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Abstract: The frequency of the grid voltage is a time-varying parameter caused by mismatches between power generation 

and power consumption. In fact, the fundamental frequency decreases when large loads are connected to the system or 

when a large generation source goes offline. The opposite holds true for an increase in the fundamental frequency e.g. 

when generation exceeds consumption. Hence, in order to protect a power system against loss of synchronism, under-

frequency relaying, and power system stabilization, accurate frequency estimation is necessary. 

This paper proposes an adaptive algorithm based on a master-slave unscented Kalman filter (MS-UKF) configuration to 

estimate both the voltage frequency and the measurement noise. Specifically, the master UKF uses the strong tracking filter 

(STF) condition to improve tracking accuracy, speed of convergence, and to desensitize the filter from initial conditions. The 

slave UKF uses the master UKF innovation to estimate the measurement noise covariance. Our approach addresses the 

tracking weaknesses of other frequency estimation algorithms when the frequency of the grid voltage waveform changes 

abruptly. Algorithm performance is measured through computer simulation. 

 

1. Introduction 

Variations in generation, demand, and other factors 

result in compromised quality of the supply grid voltage. 

For this reason, accurate frequency estimation in a power 

system is necessary to maintain a high level of quality. 

Specifically, frequency estimation is used for protection 

against loss of synchronism, under-frequency relaying, and 

power system stabilization [1, 2]. 

The frequency of the grid voltage is a parameter 

whose changes are caused by mismatches between power 

generation and power consumption [3]. Generally, 

frequency variations occur when a generator that is isolated 

from the grid is supplying power to the loads [4]. Also, as 

explained in [4], the fundamental frequency decreases when 

large loads are connected to the system or when a large 

generation source goes offline. The opposite holds true for 

an increase in the fundamental frequency (e.g. generation 

exceeds consumption). 

Current research work in sustainable energy systems 

is aimed at tackling this frequency estimation problem, but 

many challenges still remain [5]. For example, renewable 

energy sources like solar energy or wind turbines are more 

likely to exhibit frequency variations due to frequent 

mismatch between power supply and demand. Further 

discussion regarding the importance of frequency estimation 

in the smart grid can be found in [5]. 

Traditionally, the frequency of a sinusoidal signal 

corrupted with noise is estimated using the time between 

two zero crossings and the calculation of the number of 

cycles [6-8]. To estimate the frequency, the authors in [6] 

use the minimum observation time for a given error or the 

minimum error for a given observation time, for a given 

signal-top-noise ratio as the performance criterion. A sample 

count and interpolation technique augmented by a three 

consecutive sample refinement is proposed in [7]. In [8] a 

non-iterative method that uses four data points in an 

arbitrary fixed time interval is used to estimate the 

frequency. In all these cases, the sinusoid does not undergo 

changes of the fundamental frequency and the algorithms 

are not robust with respect to the observation noise. In other 

words, they are not appropriate to estimate the frequency 

when the signal undergoes transient or abnormal changes, 

such as those experienced by the power grid voltage/current 

signals. In order to overcome this disadvantage, alternative 

methods have been proposed. For example, Fast Fourier 

Transform (FFT)-based algorithms are presented in [9-11]. 

In [9] the authors present a technique which uses a bandpass 

filter and three DFT/IDFT samples recursively to estimate 

the frequency. Reference [10] proposes a hybrid frequency 

estimation algorithm based on a second-order Taylor series 

expansion and a Fourier-based algorithm. Although these 

last two algorithms can estimate dynamic changes in the 

frequency, they are applied to a noise-free model. Recently, 

the authors in [11] proposed to estimate the frequency of a 

noisy, though undistorted sinusoidal signal in two steps. In 

the first step, a coarse estimate is made by the position of the 

maximum DFT amplitude and in the second step the 

estimate is refined by using the amplitude of two DFT 

coefficients. Another popular frequency estimation approach 

is least squares (LS) [12-15]. In [12] a least mean squares 

technique in complex form with variable adaptation step-

size is proposed to compute the frequency of three-phase 

voltages which are represented in complex form. The 

algorithm is able to follow smooth changes in frequency, but 

has a hard time tracking step changes. In [13] the author 

presents a hybrid LS algorithm to estimate the fundamental 

frequency of a noisy sinusoid which may contain some 

harmonics. Specifically, the signal is first filtered to remove 

its DC component and then an LS-based that uses four 

points is applied. The algorithm is not applied to cases 

where the frequency undergoes rapid changes. The authors 

in [14] present a complex-valued LS algorithm to estimate 

the frequency of unbalanced three-phase voltages. To obtain 
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the frequency estimate, the authors first obtain three time 

series relationships among equidistantly spaced Clarke’s [14] 

transformed voltage samples and then apply a complex-

valued LS algorithm to reduce the effect of noise and 

harmonics. The authors only test their algorithm when 

voltages undergo amplitude variations without drastic 

changes in frequency. In [15] the authors present a nonlinear 

LS algorithm to estimate the frequency of a noise-free 

sinusoidal signal. According to their simulation results, the 

algorithm takes too long to track step changes in frequency, 

even in the absence of noise. A modified Prony-based 

estimation algorithm to track voltage variations is presented 

in [16]. The frequency estimation is performed using a filter 

bank, so that the order of the transfer polynomial used by 

the Prony’s method can be reduced substantially. This 

methods works well when the variations of the waveforms 

are associated with the amplitude only. 

Newer frequency estimation variants are proposed in 

[17-19]. In [17] the authors present a dynamic model based 

frequency estimation with step change detection algorithm. 

To detect the step changes in the signal, this algorithm first 

obtains the derivative from the short-time Fourier transform 

and the first-order Taylor series expansion of the phasor 

model. The frequency is estimated using a higher-order 

Taylor series expansion model that represents the dynamic 

characteristics of the signal. The algorithm works well for 

step changes in the amplitude but the authors do not show 

any results with drastic changes in the fundamental 

frequency of the sinusoid. In [18], the authors propose an 

algorithm based on the DFT and three digital filters to 

reduce the estimation errors due to noise and the leakage 

effect. Specifically, the algorithm estimates the frequency 

from the magnitude ratios of DFT coefficients to avoid the 

leakage effect. The frequency tracking of this approach is 

good for smooth changes in the frequency, but does not 

track very well step changes in the frequency. In [19] the 

authors estimate the frequency of an undistorted, albeit 

noisy sinusoid by first filtering the signal with two 

orthogonal FIR filters and then using three consecutive 

samples from each subband. Although the algorithm is 

sufficiently fast for online estimation, it does not have the 

capability of estimating fast time varying frequencies. 

Recently, a widely linear adaptive frequency 

estimation algorithm for unbalanced three-phase power 

systems was proposed in [20]. Their approach is the 

complex-valued extension of the iterative version of the 

complex LMS algorithm. Although this method tracks 

changes in frequency due to voltage sags, it does not achieve 

steady-state convergence. 

When a model that describes the time evolution of 

the state of a dynamic process and a model of noisy state 

measurements exist along with their prior and posterior 

probability distributions, Bayesian estimation can be applied 

to dynamic state estimation [21]. Furthermore, when both 

dynamic state and measurement models are linear and the 

process and measurement noises are Gaussian distributed, 

the Kalman Filter is the optimum state estimator [22]. When 

either the state dynamic model or the measurement model or 

both are nonlinear, suboptimal Bayesian nonlinear filters 

such as extended Kalman filters, unscented Kalman filters 

and particle filters can be designed to estimate the states. 

The presence of nonlinearities does not permit the 

propagation over time of the Gaussian statistics. To deal 

with this problem, the EKF uses local linearization to 

approximate the prior probability distribution as Gaussian. 

Similarly, the UKF uses the unscented transform to preserve 

the Gaussian property of the prior distribution, although the 

UKF can still produce good estimates when the statistics are 

not Gaussian. Particle filters (PF), on the other hand, are 

sequential Monte Carlo methods based on “particle” 

representations of probability density functions which can 

be applied to any state-space model and generalize KF 

methods [21]. Although PFs are more general than KF 

variants, they are all based on the concept of sequential 

importance sampling (SIS) by drawing samples from an 

importance density function [21]. Moreover, they represent 

the required posterior density function by a set of random 

samples with associated weights which are used to compute 

the estimates. When the number of samples is large, the PF 

estimates approach the optimal Bayesian estimates. PFs, 

however, suffer from the problem of degeneracy [21] and a 

large computational effort is needed to minimize it by using 

the concept of resampling. 

When the process dynamics are well known and the 

process noise is adequately chosen, the EKF and the UKF 

produce smaller estimation errors than the PF [23]. 

Furthermore, the PF is very sensitive to the value of the 

process noise and the estimation errors increase [23]. For 

estimation problems where the nonlinearities are described 

by abrupt changes, the EKF performs poorly and the UKF 

and the PF perform better. Although the authors in [24] 

obtained comparable mean squared estimation errors for all 

three dynamic estimators, they found that the computational 

complexity of the PF was significantly higher than that of 

both EKF and UKF (it is almost the same for both EKF and 

UKF). Specifically, the authors in [24] found that the 

computational complexity of the PF was between 37 and 

137 times that of the EKF and the UKF. This is due to the 

use of Monte Carlo sampling and resampling by the PF. 

Bayesian dynamic estimation of frequency has been 

recently applied using the Kalman filter and its variants [25-

29]. In [25] the authors present a linear Kalman filter to 

detect fast modal changes in power systems, including 

frequency estimation. In [25] the frequency is estimated via 

differentiation of the phase angle which does not undergo 

abrupt changes. In [26] an extended Kalman filter and a 

sliding-surface-enhanced fuzzy adaptive controller 

technique is used to estimate the frequency of power 

systems. Although this approach achieves a relatively good 

steady-state tracking, it has difficulties tracking the 

frequency during a long period of time after an abrupt 

change in frequency occurs. In [27] a fourth-order unscented 

Kalman filter is used to track both frequency and amplitude 

variations of a distorted power signal corrupted by noise. 

This implementation tracks amplitude changes fairly well, 

but does not do a very good job tracking abrupt changes in 

frequency. Regulski et al. [29] present an unscented Kalman 

filter to estimate frequency and power components using a 

fourth-order power signal model rather than a voltage signal 

model. This approach can estimate the changes in power 

components very well but has difficulties tracking the 

frequency. 

In this paper we present a new adaptive frequency 

estimation algorithm based on the UKF [27] for three-phase 

voltage signals found in power systems. The algorithm is 

adaptive in the sense that the measurement (observation) 
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variance is estimated on-line. Specifically, we propose an 

estimation configuration with feedback where the frequency 

is estimated by a (master) UKF in the forward path and the 

variance of the measurement noise is estimated by another 

(slave) UKF in the feedback path which uses the innovation 

information generated by the master UKF as its input. 

Because of the substantially higher computational 

complexity of the PF in relation to the UKF and the fact that 

the complex-valued nonlinear voltage dynamics can be 

analytically described, we choose the proposed master-slave 

UKF (MS-UKF) algorithm and apply the strong tracking 

filter (STF) condition [30-31] to improve the speed of 

convergence and tracking capabilities whenever large and 

abrupt frequency changes occur and the statistics of the 

measurement noise are unknown. The STF condition is also 

applied for the purpose of decreasing the sensitivity to initial 

conditions. 

The rest of the paper is organized as follows: In 

section 2 the signal model and state-space representation of 

the three-phase grid voltage waveform are presented first, 

then in section 3 the proposed adaptive MS-UKF design is 

described. Section 4 evaluates system performance via 

computer simulation. Section 5 presents the concluding 

remarks. 

2. Signal model and state-space representation  

Several linear and nonlinear models have been 

proposed to estimate the grid voltage frequency, phase, and 

amplitude of a single sinusoid [5-12]. This paper uses a 

complex-valued state-space representation for the signal 

model of a three-phase power system. This complex-valued 

representation is much simpler and direct when dealing with 

frequency estimation. 

Assuming a balanced system, the discrete-time 

representation of the three phase voltages of a power system 

is given by 

( )cos
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where the parameters Vm, ( )tθ , and T are the peak 

amplitude of the fundamental component, the time-varying 

phase angle, and the sampling period, respectively. The 

terms
kav , 

kbv , and 
kcv are noise terms associated with the 

measurements and are defined as independent and 

identically distributed white Gaussian random variables with 

zero mean and variance 
2σ . 

The discretised time-varying phase angle is defined 

as 

0
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kT dθ ω τ τ φ= +∫ , (2) 

where ( )tω  is the time-varying radian/s frequency and φ  

is a fixed phase angle. 

It is possible to represent all three phases as a single 

signal in complex form by means of the αβ -transform [20] 
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where the noise voltages 
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and 
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 
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 are also zero-mean 

white Gaussian noise with common variance 
2σ . 

Let 
2

3
m

A V=  , then a complex voltage Vk can be 

obtained from (3) as 
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Where 
k kkv v jvα β= +  is zero-mean complex Gaussian 

noise. Now, at time ( 1)k T+ , the complex voltage is given 

by 
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where 
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∆ ≡ ∫ . 

Hence, at time ( 1)k T+  the complex voltage model 

is given by 
( )( ) ( )

1 1
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θ θ+∆

+ += + . (7) 

This model can also be represented in state-space 

form by defining the states at time kT  as 
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where 
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kη is a complex zero-mean Gaussian noise vector with 

covariance matrix 
k

Q  and 
k

v is a complex scalar zero-mean 

Gaussian noise with variance 
v

k
R . 

The complex-valued signal state model of Eqs. (9) 

and (10) can be used to estimate the time-varying frequency 

of a sinusoidal signals corrupted with white Gaussian noise. 

Furthermore, it can be extended to represent sinusoidal 

signals containing harmonics. 

3. STF-based master-slave UKF frequency 
estimator 

The UKF is a powerful nonlinear estimator that 

works under the assumption that it is easier to approximate a 

Gaussian distribution than it is to approximate an arbitrary 

nonlinear function [27]. The UKF evaluates the nonlinear 

function with a minimal set of carefully selected sampling 

points distributed through 2 1n +  sigma points, where n is 

the number of states. These sigma points are based on a 

square root decomposition of the a priori covariance [27]. 

As in the EKF, the UKF uses a recursive algorithm that 

employs the system model, measurements, and known 

statistics of the noise. 

Let us first consider the frequency estimation using 

only the master UKF [27]. Given that 2n = , the UKF 

design procedure is now outlined. 
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where ( )1
ˆ
k

i
−

P  is the i
th

 column of the sigma points 

covariance matrix 
1 1

ˆ
k k− −= MP , 
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T
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2τ λ= +  , and 2
2( 1)λ γ= − . The parameter γ  describes 

the spread of the i
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 sigma point around the measurement 

estimate 
1

ˆ −kx . If 0λ > , the points are scaled further from 

1
ˆ −kx  and when 0λ < , the points are scaled towards 

1
ˆ −kx . 

Moreover, the parameter 
4

[10 ,1]γ −∈  is used to control the 

amount of higher-order nonlinearities around 
1

ˆ −kx . The 

matrix 
1

ˆ
k−P  is assumed positive definite. Therefore, its square 

root can be computed using the Cholesky decomposition to 

reduce computational time. 

 

Time Update (Prediction): 
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Measurement Update: 
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The constant µ  is used to incorporate part of the 

prior knowledge of the statistics of kx . We use 2µ = , 

since it has been shown that 2µ =  is optimal for Gaussian 

distributions [20]. 

Estimation performance can be further improved by 

tuning the state covariance matrix and the Kalman gain 

using the strong tracking properties of the Kalman filter [30]. 

As noted in [30,31], a STF can self-adaptively tune 

the error covariance matrix Pk and the corresponding 

Kalman gain Kk by introducing a “time-varying fading 

matrix”. When the filter is linearized, this fading matrix is 

applied as follows: 

1 1 1 1| 1

T

k k k kk k k
LMD

− − − −− += ⋅F P F QP ,  (15) 

where LMD  is the so-called time-varying fading matrix and 

1 2[ , , ..., ]
kk k nkLMD diag λ λ λ= where 1  1, 2, ..

ki
i nλ ≥ = , 

are the fading factors and Fk is the system matrix of the 

linearized system dynamics ( )
k

f x evaluated at a nominal 

operating point. 
k

Q  is the process noise covariance matrix. 

In so far as our system described by Eq. (10) is 

concerned, 2n =  and the fading matrix can be calculated 

using the following algorithm: 
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where 
kψ  is the innovation, Hk is the matrix of the 

linearized measurement ( )
k

h x . Rk is the measurement noise 

covariance, the parameters ρ and β are the forgetting and 

weak factors, respectively. According to [30] the forgetting 

factor (0,1)ρ ∈  and is commonly chosen to be 0.95 [30]. 

The weak factor β  is greater than 1 for smoothing the 

estimation. 
,ii k

M ’s are the diagonal components of 
k

M . 

Finally, the coefficient values 1,   1, 2
i

iα ≥ =  are 

predetermined from prior knowledge of the system. If there 

is no prior knowledge about the system, 1,   1, 2
i

iα = = . 

Under the STF condition, the covariance matrix in Eq. 

(12) of the UKF is modified as follows: 
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where 
k

LMD  is a 2 dimensional diagonal matrix. 

 

3.1 Speed of Convergence 
 

There is an inherent trade-off between speed of 

convergence and accuracy of the filter. If, as in the 

following example, the process noise covariance is 

underestimated, then the filter will take a long time to 

converge. Furthermore, if the process noise covariance is 

highly underestimated due to lack of knowledge of the 

system, the filter may be susceptible to divergence. Fig. 1 

shows estimation performance for a linear change in 

frequency. We can see that without the STF condition the 

UKF diverges because of a poor selection of the process 

noise covariance Q. However, the UKF filter under STF 

eventually converges to the actual signal. We can also see 

that for high β values the tracking ability becomes smoother 

at the price of slower convergence time. Furthermore, the 

lower the β values, the higher the sensitivity to changes. 

Therefore a compromise has to be made between the 

smoothness of the estimation and convergence time. This 

compromise can be less critical if we could successfully 

estimate the process noise covariance matrix Qk. 

 

 
Fig. 1. UKF under STF for different β values 

 

3.2 Sensitivity to Initial Conditions 
 

Let us now examine how the UKF under STF 

performs for poorly chosen initial conditions. The 

comparison is made against UKF alone estimation. Fig. 2 

shows estimation performance for a step change in 

frequency. We can see that the UKF does not converge to 

the true value due to the selected initial conditions. However, 

when we examine the UKF under STF we can see that the 

filter converges to the true value after the time-varying 

fading matrix 
k

LMD  reaches unity. 

 
Fig. 2. Filter performance under poorly chosen initial 

conditions 

 

3.3 Proposed approach 
 

In real physical applications, the difference between 

the a-priori knowledge and the true state statistics is the 

major factor that degrades the filter’s performance. 

Therefore, selecting appropriate covariance matrices ( ,k kRQ ) 

is of utmost importance in order to achieve the desired 

performance and stability of the UKF filter. To address this 

issue, we propose the use of a slave UKF to estimate the 

covariance in real time. Under the assumption that the 

process and measurement noises are Gaussian and white, 

one can safely assume that the covariance matrices 
kQ  and 
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kR  are diagonal matrices [27]. Then the estimation of the 

noise covariance can be simplified to the estimation of the 

diagonal elements. 

The proposed adaptive frequency estimation scheme 

is shown in Fig. 3. It is composed of two UKF filters. At 

every time step, the master UKF estimates the states using 

the noise covariance obtained by the slave UKF, while the 

slave UKF estimates the noise covariance using the 

innovations generated by the master UKF. 

 

Time Update Measurement Update

Measurement Update

State

Master UKF

Slave UKF

Noise

Covariance
Time Update

1
ˆ

kx − 1
ˆ

k k
x − ˆ

kx

1
ˆ
k

θ − 1
ˆ
k k

θ −
ˆ
k

θ

Measurementky Innovationki

T delay

T delay

1
ˆ
kθ −

 
Fig. 3. Proposed adaptive MS-UKF structure 

 

In this configuration, the slave UKF is used to 

estimate the measurement noise covariance 
kR , and since it 

is a scalar, we let 
k kRθ = . Now, if the dynamics of the 

parameter θ, namely, ( )fθ ⋅ , were known, then the time 

evolution of the parameter θ would be described by 

1( )
kk kf wθ θθ θ −= + . (23) 

On the other hand, if the dynamics of θ were 

unknown, as is the case herein, then several online 

parameter estimation methods based on particle filters 

principles such as expectation maximization (EM) 

algorithms and model averaging particle filters [32, 33] 

could be used to estimate θ. However, a simple model of the 

time evolution of θ can be built by introducing artificial 

dynamics to the parameter θ [32], i.e. 

1 ,
kk k wθθ θ −= +  (24) 

where 
k

wθ  is a small artificial dynamic noise with variance 

Q
θ

. When using this model, 
1 1

( )
k k

fθ θ θ− −= . 

The measurement model for the estimation of θ is 

described by 

( )
2

kk kk k
vs h iθ θθ θ+ == +  (25) 

where | 1
ˆ

k k k ki y y −= −  is the innovation obtained by the 

master UKF and ky  is the physical measurement. The 

innovation is provided by the master UKF as an input to the 

slave UKF. The term 
2

ki  is interpreted as a random noise 

(uncertainty) 
k

vθ  with variance Rθ
. Clearly, 

k
vθ  is not 

Gaussian distributed. We choose the UKF to estimate the 

parameter θ because it still produces an unbiased estimate of 

it even when the noise is non-Gaussian [27] and to avoid the 

added computations due to resampling used by PFs. 

The algorithm of the slave UKF is formulated in a 

similar manner as that of its master counterpart. 

 

Slave: Sigma Points Calculation in the kth time instant: 

1

1

0, 1 1

1, 1 1

2, 1 1
ˆ

ˆ

ˆ ˆ

ˆ
k

k

k k

k k

k k P

P

θ

θ

ϕ θ

ϕ θ σ

ϕ θ σ
−

−

− −

− −

− −

=

= +

= −

 (26) 

where 1θσ λ= +  and 2 1θλ δ= − . The parameter δ is 

selected in a similar manner as γ  in the master UKF. 

 

Slave: Time Update (Prediction): 
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| 1

, | 1 , 1

2

| 1 , | 1

0

2 2

, | 1 | 1 1

0

, | 1 | 1

2

| 1 , | 1

0

( ),  0,1,2

ˆ                            

ˆˆ

( ),  0,1,2

ˆ

i

k k i

i

i k k i k

m

k k i k k

i

m

i k k k k k

i

i k k k k

m

k k i k k

i

f i

W

P W Q

h i

s W

θ

θ

θ

θ
θ θ

θ

ϕ ϕ

θ ϕ

ϕ θ

ς ϕ

ς

−

− −

− −
=

− − −
=

− −

− −
=

= =

 =




= − +

 = =

 =

∑

∑

∑

 (27) 

 

Slave: Measurement Update: 

| 1

2
2

, | 1 | 1

0

2 2

, | 1 | 1

0

1

| 1 | 1

ˆ

ˆ

( )     

ˆ ˆ

ˆ ˆ ˆ( )

k k i

k k i

k k k k k

k k k k k k k

k

k

c

S S i k k k k

i

c

S i k k k k

i

S S S

T

S S

k k k k k k

P W s R

P W

K P P

P P K P K

K s s

θ
θ

θ θ

θ θ

θ θ θ θ

θ

ς

ϕ θ

θ θ

−

− −
=

− −
=

−

− −


= − +




= −


=


= −


= + −



∑

∑

 (28) 

where Q
θ  and R

θ
are the slave’s process and measurement 

noise covariances, respectively. The weights 
i

c
Wθ  and 

i

mWθ  

can be calculated using a relation similar to that described 

by Eq. (14). 

4. Simulation results 

We assess performance of the proposed frequency 

estimation algorithm via computer simulation as follows: 

First, the EKF, UKF and MS-UKF are compared for 

different frequency changes and their average MSEs are 

computed using 100 independent runs. Next, the UKF under 

STF and MS-UKF under STF are compared for an 

underestimated and overestimated value of the measurement 

noise covariance R and their average MSEs are also 

computed using 100 independent runs. 

Because we want to examine the filters under the 

same conditions without using optimal values of the 

measurement noise covariance, we have selected R such that 

it is both under and overestimated by a factor of 4. As was 

previously mentioned, the MS-UKF is able to estimate the 

process noise covariance and adapt the estimation to such 

uncertainty. Furthermore, since we do not have prior 

knowledge of the dynamics of R, we use the uncorrelated 

random walk model. 

 

4.1.  Performance Assessment 
 

In order to evaluate the performance of the different 

estimators, we conduct three experiments where we 

introduce step, linear and nonlinear voltage frequency 

changes. All the estimators are subject to the same process 

and measurement noise and use the same voltage frequency 

measurement signal model described by (1)-(10). Finally, 

the plots that show the frequency tracking of the estimators 

over time are obtained at an SNR of 25 dB, using a sampling 

frequency of 1000 Hz. 

 

4.1.1 Experiment 1: In this experiment the fundamental 

frequency of the sinusoidal signal undergoes a step change 

from 60 Hz to 59 Hz. Fig. 4(a) shows how well the MS-

UKF, the ECKF, and the UKF estimators track the sudden 

change in frequency. We can see in this figure that the MS-

UKF converges to within a small error of the actual 

frequency after about 0.05 seconds (approximately 50 

samples), whereas the UKF and the EKF experience 

difficulties converging. Clearly, the MS-UKF produces 

more accurate estimates (much smaller ripples) than both 

the UKF and the EKF. The plot of Fig. 4(b) shows the 

tracking error for the step change in frequency of Fig. 4(a). 

This figure shows that the error between the actual 

frequency and that estimated by the MS-UKF is very small a 

short time after the step change. Table 1 shows the average 

MSE over 100 independent runs for a step change in 

frequency. 

 

(a)

(b)

Fig. 4. Estimator tracking of a frequency step change from 

60 Hz to 59 Hz. (a) Actual and estimated frequency, (b) 

Tracking error 
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Table 1. Mean MSE over 100 independent runs for a 

frequency step change 

Frequency Step Variation MSE 

SNR ECKF UKF MS-UKF 

15 0.1839 0.1555 0.1200 

20 0.1345 0.1111 0.0883 

30 0.0759 0.0601 0.0450 

40 0.0442 0.0318 0.0279 

50 0.0267 0.0160 0.0112 

60 0.0152 0.0075 0.0058 

 

4.1.2 Experiment 2: The fundamental frequency of the 

sinusoidal signal undergoes a linear variation, namely, the 

instantaneous phase angle changes in a parabolic manner 

over a 0.3 seconds time interval. 

 

(a)

(b)

Fig. 5. Estimator tracking of a linear frequency change from 

60 Hz to 63 Hz. (a) Estimated frequency, (b) Tracking error 

 

Once again it can be seen in Figs. 5(a) and 5(b) that the 

MS-UKF is much better at tracking a linear frequency 

change than both the UKF and the EKF, i.e. the MS-UKF 

accurately tracks the frequency during the entire time with 

negligible error. Table 2 corroborates the observations made 

based on the plot. 

 

Table 2. Mean MSE over 100 independent runs for linear 

frequency change 

Linear Frequency Variation MSE 

SNR ECKF UKF MS-UKF 

15 1.883×10
-01

 1.719×10
-01

 7.030×10
-02

 

20 1.445×10
-01

 1.304×10
-01

 5.010×10
-02

 

30 7.380×10
-02

 7.130×10
-02

 2.240×10
-02

 

40 1.520×10-02 1.450×10-02 3.900×10-03 

50 8.300×10
-03

 7.300×10
-03

 1.900×10
-03

 

60 4.000×10
-03

 3.000×10
-03

 1.600×10
-03

 

 

4.1.3 Experiment 3: In this case the fundamental frequency 

of the sinusoidal signal is modulated by a small frequency 

component (nonlinear frequency change) starting at 0.38 

seconds. Figs. 6(a) and 6(b) show the tracking performance 

of ECKF, UKF, and MS-UKF. It is clear from these figures 

that the MS-UKF tracks the modulated signal better than the 

other estimators. In fact, the MS-UKF starts tracking in 

about 0.02 seconds after the change occurs with a small 

error thereafter. The UKF performs better than the EKF, 

although both display a larger tracking error than the MS-

UKF. Table 3 corroborates the visual results. 

 

Page 8 of 12

IET Review Copy Only

IET Signal Processing

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



9 

 

(a)

(b)

Fig. 6. Estimator tracking of a nonlinear frequency change. 

(a) Estimated frequency, (b) Tracking error 

 

Table 3. MSE over 100 independent runs nonlinear 

frequency variations 

Nonlinear Frequency Variation MSE 

SNR ECKF UKF MS-UKF 

15 0.4830 0.3889 0.3392 

20 0.2993 0.2482 0.2161 

30 0.1314 0.1043 0.0833 

40 0.0534 0.0354 0.0272 

50 0.0239 0.0106 0.0095 

60 0.0117 0.0048 0.0034 

 

Although the MS-UKF performs better than the other 

estimators, the problem of initial conditions may still an 

issue when it comes to convergence. As it was pointed out 

in section 3, all these filters may diverge if the initial 

conditions are poorly chosen. 

4.2 UKF-STF vs MS-UKF-STF 

By implementing the STF condition on the filters, we can 

effectively desensitize the estimators with respect to initial 

conditions. As seen in Fig. 1, the β values can be tuned to 

work well with a certain amount of uncertainty, i.e. our 

initial guess of measurement noise covariance R. This is an 

inherent weakness when we do not know what the value of 

R is or if it changes with time. To assess frequency 

estimation performance under ST conditions, the 

simulations assume an under and over estimated R by a 

factor of 4. Tables 4 through 6 show the improvement that 

can achieved if we know the value of the process noise and 

adapt to its changes. 

 

Table 4. Mean MSE over 100 independent runs for 

frequency step 

Frequency Steps Variation MSE 

SNR 
UKF-STF 

(4*R) 

UKF-STF 

(1/4*R) 
MS-UKF 

15 8.10×10-01 5.10×10-01 4.50×10-01 

20 7.68×10
-01

 3.36×10
-01

 3.25×10
-01

 

30 5.60×10
-01

 1.66×10
-01

 1.84×10
-01

 

40 1.92×10
-01

 8.36×10
-02

 9.33×10
-02

 

50 9.85×10-02 5.44×10-02 6.10×10-02 

60 5.37×10
-02

 4.08×10
-02

 4.60×10
-02

 

 

Table 5. Mean MSE over 100 independent runs for linear 

frequency change 

Linear Frequency Variation MSE 

SNR 
UKF-STF 

(4*R) 

UKF-STF 

(1/4*R) 
MS-UKF 

15 4.16×10-02 2.71×10-02 3.58×10-02 

20 2.31×10
-02

 1.54×10
-02

 2.03×10
-02

 

30 7.70×10
-03

 5.20×10
-03

 5.30×10
-03

 

40 2.50×10-03 2.40×10-03 1.90×10-03 

50 9.00×10
-04

 1.20×10
-03

 8.00×10
-04

 

60 3.00×10
-04

 7.00×10
-04

 3.00×10
-04

 

 

Table 6. Mean MSE over 100 independent runs for 

modulated frequency 

Nonlinear Frequency Variation MSE 

SNR 
UKF-STF 

(4*R) 

UKF-STF 

(1/4*R) 
MS-UKF 

15 3.83×10
-01

 1.50×10
-01

 1.82×10
-01

 

20 2.14×10-01 6.39×10-02 1.12×10-01 

30 6.61×10
-02

 2.37×10
-02

 3.34×10
-02

 

40 2.13×10-02 8.70×10-03 1.19×10-02 

50 7.00×10
-03

 4.10×10
-03

 4.30×10
-03

 

60 2.30×10
-03

 1.60×10
-03

 1.60×10
-03

 

 

As can be seen in Figs. 7 through 9, the MS-UKF-STF 

outperforms the UKF-STF regardless of the value of the 

measurement noise covariance R because the former 

provides a more accurate estimation of the measurement 

noise covariance. Specifically, the MS-UKF-STF estimator 

has a more robust frequency tracking performance in terms 

of convergence than the UKF-STF estimator. 
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(a)

(b)

Fig. 7. MS-UKF-STF and UKF-STF tracking for frequency 

step changes. (a) Estimated frequency, (b) Tracking error 

 

(a)

(b)

Fig. 8. MS-UKF-STF and UKF-STF tracking for a linear 

frequency change. (a) Estimated frequency, (b) Tracking 

error 
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(a)

(b)

Fig. 9. MS-UKF-STF and UKF-STF tracking for a non-

linear frequency change. (a) Estimated frequency, (b) 

Tracking error 

 

5. Conclusions 

In this paper, an adaptive frequency estimation algorithm 

based on a two-UKF structure is presented. The “master” 

UKF filter which is modified to operate under STF 

condition is used to estimate the frequency and the “slave” 

UKF filter is used to estimate the measurement noise 

covariance. Extensive computer simulations were run for 

different frequency variation scenarios and varying levels of 

noise to determine the performance of the proposed 

estimation approach. The proposed algorithm produced very 

good results even for voltage signals contaminated with 

significant levels of noise and with large abrupt changes in 

frequency. 
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