] \\
f^{-}: X \rightarrow[0, \infty] \\
\text { and } \\
f^{+}(x)= \begin{cases}f(x), & f(x) \geq 0 \\
0, & f(x)<0\end{cases} \\
f^{-}= \begin{cases}0 & f(x) \geq 0 \\
-f(x) & <0\end{cases}
\end{array}
$$

so

$$
\begin{array}{r}
f^{+}=f \chi_{f^{-1}}[0, \infty] \\
f^{-}=-f \chi_{f^{-1}}[-\infty, 0]
\end{array}
$$

[29) Remark

If $f: X \rightarrow[-\infty, \infty]$ is \mathscr{S}-measurable, f^{+}and f^{-}are also \mathscr{S}-measurable.

Definition 2.30

Given measurable space (X, \mathscr{S}, μ) and \mathscr{S}-measurable function : $X \rightarrow[\infty, \infty]$ such that either

$$
\begin{aligned}
& \int_{X} f^{+} d \mu<\infty \\
& \int_{X} f^{-} d \mu<\infty
\end{aligned}
$$

Then

$$
\int_{X} f d \mu \equiv \int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu
$$

(Note: otherwise, $\int f d \mu=\infty-\infty$ (undefined))
n-
Note that

$$
\int_{X}|f| d \mu=\int_{X}\left(f^{+}+f^{-}\right) d \mu=\int_{X} f^{+} d \mu+\int_{X} f^{-} d \mu
$$

Therefore $\int_{X}|f| d \mu<\infty \Longleftrightarrow \int_{X} f^{+} d \mu<\infty$ and $\int_{X} f^{-} d \mu<\infty$

2.5.3 Properties of the Integral

Theorem 2.42
Let $f: X \rightarrow[-\infty, \infty]$ be an \mathscr{S}-measurable function and $\int_{X} f d \mu$ be defined. The $\forall c \in \mathbb{R}$,

$$
\int_{X} c f d \mu=c \int_{X} f d \mu
$$

Theorem 2.43

Suppose $f: X \rightarrow[-\infty, \infty]$ such that $\int|f| d \mu<\infty$. Then

$$
\left|\int f d \mu\right| \leq \int|f| d \mu
$$

2.6 Limits of Integrals and Integrals of Limits

Definition 2.31

Let $E \in \mathscr{S}$ and $f: x \rightarrow[-\infty, \infty]$ be \mathscr{S}-measurable. Define

$$
\int_{E} f d \mu=\int_{X} \chi_{E} f d \mu
$$

Theorem 2.44 Bounded Convergence Theorem
Assume $\mu(X)<\infty$. Let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of \mathscr{S}-measurable functions such that $f_{k} \rightarrow f$ pointwise on X and $f_{k}: X \rightarrow \mathbb{R}$ for all $k \in \mathbb{N}$ and $f: X \rightarrow \mathbb{R}$. Suppose $\exists c>0$ such that $\left|f_{k}(x)\right| \leq c$ $\forall x \in X$ and $\forall k \in \mathbb{N}$. Then

$$
\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu
$$

Theorem 2.45

Let $E \in \mathscr{S}$. Assume $f: X \rightarrow[-\infty, \infty]$ such that $\int_{X}|f| d \mu<\infty$. Then

$$
\left|\int_{E} f d \mu\right| \leq \mu(X-E) \sup _{x \in E}|f(x)|
$$

Theorem 2.46

Let $e \in \mathscr{S}$ and $g: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable and assume $\int_{X} g d \mu<\infty$. Then $\forall \epsilon>0, \exists \delta>0$ such that whenever $\mu(E)<\delta$,

$$
\int_{E} g d \mu<\epsilon
$$

Definition 2.32

Let $f, g: X \rightarrow[-\infty, \infty]$ be \mathscr{S}-measurable and assume

$$
\mu(\{x \in X: f(x) \neq g(x)\})=0
$$

Then we say $f=g$ almost everywhere on X or $f=g$ a.e. on X.
Theorem 2.47
If $f=g$ a.e. on X, then

$$
\int_{X} f d \mu=\int_{X} g d \mu
$$

Theorem 2.48

Let $g: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable and assume $\int_{X}|g|<\infty$. Then $\forall \epsilon>0, \exists E \in \mathscr{S}$ with $\mu(E)<\infty$ and

$$
\int_{X-E} g d \mu<\epsilon
$$

In other words: Integrable functions live mostly on sets of finite measure.
Theorem 2.49 Dominated Convergence Theorem
Let $f: X \rightarrow[0, \infty]$ be \mathscr{S}-measurable. Let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of \mathscr{S}-measurable functions such that

$$
\lim _{k \rightarrow \infty} f_{k}(x) \rightarrow f(x) \text { a.e. on } x
$$

Assume $\exists g: X \rightarrow[0, \infty]$ also \mathscr{S}-measurable such that:

1) $\int_{X} g d \mu<\infty$
2) $\left|f_{k}(x)\right| \leq g(x)$ for all $k \in \mathbb{N}$ a.e. on X

Then

$$
\lim _{k \rightarrow \infty} \int_{X} f_{k} d \mu=\int_{X} f d \mu
$$

2.6.1 Approximation by Nice Functions

Definition 2.33
Let $f: X \rightarrow[-\infty, \infty]$ be \mathscr{S}-measurable. Set

$$
\|f\|_{1}=\int_{X}|f| d \mu
$$

Then define $\mathscr{L}^{1}(\mu)$ to be

$$
\mathscr{L}^{1}(\mu)=\left\{f: X \rightarrow[-\infty, \infty]: \int_{X}|f| d \mu<\infty\right\}
$$

\mathscr{L}^{1} is referred to as the Lebesgue Space.

Theorem 2.50

Assume $f, g \in \mathscr{L}^{1}(\mu)$. Then

1. $\|f\|_{1} \geq 0$
2. $\|f\|_{1}=0 \Longleftrightarrow f(x)=0$ for a.e. $x \in X$
3. $\|c f\|_{1}=|c|\|f\|_{1}$ for all $c \in \mathbb{R}$
4. $\|f+g\|_{1} \leq\|f\|_{1}+\|g\|_{1}$

Note: by (3) and (4), \mathscr{L}^{1} satisfies the properties of a vector space. However, by (2), $\|\cdot\|_{1}$ is not a norm.

Theorem 2.51

Consider the measure space $(\mathbb{R}, \mathscr{L}, \lambda)$. Let $f \in \mathscr{L}^{1}(\lambda)$. Then $\forall \epsilon>0, \exists g: \mathbb{R} \rightarrow \mathbb{R}$ such that g is continuous, $\{x \in \mathbb{R}: g(x) \neq 0\}$ is bounded and $\|f-g\|_{1}<\epsilon$.

Definition 2.34

The support of a function $f: X \rightarrow[-\infty, \infty]$ is the closure of the non-zero domain

$$
\overline{\{x \in X: f(x) \neq 0\}}
$$

The set of all continuous function on \mathbb{R} with compact support is denoted $C_{C}(\mathbb{R})$

108 Remark

$C_{C}(\mathbb{R})$ is dense in $\mathscr{L}^{1}(\lambda)$

2.7 Product Measures

Definition 2.35

The Cartesian Product of X and Y is defined as

$$
X \times Y=\{(x, y): x \in X, y \in Y\}
$$

Definition 2.36

Let X, Y be sets. A rectangle in $X \times Y$ is a set $A \times B$ with $A \subseteq X, B \subseteq Y$.

Definition 2.37

Given $(X, \mathscr{S}, \mu),(Y, \mathscr{T}, \nu)$ The product $\mathscr{S} \otimes \mathscr{T}$ is defined to be the smallest σ-algebra containing
all the rectangles generated by \mathscr{S}, \mathscr{T} :

$$
\{A \times B: A \in \mathscr{S}, B \in \mathscr{T}\}
$$

A measurable rectangle in $\mathscr{S} \otimes \mathscr{T}$ is a set of the form $A \times B$ where $A \in \mathscr{S}$ and $B \in \mathscr{T}$.

Definition 2.38

Let X, Y be sets. Let $E \subseteq X \times Y$. Then for $a \in X, b \in Y$ the cross sections [$E]_{a}$ and [$\left.E\right]^{b}$ are defined as:

$$
\begin{aligned}
& {[E]_{a}=\{y \in Y:(a, y) \in E\}} \\
& {[E]^{b}=\{x \in X:(x, b) \in E\}}
\end{aligned}
$$

Theorem 2.52

Let $(X, \mathscr{S}),(Y, \mathscr{T})$ be measurable spaces. If $E \in \mathscr{S} \otimes \mathscr{T}$, then $\forall a \in X,[E]_{a} \in \mathscr{T}$ and $\forall b \in Y$, $[E]^{b} \in \mathscr{S}$.

Definition 2.39

Let X, Y be sets. Let $f: X \times Y \rightarrow \mathbb{R}$. For $a \in X, b \in Y$, the cross section functions $[f]_{a}: Y \rightarrow \mathbb{R}$ and $[f]^{b}: X \rightarrow \mathbb{R}$ are defined to be

$$
\begin{aligned}
& {[f]_{a}(y)=f(a, y)} \\
& {[f]^{b}(x)=f(b, x)}
\end{aligned}
$$

Note: $[f]_{a}$ is \mathscr{T}-measurable and $[f]^{b}$ is \mathscr{S}-measurable if f is $\mathscr{S} \otimes \mathscr{T}$-measurable.

Definition 2.40

A measure μ on (X, \mathscr{S}) is finite if $\mu(X)<\infty$.

Definition 2.41

μ is σ-finite if \exists countably many sets $X_{1}, X_{2}, X_{3}, \ldots \in \mathscr{S}$ such that $\mu\left(X_{k}\right)<\infty$ for all $k \in \mathbb{N}$ and

$$
X=\bigcup_{k=1}^{\infty} X_{k}
$$

Definition 2.42

Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be measure spaces and $g: X \times Y: \rightarrow[-\infty, \infty]$.

$$
\int_{X \times Y} g(x, y) d(\mu \times \nu)=\int_{Y} \int_{X} g(x, y) d \mu(x) d \nu(y)
$$

Note that

$$
\int_{Y} \int_{X} g(x, y) d \mu(x) d \nu(y)=\int_{Y}\left(\int_{X}[g]^{b} d \mu(x)\right) d \nu(y)
$$

Theorem 2.53

The Riemann and Lebesgue integrals agree on [a, b] if f is Riemann integrable on $[a, b]$:

$$
\int_{a}^{b} f d x=\int_{[a, b]} f d \lambda
$$

Theorem 2.54

Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be σ-finite. If $E \in \mathscr{S} \otimes \mathscr{T}$,

1. $\chi \mapsto \mathcal{V}\left([E]_{x}\right)$ is \mathscr{S}-measurable
2. $y \mapsto \mu\left([E]^{y}\right)$ is \mathscr{T}-measurable

Definition 2.43

Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be σ-finite.

$$
(\mu \times \nu)(E)=\int_{X} \int_{Y} \chi_{E}(x, y) d \nu(y) d \mu(x)
$$

攵 Remark measure of a rectangle
Let $A \in \mathscr{S}, B \in \mathscr{T}$

$$
\begin{array}{r}
(\mu \times \nu)(A \times B)=\int_{X} \int_{Y} \chi_{A \times B}(x, y) d \nu(y) d \mu(x) \\
=\int_{X} \int_{Y} \chi_{A} \chi_{B} d \nu(y) d \mu(x) \\
=\int_{X} \chi_{x} \nu(B) d \mu(x) \\
=\mu(A) \nu(B)
\end{array}
$$

Theorem 2.55 Tonelli's
Let (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) be measure spaces. Let $f: X \times Y \rightarrow[0, \infty]$ be $\mathscr{S} \otimes \mathscr{T}$ be $\mathscr{S} \otimes \mathscr{T}$ measurable. Then

1. $x \mapsto \int_{Y} f(x, y) d \nu(y)$ is \mathscr{S}-measurable
2. $y \mapsto \int_{X} f(x, y) d \mu(x)$ is \mathscr{T}-measurable
3. $\int_{X \times Y} f d(\mu \times \nu)=\int_{X} \int_{Y} f(x, y) d \nu(y) d \mu(x)=\int_{Y} \int_{X} f(x, y) d \mu(x) d \mu(y)$

Theorem 2.56
If $\left\{x_{j, k}\right\}_{j \in \mathbb{N}, k \in \mathbb{N}}$ are $\chi_{j, k} \geq 0$ for all j, k, then

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} x_{j, k}=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} x_{j, k}
$$

Theorem 2.57

Suppose (X, \mathscr{S}, μ) and (Y, \mathscr{T}, ν) are σ-finite and $f: X \times Y \rightarrow[-\infty, \infty]$ is $\mathscr{S} \otimes \mathscr{T}$-measurable. Assume $f \in \mathscr{L}^{1}(\mu \times \nu)$. Then

1. $\int_{Y}|f(x, y)| d \nu(y)<\infty$ for a.e. $x \in X$
2. $\int_{X}|f(x, y)| d \mu(x)<\infty$ for a.e. $y \in Y$
3. $x \mapsto \int_{Y} f(x, y) d \nu(y)$ is \mathscr{S}-measurable
4. $y \mapsto \int_{X} f(x, y) d \mu(x)$ is \mathscr{T}-measurable
5. $\int_{X \times Y} f d(\mu \times \nu)=\int_{X} \int_{Y} f(x, y) d \nu(y) d \mu(x)=\int_{Y} \int_{X} f(x, y) d \mu(x) d \mu(y)$

2.8 Lebesgue Integration on \mathbb{R}^{n}

Definition 2.44

If $x \in \mathbb{R}^{n}, \delta>0$, we define

$$
B(x, \delta)=\left\{y \in \mathbb{R}^{n}:\|y-x\|_{\infty}<\delta\right\}
$$

to be the open cube.

Definition 2.45

A set $G \subseteq \mathbb{R}^{n}$ is open if $\forall x \in G$ there exists $\delta>0$ such that $B(x, \delta) \subseteq G$.
na

$$
B(x, \delta) \in \mathbb{R}^{m} \times B(y, \delta) \in \mathbb{R}^{n}=B((x, y), \delta) \in \mathbb{R}^{m+n}
$$

[2叉马 Remark
Let $G_{1} \subseteq \mathbb{R}^{m}$ open and $G_{2} \subseteq \mathbb{R}^{n}$ open. Then

$$
G_{1} \times G_{2}=\mathbb{R}^{m+n}
$$

Definition 2.46

Borel Set in \mathbb{R}^{n} is an element of the smallest σ-algebra on \mathbb{R}^{n} which contains all open subsets of \mathbb{R}^{n}. Denote this σ-algebra \mathbb{B}_{n}

Theorem 2.58
$G \subseteq \mathbb{R}^{n}$ is open $\Longleftrightarrow G$ is a countable union of open cubes in \mathbb{R}^{n}

nq8) Remark

\mathbb{B}_{n} is the smallest σ-algebra containing all the open cubes in \mathbb{R}^{n}

Theorem 2.59

$$
\mathbb{B}^{m+n}=\mathbb{B}^{n} \otimes \mathbb{B}^{m}
$$

Definition 2.47

$$
\left(\mathbb{R}^{2}, \mathbb{B}_{2}, \lambda_{2}\right)=(\mathbb{R}, \mathbb{B}, \lambda) \times(\mathbb{R}, \mathbb{B}, \lambda)
$$

Lebesgue Measure on \mathbb{R}^{n} is denoted λ_{n} and defined as

$$
\lambda_{n}=\lambda_{n-1} \times \lambda_{1}
$$

[192 Remark

Let $\left(\mathbb{R}^{n}, \mathbb{B}_{n}, \lambda_{n}\right)$ be a measure space. Then

$$
\mathbb{B}_{n}=\mathbb{B}_{n-1} \times \mathbb{B}_{1}
$$

So for $E \in \mathbb{B}^{n}$,

$$
\begin{array}{r}
\lambda_{n}(E)=\int_{\mathbb{R}^{n}} \chi_{E}(x) d \lambda_{n}(\chi) \\
=\int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \chi_{E}\left(\chi_{1}, \chi_{2}\right) d \lambda\left(\chi_{1}\right) d \lambda_{n-1}\left(\chi_{2}\right) \\
=\int_{\mathbb{R}} \int_{\mathbb{R}} \ldots \int_{\mathbb{R}} \chi_{E}\left(\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right) d \lambda\left(\chi_{1}\right) d \lambda\left(\chi_{2}\right) \ldots d \lambda\left(\chi_{n}\right)
\end{array}
$$

Chapter 3 Hilbert Spaces (MTH 513)

3.1 Banach Spaces

3.1.1 Integration on \mathbb{C}

Definition 3.1

The set of all complex numbers \mathbb{C} is given by

$$
\mathbb{C}=\left\{z=a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}
$$

Definition 3.2

Given $z \in \mathbb{C}$ where $z=a+b i$, the Real and Imaginary parts of z are given by

$$
\begin{aligned}
& \mathfrak{R}(z)=a \\
& \mathfrak{I}(z)=b
\end{aligned}
$$

Note that both $\mathfrak{R}(z), \mathfrak{I}(z) \mapsto \mathbb{R}$ and $z=\Re(z)+\mathfrak{I}(z) i$

Definition 3.3

The modulus of $z \in \mathbb{C}$ is given by

$$
|z|=\left(a^{2}+b^{2}\right)^{1 / 2}
$$

Definition 3.4
The complex conjugate of $z \in \mathbb{C}$ is given by

$$
\bar{z}=\Re(z)-\mathfrak{I}(z) i
$$

Theorem 3.1

Properties of complex conjugates:
\& products:

$$
z \bar{z}=|z|^{2}
$$

\& sums and differences

$$
\begin{aligned}
& z+\bar{z}=2 \Re(z) \\
& z-\bar{z}=2 J(z) i
\end{aligned}
$$

\% multiplicativity and additivity

$$
\begin{array}{r}
\overline{w+z}=\bar{w}+\bar{z} \\
\overline{w z}=\bar{w} \bar{z}
\end{array}
$$

\& conjugates of conjugates

$$
\overline{\bar{z}}=z
$$

\& absolute value

$$
|\bar{z}|=|z|
$$

\& integral of conjugate function

$$
\int \bar{f} d \mu=\overline{\int f d u}
$$

Definition 3.5

Let (X, \mathscr{S}) be a measurable space. $f: X \rightarrow \mathbb{C}$ is \mathscr{S}-measurable if both $\Re(f): X \rightarrow \mathbb{R}$ and $\mathfrak{I}(f): X \rightarrow \mathbb{R}$ are \mathscr{S}-measurable.

Theorem 3.2

Suppose (X, \mathscr{S}) is a measurable space, $f: X \rightarrow \mathbb{C}$ is \mathscr{S}-measurable, and $0<p<\infty$. Then $|f|^{p}$ is also \mathscr{S}-measurable.

Definition 3.6

Suppose $(X, \mathscr{S}, / m u)$ is a measure space and $f: X \rightarrow \mathbb{C}$ is \mathscr{S}-measurable. Assume $f \in \mathscr{L}^{1}(\mu)$. We define

$$
\int_{X} f d \mu=\int_{X} \Re(f) d \mu+i \int_{X} \mathfrak{I}(f) d \mu
$$

[19) Remark

If $f, g: X \rightarrow \mathbb{C}$ are \mathscr{S}-measurable and $f, g \in \mathscr{L}^{1}(\mu)$, then

1. $\int(f+g) d \mu=\int f d \mu+\int g d \mu$
2. $\int \alpha f d \mu=\alpha \int f d \mu, \forall \alpha \in \mathbb{C}$

Theorem 3.3

Suppose (X, \mathscr{S}, μ) is a measure space and $f: X \rightarrow \mathbb{C}$ is \mathscr{S}-measurable. Assume $f \in \mathscr{L}^{1}(\mu)$. Then

$$
\left|\int_{x} f d \mu\right| \leq \int_{x}|f| d \mu
$$

3.1.2 Bounded Linear Operators

Definition 3.7

For notation, we let the field \mathbb{F} denote either \mathbb{R} or \mathbb{C}

Definition 3.8

Let V, W be vector spaces. A function $T: V \rightarrow W$ is a linear operator or linear map if

1. $T(f+g)=T f+T g, \forall f, g \in V$
2. $T(\alpha f)=\alpha T f, \forall \alpha \in \mathbb{F}$ and $\forall f \in V$

Definition 3.9

Let $(V,\|\cdot\| v),\left(W,\|\cdot\|_{W}\right)$ be NLS and $T: V \rightarrow W$. Recall that the Operator Norm on T is given by

$$
\begin{array}{r}
\|\mid T\|=\sup _{\|f\|_{v \leq 1}\left\{\|T f\|_{w}\right\}}=\sup _{\|f\|_{v}=1}\left\{\|T f\|_{w}\right\} \\
=\sup \left\{\frac{\|T f\|_{w}}{\|f\|_{V}}:\|f\|_{V} \neq 0\right\}
\end{array}
$$

If $||T|| \mid<\infty$, then T is a bounded linear operator. The set of all bounded linear operators $T: V \rightarrow$ W is denoted

$$
B(V, W)
$$

and we sometimes write

$$
\||T|\|=\|T\|_{B(V, W)}
$$

4198 Remark

$B(V, W)$ is a vector space. Moreover, $\|||T|| \mid$ is a norm on $B(V, W)$ so

$$
\left(B(V, W),\|T\|_{B(V, W)}\right)
$$

is a NLS.

Theorem 3.4

Suppose $(V,\|\cdot\| v),(W,\|\cdot\| w)$ are $N L S s$ and $T: V \rightarrow W$ is a bounded linear operator. T is not a bounded function.

Proof. Let $\alpha \in \mathbb{F}$ and $f \in V$ such that $T f \neq 0$.

$$
\begin{array}{r}
\|T(\alpha f)\|_{w}=\|\alpha T f\|_{w} \\
=|\alpha|\|T f\|_{w} \rightarrow \infty \\
\text { as }|\alpha| \rightarrow \infty
\end{array}
$$

So $\nexists R>0$ such that $\|T f\|_{w} \leq R, \forall f \in V$. Therefore T is not a bounded function.

Theorem 3.5

Let $C[a, b]$ be the set of all continuous functions on $[a, b]$ and let $C^{1}[a, b]$ be the set of all functions with continuous first order derivatives on $[a, b]$. If we define the norms

$$
\begin{array}{r}
\|f\|_{C^{1}[a, b]}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \\
\text { and } \\
\|f\|_{C[a, b]}=\|f\|_{\infty}
\end{array}
$$

then $T:\left(C^{1}[a, b],\|f\|_{C^{1}[a, b]}\right) \rightarrow\left(C[a, b],\|f\|_{C[a, b]}\right)$, where $T f=f^{\prime}$, is a bounded linear operator.

Theorem 3.6

Suppose $\left(V,\|\cdot\|_{V}\right),\left(W,\|\cdot\|_{W}\right)$ are $N L S s$ with $V \neq\{0\}$ and $T: V \rightarrow W$ is a linear map. Then

$$
\|T\| \|=\sup _{\|f\|_{v}}\left\{\|T f\|_{w}\right\}=\sup _{f \neq 0}\left\{\frac{\|T f\|_{w}}{\|f\|_{V}}\right\}
$$

So we can write the inequality

$$
\|T f\|_{w} \leq\|T\|\| \| f \|_{v}
$$

This shows that |||T||| can be thought of as the smallest value such that the above inequality holds.

Theorem 3.7

If $\left(W,\|\cdot\|_{W}\right)$ is a Banach Space and $\left(V,\|\cdot\|_{V}\right)$ is any NLS (not necessarily complete) then $B(V, W)$ is also a Banach Space.

Theorem 3.8

Let $(V,\|\cdot\| v)$ and $(W,\|\cdot\| w)$ be NLS. A linear map $T: V \rightarrow W$ is continuous if and only if it is bounded.

3.2 Baire Category Theorem

Definition 3.10

Let $U \subseteq V$ where V is a metric space. Recall that the interior of U is

$$
\operatorname{int}(U)=\left\{f \in U: \exists r>0 \text { s.t. } B_{r}(f) \subseteq U\right\}
$$

IT쿄 R Remark

$\operatorname{int}(U)$ is open in V.

Definition 3.11

Recall that U is dense in V :
$\Longleftrightarrow \bar{U}=V$
$\Longleftrightarrow f$ is a limit point of U for all $f \in V$.
$\Longleftrightarrow \forall f \in V$ and $\forall r>0, B_{r}(f) \cap U \neq \varnothing$

Definition 3.12

A subset $E \subseteq V$ is nowhere dense in V
$\Longleftrightarrow V-\bar{U}$ is dense in V
$\Longleftrightarrow \overline{V-\bar{E}}=V$
$\Longleftrightarrow \operatorname{int}(\bar{E})=\varnothing$

Example 3.1

$\mathscr{E} \mathbb{Z}$ is nowhere dense in $\mathbb{R}(\mathbb{R}-\overline{\mathbb{Z}}=\mathbb{R}-\mathbb{Z}$
$\& A$ line is nowhere dense in \mathbb{R}^{2}
\mathscr{E} A line or a plane is nowhere dense in \mathbb{R}^{3}

Theorem 3.9 \quad Baire Category Theorem

(a) A complete metric space is not the countable union of closed subsets with empty interiors.
(b) The countable intersection of dense, open subsets of a complete metric space is non-empty.

[198) Remark

(a) says that a complete metric space is not the countable union of nowhere dense sets. So, for example, we cannot represent \mathbb{R}^{3} as the countable union of planes.
(a) also implies that, if X is a complete metric space and the countable union of closed sets G, then at least one G is non-empty, so that G contains a non-empty open set.

? Uniform Boundedness Principle

Theorem 3.10

Assume V is a Banach Space and W is any NLS. Let \mathscr{A} be the set of bounded linear maps from $V \rightarrow W$ such that

$$
\sup \left\{\|T f\|_{w}: T \in \mathscr{A}\right\}<\infty
$$

Then $\sup \{\|||T|| \mid: T \in \mathscr{A}\}<\infty$ (i.e. the T s are uniformly bounded).

3.2.1 Open Mapping Theorem

Theorem 3.11

Let V, W be Banach Spaces and T be a bounded linear surjection. If G is open in V, then $T(G)$ is open in W.

Corollary 3.1

Let V, W be Banach Spaces and T be a bounded linear bijection, then T^{-1} is a bounded linear map. (i.e. $T^{-1}: W \rightarrow V$ is continuous).

3.3 L^{p} Spaces

3.3.1 \mathscr{L}^{p} Spaces

Definition 3.13

Let (X, \mathscr{S}, μ) be a measure space, fix $p \in(0, \infty)$ and let $f: X \rightarrow \mathbb{F}$ be \mathscr{S}-measurable. Then the p-norm of f is

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

Definition 3.14

The essential supremum of f is

$$
\|f\|_{\infty}=\inf \{t>0:|f(x)| \leq t \text { a.e. }\}
$$

In other words, the smallest upper bound of the function on all sets, except those of measure 0 .
-2
Consider $0<p<\infty$ and $\alpha \in \mathbb{F}$. Take some $f: X \rightarrow \mathbb{F}$. Then

$$
\begin{array}{r}
\|\alpha f\|_{p}=\left(\int_{X}|\alpha f|^{p} d \mu\right)^{1 / p} \\
=\left(\int_{X}|\alpha|^{p}|f|^{p} d \mu\right)^{1 / p} \\
=|\alpha|^{p}\left(\int_{X}|f|^{p} d \mu\right)^{1 / p} \\
=|\alpha|\|f\|_{p}
\end{array}
$$

But without the exponent $1 / p$, we get $\|\alpha f\|_{p}=|\alpha|^{p}\|f\|_{p}$, which violates the definition of a norm! So we really do need the $1 / p$ to make $\|f\|_{p}$ a norm on f.

Definition 3.15

Let (X, \mathscr{S}, μ) be a measure space and $0<p<\infty$. Lebesgue Space, $\mathscr{L}^{p}(\mu)$ is the set of all \mathscr{S}-measurable functions $f: X \rightarrow \mathbb{F}$ such that

$$
\|f\|_{p}<\infty
$$

Intuition for $\|\cdot\|_{p}$

[198) Remark

1. What does $\|f\|_{p}$ tell us about f locally?

Say the function $f: X \rightarrow \mathbb{F}$ blows up (i.e. grows unbounded) near some $x \in X$. Then f is not Riemann integrable, but f may be integrable in some \mathscr{L}^{p} space. For example, consider the function

$$
f(x)=\frac{1}{|x|}
$$

Where $f: B(0,1) \rightarrow \mathbb{R}$ and $B(0,1) \in \mathbb{R}^{2}$. Note that as $x \rightarrow 0, f \rightarrow \infty$. However we can show that

$$
\|f\|_{1}=\int_{B(0,1)}|f| d \lambda
$$

(by change of coordinates)

$$
\begin{array}{r}
=2 \pi k \int_{0}^{1} r \frac{1}{r} d r \\
=2 \pi k<\infty
\end{array}
$$

Now consider the following:

$$
\|f\|_{3 / 2}^{3 / 2}=\int_{B(0,1)} \frac{1}{|x|^{3 / 2}} d \lambda
$$

(by change of coordinates)

$$
=2 \pi k \int_{0}^{1} r \frac{1}{r^{3 / 2}} d r<\infty
$$

In fact, we can show that $f \in \mathscr{L}^{p}$ for all $p<2$, but $f \notin \mathscr{L}^{p}$ for $p \geq 2$
Take away: Given $f \in \mathscr{L}^{p}$, the larger p is, the slower the localized function grows unbounded. So if $f \in \mathscr{L}^{1}$, then the function grows unbounded rapidly, but if $f \in \mathscr{L}^{100}$, the function grows unbounded much slower!
2. What does $\|f\|_{p}$ tell us about how the function decays as $|x| \rightarrow \infty$?

Consider some $p \in[1, \infty)$. In order for $f \in \mathscr{L}^{p}$ to hold, we need the function to decay (i.e. approach 0) as $|x| \rightarrow \infty$. But when we take

$$
\int_{X}|f|^{p} d \mu
$$

raising the function the p-th power results in even faster decay at $x=\infty$.
Take Away: Given $f \in \mathscr{L}^{p}\left(\mathbb{R}^{n}\right)$, then the smaller p is, the faster f decays at ∞ because it needs less help from the power of p to make the norm finite!

Definition 3.16

Let $1 \leq p \leq \infty$. Then the dual exponent of p, denoted q (or sometimes p^{\prime}) is the number that satisfies

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Note: for $p=\infty, q=1$.

Theorem 3.12 Young's Inequality

Let $p \in(0, \infty)$ and q be the dual exponent of p. Then $\forall a, b \geq 0$,

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Theorem 3.13 H"older's Inequality

Let $p \in[0, \infty],(X, \mathscr{S}, \mu)$ be a measure space, and $f, g: X \rightarrow \mathbb{F}$ be \mathscr{S}-measurable functions. Then

$$
\begin{gathered}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} \\
\int_{X}|f g| d \mu \leq\left[\int_{X}|f|^{p} d \mu\right]^{1 / p}\left[\int_{X}|g|^{q} d \mu\right]^{1 / q}
\end{gathered}
$$

Theorem 3.14

Let (X, \mathscr{S}, μ) be a finite measure space $(\mu(X)<\infty)$ and $0<p<s<\infty$ (note: s not necessarily the dual exponent of p). Then

$$
\|f\|_{p} \leq \mu(X)^{\frac{s-p}{p}}\|f\|_{s}
$$

This implies that when $\mu(X)<\infty$ and $p<s$,

$$
\begin{gathered}
f \in \mathscr{L}^{s} \Rightarrow f \in \mathscr{L}^{p} \\
\text { so, } \\
\mathscr{L}^{s} \subseteq \mathscr{L}^{p}
\end{gathered}
$$

Furthermore, consider the case where $0<p<s=\infty$. Then

$$
\|f\|_{p}=\left[\int_{X}|f|^{p} d \mu\right]^{1 / p} \leq\left[\int_{X}\|f\|_{\infty} d \mu\right]^{1 / p}
$$

Recall that $\|f\|_{\infty}=\inf _{x \in X}\{M:|f(x)| \leq M$ a.e. $\}$. So,

$$
\left[\int_{X}\|f\|_{\infty} d \mu\right]^{1 / p}=\|f\|_{\infty}\left(\int_{X} 1 d \mu\right)^{1 / p}=\|f\|_{\infty} \mu(X)^{1 / p}
$$

Therefore, if $\mu(X)<\infty$,

$$
\mathscr{L}^{\infty}(\mu) \subseteq \mathscr{L}^{p}(\mu), \forall p<\infty
$$

3.3.2 L^{p} Spaces

Definition 3.17

Let (X, \mathscr{S}, μ) be a measure space and $0<p \leq \infty$.
(i) $Z(\mu)$ is the set of all \mathscr{S}-measurable functions $X \mapsto \mathbb{F}$ which are equal almost everywhere on X
(ii) For $f \in L^{p}(\mu)$, let \tilde{f} denote the subset of $\mathscr{L}^{p}(\mu)$,

$$
\tilde{f}=\{f+z: z \in Z(\mu)\}=f+Z(\mu)
$$

[298 Remark

Let $f_{1}, f_{2} \in \tilde{f}$. Then $\exists z_{1}, z_{2} \in Z(\mu)$ such that

$$
\begin{gathered}
f_{1}=f+z_{1} \\
f_{2}=f+z_{2} \\
f_{1}-f_{2}=z_{1}-z_{2}=0 \text { a.e. }
\end{gathered}
$$

So $f_{1}=f_{2}$ a.e.

[f) Remark

Suppose $\tilde{f}=\tilde{g}$. Then $f+Z(\mu)=g+Z(\mu)$, so $f=f+0 \in g+Z(\mu) \Rightarrow \exists z \in Z(\mu)$ such that $f=g+z$. Therefore $f=g$ a.e.

Definition $3.18 L^{p}$

Let $0<p \leq \infty$

$$
L^{p}(\mu)=\left\{\tilde{f}: f \in \mathscr{L}^{p}(\mu)\right\}
$$

Definition 3.19

Let $0<p \leq \infty$. We define $\|\cdot\|_{p}$ on $L^{p}(\mu)$ by

$$
\|\tilde{f}\|_{p}=\|f\|_{p}, \forall f \in \mathscr{L}^{p}(\mu)
$$

If we restrict $p \in[1, \infty]$, then $\|\cdot\|_{p}$ is a norm on $L^{p}(\mu)$.

[198) Remark

Consider $\tilde{f}=\tilde{g}$. Then $\|\tilde{f}\|_{p}=\|\tilde{g}\|_{p}$.

3.3.3 Dual of L^{p}

Theorem 3.15

Let (X, \mathscr{S}, μ) be a measure space, $p \in[1, \infty)$, q be the dual exponent of p, and $f \in L^{p}(\mu)$. Then

$$
\|f\|_{p}=\sup \left\{\left|\int_{X} f h d \mu\right|: h \in \mathscr{L}^{q}(\mu),\|h\|_{q} \leq 1\right\}
$$

[19) Remark

The above holds for $p=\infty \Longleftrightarrow \mu$ is σ-finite.

nT요 R Remark

Recall that the dual space of an NLS X, denoted X^{*} is defined as the the set of all bounded linear functionals on X

$$
X^{*}=\{f: f: X \rightarrow \mathbb{F}\}
$$

Theorem 3.16

Let (X, \mathscr{S}, μ) be a measure space, $1<p \leq \infty$, and q be the dual exponent of p. For $h \in L^{q}(\mu)$, define $\phi_{h}: L^{p}(\mu) \rightarrow \mathbb{F}$ by

$$
\phi_{h}(f)=\int_{X} f h d \mu
$$

Note the following are true:
(i) $h \mapsto \phi_{h}$ is $1: 1$, linear, and maps $L^{q}(h)$ into $\left(L^{p}(\mu)\right)^{*}$
(ii) $\left\|\left\|\phi_{h}\right\|=\right\| h \|_{q}, \forall h \in L^{q}(\mu)$

In fact, since $L^{q}(\mu)$ has a 1:1 correspondence with $\left(L^{p}(\mu)\right)^{*}$, we can show that $L^{q}(\mu)=\left(L^{p}(\mu)\right)^{*}$.

Theorem 3.17

Let $T(h)=\phi_{h}$. We can show that T is linear and $h \stackrel{T}{\hookrightarrow} \phi_{h}$ is $1: 1$, so $\left(L^{p}(\mu),\|\cdot\|_{p}\right)$ is an NLS.

Furthermore, for $1 \leq p \leq \infty,\left(L^{p}(\mu),\|\cdot\|_{p}\right)$ is complete, therefore

$$
\left(L^{p}(\mu),\|\cdot\|_{p}\right) \text { is a Banach Space. }
$$

na 2 Remark

Let (X, \mathscr{S}, μ) be a measure space. Recall that for $f \in \mathscr{L}^{p}(\mu), \forall \epsilon>0, \exists \phi \in \mathscr{L}^{1}(\mu)$, where ϕ is a simple function, such that

$$
\|f-\phi\|_{1}<\epsilon
$$

Theorem 3.18

The above also holds for $L^{p}(\mu), \forall 1 \leq p \leq \infty$.

Theorem 3.19

Let $f \in L^{\infty}(\mu)$ and $\epsilon>0$. There exists $\phi \in L^{\infty}(\mu)$ where ϕ is simple and

$$
\|f-g\|_{\infty}
$$

Theorem 3.20

Suppose $f \in L^{p}(\mathbb{R})$ and $0<p<\infty$. Then $\forall \epsilon>0 \exists$ a step function $g \in L^{p}(\mathbb{R})$ such that

$$
\|f-g\|_{p}<\epsilon
$$

3.4 Hilbert Spaces

3.4.1 Inner Product Spaces

Definition 3.20

Let V be a vector space over \mathbb{F}. An inner product on V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ such that
(i) $\langle f, f\rangle \in[0, \infty)$
(ii) $\langle f, f\rangle=0 \Longleftrightarrow f=0$
(iii) $\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle$
(iv) $\langle\alpha f, g\rangle=\alpha\langle f, g\rangle$
(v) $\langle f, g\rangle=\overline{\langle g, f\rangle}$

Definition 3.21

An Inner Product Space (IPS) is a vector space with an inner product.

Iqz Remark

Let $f, g \in L^{2}(\mu)$ and define

$$
\langle f, g\rangle=\int_{X} f \bar{g} d \mu
$$

Then $L^{2}(\mu)$ is an IPS.

Theorem 3.21

Suppose V is an IPS. Then the following properties also hold:
(a) $\langle 0, g\rangle=\langle g, 0\rangle$
(b) $\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle$
(c) $\langle f, \alpha g\rangle=\bar{\alpha}\langle f, g\rangle$

Definition 3.22

Let V be an IPS. We can induce a norm on V ny

$$
\|f\|=\sqrt{\langle f, f\rangle}
$$

Theorem 3.22 Properties of $\|\cdot\|$

1. $\|f\|=\sqrt{\langle f, f\rangle} \geq 0 \forall f \in V$
2. $\|f\|=\sqrt{\langle f, f\rangle}=0 \Longleftrightarrow f=0$
3. $\|\alpha f\|=\alpha\|f\|$

Definition 3.23

Let V be an IPS and $x, y \in V . x, y$ are orthogonal if $\langle x, y\rangle=0$. We write this $x \perp y$.

Theorem 3.23 Pythagorean Theorem
Assume V is an IPS and $f, g \in V$ with $\langle f, g\rangle=0$. Then

$$
\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2}
$$

Theorem 3.24 Cauchy Schwarz
Let V be an IPS and $f, g \in V$. Then

$$
|\langle f, g\rangle| \leq\|f\|\|g\|
$$

Theorem 3.25

Let V be an IPS and $f, g \in V$. Then

$$
\|f+g\| \leq\|f\|+\|g\|
$$

3.4.2 Angles in an IPS

Definition 3.24

Define the angle θ between f, g in an IPS by

$$
\cos \theta=\frac{\langle f, g\rangle}{\|f\|\|g\|} \in[-1,1]
$$

Theorem 3.26 Law of Cosines
Let $a=\|f\|, b=\|g\|, c=\|f-g\|$.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

Theorem 3.27 Parallelogram Equality
Let V be an IPS and $f, g \in V$. Then

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}
$$

3.4.3 Orthogonality

Definition 3.25 Hilbert Space

A Hilbert Space is any IPS that is complete under the norm induced by the inner product.

Definition 3.26

Suppose U is a non-empty subset of an NVS V and $f \in V$. The distance from f to U is

$$
\operatorname{distance}(f, U)=\inf \{\|f-g\|: g \in U\}
$$

[1) Remark

If U is open, then

$$
\inf \{\|f-g\|: g \in U\} \neq \min \{\|f-g\|: g \in U\}
$$

[展 Remark

$$
\operatorname{distance}(f, U)=0 \Longleftrightarrow f \in \bar{U}
$$

Definition 3.27

Suppose V is a vector space and $U \subseteq V . U$ is convex if $\forall f, g, \in U$ and $t \in[0,1]$

$$
(1-t) f+t g \in U
$$

[198) Remark
Every vector space is convex since it is closed under linear combination

3.4.4 Orthogonal Projection

Theorem 3.28

let V be a Hilbert Space, $U \subseteq V$ be closed, convex, and non-empty, and $f \in V$. Then $\exists!g \in U$ such that

$$
\|f-g\|=\operatorname{distance}(f, U)
$$

Definition 3.28

Suppose V is a Hilbert Space and $U \in V$ is a closed, non-empty, convex subset of V. The orthogonal
projection of V onto U is the function

$$
P_{U}: V \rightarrow U
$$

where $P_{U} f$ is the unique element of U that best approximates $f \in V$.

[9영 Remark

(a) $P_{U f}=0 \Longleftrightarrow f \in U$
(b) $P_{U} \circ P_{U}=P_{U}^{2}=P_{U}$

Theorem 3.29

Suppose U is a closed subspace of a Hilbert Space V. For $f \in V$:
(a) $f-P \cup f \perp g \forall g \in U$
(b) If $h \in U$ and $f-h \perp g \forall g \in U, h=P u h$
(c) $P_{U}: V \rightarrow U$ is a linear map
(d) $\forall f \in V,\|P u f\| \leq\|f\|$ and $\|P u f\|=\|f\| \Longleftrightarrow f \in U$

Example 3.2

Recall

$$
\ell^{2}=\left\{a=\left(a_{1}, a_{2}, \ldots\right), a_{j} \in \mathbb{F}, \sum_{j=1}^{\infty}\left|a_{j}\right|^{2}<\infty\right\}
$$

So $\forall x, y \in \ell^{2}$,

$$
\langle x, y\rangle=\sum_{j=1}^{\infty} x_{j} \overline{y_{j}}
$$

Consider the subset

$$
U=\left\{a \in \ell^{2}: a=\left(a_{1}, 0, a_{3}, 0, a_{5}, 0, \ldots\right)\right\}
$$

So, given $x \in \ell^{2}$,

$$
P_{U} X=\left(x_{1}, 0, x_{3}, 0, x_{5}, 0, \ldots\right)
$$

Then we have

$$
x-P_{U} x=\left(0, x_{2}, 0, x_{4}, 0, x_{6} \ldots\right)
$$

so

$$
\begin{array}{r}
\left\langle x, x-P_{U}\right\rangle=\sum_{j=1}^{\infty}\left(x_{j}\right) \overline{\left(x_{j}-P_{U} x_{j}\right)}=0 \\
\Rightarrow x \perp x-P_{U} x
\end{array}
$$

Definition 3.29

Suppose U is a subset of an IPS V. The orthogonal complement of U in V is

$$
U^{\perp}=\{h \in U:\langle h, g\rangle=0 \forall g \in U\}
$$

Example 3.3

Let V be an IPS and $U \subseteq V$
If $U=V \Rightarrow U^{\perp}=\{0\}$.
Suppose $U=B(0,1)=\{g \in V:\|g\|=1\}$. Then $U^{\perp}=\{0\}$ because for $x \in U^{\perp}$,

$$
\begin{array}{r}
\langle x, y\rangle=0 \forall y \in U^{\perp} \\
h \in V^{\perp} \Rightarrow\langle x, h\rangle=\left\langle x,\|h\| \frac{h}{\|h\|}\right\rangle \\
=\|h\|\left\langle x, \frac{h}{\|h\|}\right\rangle=0
\end{array}
$$

Since $\frac{h}{\|h\|} \in B(0,1)$.

3.4.5 Properties of Orthogonal Projections

Theorem 3.30

Let V be an IPS and $U \subseteq V$. Then
(a) U^{\perp} is a closed subspace of V
(b) $U \cap U^{\perp}=\{0\}$ if $0 \in U$, otherwise \varnothing. So $U \cap U^{\perp}$ subseteq $\{0\}$
(c) If $W \subset U, U^{\perp} \subseteq W^{\perp}$
(d) $\overline{U^{\perp}}=U^{\perp}$
(e) $U \subseteq\left(U^{\perp}\right)^{\perp}$

Theorem 3.31 Orthogonal Decomposition
Let U be a closed subspace of a Hilbert Space V. Then any $f \in V$ can be written as

$$
f=g+h
$$

where $g \in U$ and $h \in U^{\perp}$
Theorem 3.32 Range and Null Space of P_{U}
Suppose U is a closed subspace of a Hilbert Space V. Then the following are true:
(a) Range $\left(P_{U}\right)=U, \operatorname{Null}\left(P_{U}\right)=U^{\perp}$
(b) Range $\left(P_{U^{\perp}}\right)=U^{\perp}, \operatorname{Null}\left(P_{U^{\perp}}\right)=U$
(c) $P_{U^{\perp}}=\mathbf{I}-P_{U}$ where \mathbf{I} is the identity function

Example 3.4

Let

$$
U=\left\{f \in L^{2}(\mathbb{R}): f(x)=0 \text { a.e. } x<0\right\}
$$

We can show that U is a closed subspace of L^{2}. So

$$
U^{\perp}=\left\{f \in L^{2}(\mathbb{R}): f(x)=0 \text { a.e. } x \geq 0\right\}
$$

Theorem 3.33 Riesz Representation Theorem
Let V be a Hilbert Space. Suppose $\phi \in V^{*}$. Then $\exists!h \in V$ such that $\phi(g)=\langle g, h\rangle \forall g \in V$, so ϕh and $\|\phi\|=\|h\|$

3.4.6 Orthonormal Bases

Definition 3.30

Let V be an NLS and consider $\left\{e_{k}\right\}_{k \in \Gamma} \subset V$ where

$$
\begin{gathered}
\Gamma=\{1,2,3, \ldots, n\} \\
\text { or } \\
\Gamma=\mathbb{N}
\end{gathered}
$$

A family $\left\{e_{k}\right\}_{k \in \Gamma}$ in an IPS is an orthonormal family if

$$
\left\langle e_{j}, e_{k}\right\rangle= \begin{cases}1, & j=k \\ 0, & j \neq k\end{cases}
$$

Example 3.5 Example: \mathbb{R}^{n}

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \ldots e_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

$\left\{e_{k}\right\}_{k \in \Gamma}$ is an orthonormal family.

Example 3.6

Example: $\left.\ell^{2}(\mathbb{F})\right]$

$$
e_{k}=(0,0,0, \ldots, 0,1,0, \ldots, 0,0,0)
$$

where the k-th element is $1 .\left\{e_{k}\right\}_{k \in \Gamma}$ is an orthonormal family.

3.4.7 Basis of a Hilbert Space

Definition 3.31

Recall: A metric space is seperable if it has a countable, dense subset.

Theorem 3.34

Every seperable Hilbert Space has a countable orthonormal basis. Moreover, if V is an infinite dimensional Hilbert Space, then there exists a countable orthonormal family $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ such that $\forall f \in V$,
\exists ! sequence $\left\{c_{k}\right\}_{k \in \mathbb{N}} c_{k} \in \mathbb{F}$, such that

$$
\left\|f-\sum_{k=1}^{N} c_{k} e_{k}\right\| \rightarrow 0
$$

as $N \rightarrow \infty$. So $f=\sum_{k=1}^{\infty} c_{k} e_{k}$

Example 3.7

Example: \mathbb{R}^{2}] Let $\left\{q_{1}, q_{2}\right\}$ be an orthonormal family in \mathbb{R}^{2} and $f \in \mathbb{R}^{2}$. Then

$$
f=\left\langle f, q_{1}\right\rangle+\left\langle f, q_{2}\right\rangle q_{2}
$$

Example 3.8 Example: \mathbb{R}^{2}

Let $\left\{q_{k}\right\}_{1 \leq k \leq n}$ be an orthonormal family in \mathbb{R}^{n} and $f \in \mathbb{R}^{n}$. Then \exists ! collection $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ such that

$$
f=\sum_{k=1}^{n} c_{k} q_{k}
$$

What are the $c_{k} s$?

$$
\begin{array}{r}
\left\langle f, q_{k}\right\rangle=\left\langle\sum_{j=1}^{n} c_{j} q_{j}, q_{k}\right\rangle \\
=\sum_{j=1}^{n} c_{j}\left\langle q_{j}, q_{k}\right\rangle \\
=c_{k}(1) \\
=c_{k}
\end{array}
$$

so $f=\sum_{k=1}^{\infty}\left\langle f, q_{k}\right\rangle q_{k}$.

Example 3.9 Example: Infinite Dimensional Hilbert Space

Let V be an infinite dimensional, seperable, Hilbert Space. Let $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ be an orthonormal family in V. Moreover, assume $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis for V. So, given $f \in V$:

$$
f=\sum_{k=1}^{\infty} c_{k} e_{k}
$$

for some $\left\{c_{k}\right\}_{k \in \mathbb{N}}$. It can be shown that

$$
\left\{c_{k}\right\}_{k \in \mathbb{N}}=\left\{\left\langle f, e_{1}\right\rangle,\left\langle f, e_{2}\right\rangle,\left\langle f, e_{3}\right\rangle, \ldots,\left\langle f, e_{n}\right\rangle\right\}
$$

3.4.8 Bessel's Inequality

Theorem 3.35
Let $\left\{e_{k}\right\}$ be an orthonormal family in a Hilbert Space V. then $\forall f \in V$ and $\forall n \in \mathbb{N}$,

$$
\|f\|^{2} \geq \sum_{j=1}^{n}\left|\left\langle f, e_{j}\right\rangle\right|^{2}
$$

Furthermore,

$$
\|f\|^{2} \geq \sum_{j=1}^{\infty}\left|\left\langle f, e_{j}\right\rangle\right|^{2}
$$

3.4.9 Parceval's Identity

Theorem 3.36

Suppose $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis for a seperable Hilbert Space V. let $f \in V$. Then

$$
\|f\|^{2}=\sum_{j=1}^{n}\left|\left\langle f, e_{j}\right\rangle\right|^{2}
$$

3.4.1d Linear Maps on Hilbert Spaces

Definition 3.32

Let V, W be Hilbert Spaces and $T: V \rightarrow W$ be a bounded linear map. The adjoint of $T, T^{*}: W \rightarrow V$ is defined as

$$
\langle T f, g\rangle=\left\langle f, T^{*} g\right\rangle
$$

$\forall f \in V, \forall g \in W$.

[歽 Remark Intuition:

Fix $g \in W$. Consider a linear functional $\phi_{g}^{T} \in V$ defined by

$$
\phi_{g}^{T}(f)=\langle T f, g\rangle
$$

(Note: since T is linear and $\langle\cdot, \cdot\rangle$ is linear in the first slot, ϕ_{g}^{T} is linear).

$$
\left|\phi_{g}^{T}(f)\right|=|\langle T f, g\rangle| \leq\|T f\|\|g\| \leq\|T\|\|f\|\|g\|
$$

so $\left\|\phi_{g}^{T}\right\| \leq\|T\|\|g\|$, which implies $\phi_{g}^{T} \in V^{*}$.
Now, by the Riesz Representation Theorem, $\exists!h \in V$ such that

$$
\phi_{g}^{T}(f)=\langle f, h\rangle
$$

$\forall f \in V$. So for $g \in W$, set $T^{*} g=h$ where h is the unique element of V given by the RRT.
Example: Let (X, \mathscr{S}, μ) be a measure space and $h \in L^{\infty}(\mu)$. Define $M_{h}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ by

$$
M_{h}(f)=f h
$$

$\forall f \in L^{2}(\mu)$. Then

$$
\left\|M_{h} f\right\|_{2} \leq\|f h\|_{2} \leq\|f\|_{2}\|h\|_{\infty}
$$

which implies $\left\|M_{h}\right\| \leq\|h\|_{\infty}$, so M_{h} is a bounded linear functional. Therefore,

$$
\begin{aligned}
\left\langle M_{h} f, g\right\rangle= & \int_{X} f h \bar{g} d \mu \\
= & \int_{X} f \overline{\bar{h}} g d \mu \\
& =\langle f, \bar{h} g\rangle \\
= & \left\langle f, M_{\bar{h}} g\right\rangle
\end{aligned}
$$

So $M_{h}^{*}=M_{\bar{h}}$.

Theorem 3.37

Suppose V, W are Hilbert Spaces and let $T \in \mathscr{B}(V, W)$. Then the following are true:

1. $T^{*} \in \mathscr{B}(W, V)$
2. $\left(T^{*}\right)^{*}=T$
3. $\left\|T^{*}\right\|_{\mathscr{B}}(W, V)=\|T\|_{\mathscr{B}(V, W)}$

Definition 3.33

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space. Then T is self adjoint if $T=T^{*}$, i.e., $\forall f, g \in V$

$$
\langle T f, g\rangle=\langle f, T g\rangle
$$

Theorem 3.38

Let V be a Hilbert Space and $T \in \mathscr{B}(V)$. Assume $\langle T f, f\rangle=0, \forall f \in V$.

1. If $\mathbb{F}=\mathbb{C}$
2. If $\mathbb{F}=\mathbb{R}$ and T is self-adjoint, $T=0$.

Theorem 3.39

Let $T \in \mathscr{B}(V)$, where V is a Hilbert Space over \mathbb{C}. Then T is self-adjoint if and only if $\langle T f, f\rangle \in$ $\mathbb{R}, \forall f \in V$.

3.4.1 Operators

Definition 3.34

Let V be an NLS. A function $T: V \rightarrow V$ is called an operator.
If T is bounded, we write $T \in \mathscr{B}(V, V)$, or, more succinctly, $T \in \mathscr{B}(V)$.

Definition 3.35

An operator T is invertible if it is $1: 1$ and onto. We define the inverse as

$$
\begin{array}{r}
T^{-1}: V \rightarrow V \\
\text { and } \\
T \circ T^{-1}=I: V \rightarrow V
\end{array}
$$

Note: Since T is linear, T^{-1} is also linear.

Definition 3.36

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space.

1. T is left invertible iff $\exists S$ such that $S T=I$
2. T is right invertible iff $\exists S$ such that $T S=I$
3. if T is left and right invertible, T is invertible.
(Suppose $S_{1} T=I$ and $T S_{2}=I$, then

$$
\left.S_{1} T=I \Rightarrow S_{1} T S_{2}=S_{2} \Rightarrow S_{1} I=S_{2} \Rightarrow S_{1}=S_{2}\right)
$$

Theorem 3.40

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space. T is left invertible iff $\exists \alpha \in(0, \infty)$ such that $\forall f \in V$,

$$
\begin{equation*}
\|f\| \leq \alpha\|T f\| \tag{3.1}
\end{equation*}
$$

Theorem 3.41

Let $T \in \mathscr{B}(V)$ where V is a Hilbert Space. If T is left invertible, T^{*} is right invertible.

nfer Remark

Let $T \in \mathscr{B}(V)$ be invertible. Let V be a Banach Space. By the Open Mapping Theorem, T is an open map. Therefore T^{-1} is continuous, so $T^{-1} \in \mathscr{B}(V)$.

[19) Remark

By convention, we write:

1. $T: V \rightarrow V$
2. $T \circ T=T T=T^{2}: V \rightarrow V$
3. $T \circ(T \circ T)=T T T=T^{3}: V \rightarrow V$

Theorem 3.42

Let U, V, W be an $N L S$ and $T \in \mathscr{B}(U, V), S \in \mathscr{B}(V, W)$. Then

$$
\|S T\| \leq\|S\|\|T\|
$$

Theorem 3.43

Let $T^{k}=T \circ T \circ T \circ \ldots \circ T$ (k times). Then

$$
\left\|T^{k}\right\| \leq\|T\|^{k}
$$

Theorem 3.44

Let $T \in \mathscr{B}(V)$ where V is a Banach Space. Assume $\|T\|<1$. Then $I-T: V \rightarrow V$ is invertible and

$$
(I-T)^{-1}=\sum_{k=0}^{\infty} T^{k}
$$

Note: this is similar to the fact that for $z \in \mathbb{C}$ with $|z|<1$,

$$
\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k}
$$

Theorem 3.45

Let V be an NLS. Then V is a Banach Space if and only if, for every $\left\{g_{k}\right\}$ satisfying

$$
\sum_{k=1}^{\infty}\left\|g_{k}\right\|<\infty
$$

$\sum_{k=1}^{\infty} g_{k}$ converges in V.

Corollary 3.2

Suppose V is a Banach Space. The set of all invertible operators:

$$
\mathscr{A}=\{T \in \mathscr{B}(V): T \text { is invertible }\}
$$

is an open set in $\mathscr{B}(V)$.
Note: this implies the set of non-invertible operators in $\mathscr{B}(V)$ is closed, so a sequence of noninvertible operators converges.

3.4.12 Spectrum of an Operator

Definition 3.37

Let $T \in \mathscr{B}(V)$.

1. $\alpha \in \mathbb{F}$ is an eigenvalue of T if $T-\alpha I$ is not injective. (i.e. $(T-\alpha I)=0, f \neq 0$ implies $T f=\alpha f$.
2. $f \in V$ with $f \neq 0$ is an eigenvector of T corresponding to an eigenvalue of f, α if $T f=\alpha f$
3. The spectrum of T is denoted $s p(T)$:

$$
s p(T)=\{\alpha \in \mathbb{F}: T-\alpha I \text { is not injective }\}
$$

Iq Remark on 1.

$T-\alpha I$ is injective if and only if $n u l l(T-\alpha I)=\{0\}$. In other words, $T-\alpha I$ is not injective if and only if $\exists z \in V$ with $z \neq 0$ and $z \in \operatorname{null}(T-\alpha I)$. Therefore, $(T-\alpha I) z=0 \Rightarrow T z=\alpha z$.

3.4.1. Compact Operator

Definition 3.38

An operator $T: V \rightarrow V$, where V is a Hilbert Space, is compact if for all bounded sequences $\left\{f_{k}\right\}_{k=1}^{\infty}$ in $V,\left\{T f_{k}\right\}_{k=1}^{\infty}$ has a convergent subsequence.
We denote the set of compact operators on V as $C(V)$.

Theorem 3.46

Every compact operator on Hilbert Space is bounded, and therefore continuous.

3.4.14 Spectrum of A Compact Operator

Theorem 3.47

If $T: V \rightarrow V$ is compact on an infinite dimensional Hilbert Space V, then $0 \in \operatorname{sp}(T)$.

Ing Remark

The above implies that $T=T-O I$ is not invertible, so T is not invertible.

Theorem 3.48

Let $T \in C(V)$ then Range (T) cannot contain an infinite dimensional, closed subspace of V.

Example 3.10

Consider the measure space $([0,1]), \mathbb{B}, \lambda)$. and define $T: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ by

$$
T f(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

where $K \in C([0,1] \times[0,1])$ is a fixed kernel function. We claim that T is a compact operator.
Proof. First, note that

$$
\begin{array}{r}
\|T f\|_{L^{2}}=\left(\int_{0}^{1}|T f(x)|^{2} d x\right)^{1 / 2} \\
\leq\|T f\|_{L^{\infty}}\left(\int_{0}^{1} 1 d x\right)^{1 / 2} \\
=\|T f\|_{L^{\infty}}
\end{array}
$$

Also note that, $\forall x \in[0,1]$,

$$
\begin{aligned}
|T f(x)| & =\left|\int_{0}^{1} K(x, y) f(y) d y\right| \\
& \leq K(x, y) \int_{0}^{1}|f(y)| d y
\end{aligned}
$$

$$
\leq K(x, y)\|f\|_{L^{2}}
$$

So we have $\|T f\|_{L^{\infty}([0,1])} \leq K(x, y)\|f\|_{L^{2}([0,1])}$, therefore

$$
\|T f\|_{L^{2}([0,1])} \leq\|T f\|_{L^{\infty}([0,1])} \leq K(x, y)\|f\|_{L^{2}([0,1])}
$$

So T is bounded, linear (by linearity of the integral), and maps $L^{2}([0,1])$ to $L^{2}([0,1])$, which means T is bounded operator.
Now let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence in $L^{2}([0,1])$. We want to show that $\left\{T f_{n}\right\}$ has a convergent subsequence. In order to do this, we can show that Arzela-Ascoli applies:
Note that $\|f\|_{2} \leq\|f\|_{\infty}$. Now, by the fact that $K \in C([0,1] \times[0,1])$, given $\epsilon>0$, there exists $\delta>0$ such that $\forall x, y, z \in[0,1]$, whenever $|x-z|<\delta,|K(x, y)-K(z, y)|<\epsilon$. So

$$
\begin{array}{r}
\left|T f_{n}(x)-T f_{n}(z)\right| \leq \int_{0}^{1}|K(x, y)-K(z, y)|\left|f_{n}(y)\right| d y \\
<\epsilon \int_{0}^{1}\left|f_{n}(y)\right| d y \\
\leq \epsilon\left\|f_{n}\right\|_{L^{2}([0,1])} \leq C \epsilon
\end{array}
$$

which implies that $\left\{T f_{n}\right\}$ is equicontinuous. We have already shown that $\left|T f_{n}(x)\right| \leq$ $\|K\|_{L^{\infty}([0,1] \times[0,1])} \int_{0}^{1}\left|f_{n}(y)\right| d y \leq K(x, y)\left\|f_{n}\right\|_{L^{2}([0,1])}$, so $\left\{T f_{n}\right\}$ is equibounded. So, by Arzela-Ascoli, \exists some subsequence of $\left\{T f_{n}\right\}$ that converges uniformly to some g. But then

$$
\begin{array}{r}
\left\|T f_{n_{k}}-g\right\|_{L^{2}([0,1])}=\left(\int_{0}^{1}\left|T f_{n_{k}}-g\right|\right)^{1 / 2} \\
\leq\left\|T f_{n_{k}}-g\right\|_{L^{\infty}([0,1])}\left(\int_{0}^{1} 1 d y\right)^{1 / 2} \\
=\left\|T f_{n_{k}}-g\right\|_{L^{\infty}([0,1])} \rightarrow 0
\end{array}
$$

So T is compact.

