
1

Chapter 3 - Digital Logic Level
• Gates
• Basic Digital Logic
• Memory

– Storage Hierarchy
• CPU

– PII
– PicoJava

• Bus
– PCI

• Homework:
– Chapter 3 # 1, 4, 6, 12, 25, 35, 37, 40 (Due 4/22)

Chapter 3 - digital logic. We’ll look at gates, basic digital logic, and boolean
algebra. Then we’ll see how these are used to build memory, cpu, and busses -
the three core elements of a computer.

Homework: Here is the next

2

Gates and Boolean Algebra

• X = !A;

This is the lowest level we will talk about. You can make gates out of gears,
relays, vacuum tubes, tinker toys, transistors, I don’t care.

Lines carry information. In fact, they are boolean variables! They are like
variables in a program. Boxes are operations, like plus, minus, etc.

So, that first picture is just X=!A;

Five basic boolean functions are shown below. All other boolean functions can
be created by compositions of these, just like we can write complex algebraic
functions x= 3*y2+5

(powers are just repeated multiplications, at least in integerland, which can be
built from boolean-land. Computers only approximate reals (at least
numerically).

“Truth tables” are simply EXTENSIONAL representations of the functions.
EXTENSIONAL means listing out all possible combinations of input values,
and the corresponding output. This is reasonable because, unlike real or integer
domain functions, boolean functions take a finite set of input values: 2^n,
where n is the number of input parameters

 (go through not and nand - remember to talk about uninverted output and
“inversion” or negation bubbles).

Why is NAND listed before AND? Because, it turns out, in some (most)
current realizations, NAND is actually simpler to implement than AND.

Further, NAND and NOR are COMPLETE. That is, ANY boolean function
can be implemented in terms of either one!

3

Functions
 _ _ _
M=ABC+ABC+ABC+ABC

M =(!A) && B && C
 || A &&(!B)&& C
 || A && B &&(!C)
 || A && B && C

AB means A && B
A + B means A or B
Why?
Because there is a close relation between or and plus, mathematically. Try it:

0+0 = 0, 0||0 = 0
1+0 = 1, 1||0 = 1
1+1 = 2, 1||1 = 1 (at least both results are non-zero.

Similary:

0*0 = 0, 0&&0=0
1*0 = 0. 1&&0 = 0
1*1 = 1, 1&&1 = 1

This under the intrepretation that 0 = false, 1 = true.

What else is interesting in the digital logic diagram above:
Convention - if lines cross but there is no circle, they don’t actually touch, so
values are independent
Common, but not universal.

Convention - the vertical rows are not function inputs, they are just labelled
internal values. The inputs are at the left.

These derive, somewhat abstractly, from physical layout concerns, but an
actuall circuit probably wouldn’t be llaid out quite this way.

Why this weird representation? Because it uses two dimensions, it uses more
of our visual processing hardware than a linear set of equations to represent the
same function. It is also easier to map to the physical pc board or chip when
trying to identify (or wire) physical components performing logical functions.

Hmm - so if we can use a 2d graphical rep to advantage at the digital logic
layer, can we use it at higher layers as well? Sure, we do all the time. Think of
some of the architecture diagrams we’ve seen, think flowcharts and other
graphical representations of programs.

But how come Java, VB, C++, etc are textual instead of graphical, then?
Interesting question. Talk to Peggy Burnett.

But, notice it takes a lot more space than the equation at the left. As a result,
visual analogs for writing software haven’t really caught on.

4

Completeness of NAND and NOR

Any boolean function can be computed in terms of nand or nor alone!

5

Equivalence and Minimization

• XX+YY = X+Y

These two circuits compute the same function!
AB+AC = A(B+C)

Obviously we would like minimal realizations of functions we need, right?

We need some laws for how we can transform functions, so we can search for
simpler forms

6

Identities for formula transform

Here are some laws, stated in two different forms, depending on whether we
are working with and gates or with or gates.

Note that, just like in regular algebra, 0 is the additive identity and 1 is the
multiplicative identity!

Math is cool!

You should know most of these, except maybe the null law, the Absorption
law, and DeMorgan’s law. (Actually, you should know all these from 231 -
how many don’t?)

DeMorgan’s law tells you how you can change from an AND gate to an OR
gate, or vice-versa.

Also interesting - notice in reasoning about circuits, we switched from
graphical representation to textual. Interesting.

7

Transforming formulas

Let’s try proving some equivalences. Let’s look at the XOR implementations,
and transform one to another.

B is (!AB)+(A!B)
C Is (!(!(!AB)))+(!(!(A!B))

Well, that’s easy, since (!(!X)) == x

How about d? (!(!(!AB))(!(A!B)))?
That is just deMorgan’s law! (show it)

8

0-60 in 4.2 sec.

So, we can get from individual gates to a full ALU in just a few steps.

Upper left” simple muliplexer. Last gate is an or. How does this work?

Upper right: full alu: does
(1)ALU instruction decode (lower right, converts two bit number into four
separate control lines, only one of which is on at a time - step throught this!
(2) Logic - A and B, A or B, ~B
(3) ALU - adds 2 1Bit numbers, with carry in and out
Do we need to step through boolean addition? Probably - add two three-bit
numbers, showing carry out of each stage to next state

Bottom shows how 1 bit slices can be combined to create an 8 bit ALU. What
is “INC” in at right? Usually 0, can be a “1” if our goal is just to increment by
one

Huh? Well, that is what “ENA and ENB are for, set ENB to false, and B will
look like all zero. So we can use the same hardware to increment A by 1,
without having a separate register to hold the “one”.

Hardware people do that all the time, sigh.

9

Memory

• SR Latch

So far we have looked at combinatorial logic - functions!. Functions are
transformers, but they don’t remember anything!

So how can we build a register?

The SR latch is a simple one-bit memory. How does it work? Let’s try to do a
truth table for it:

If S is 1 and R is 0… (S=1 -> !Q = 0 regardless of Q. Therefore inputs to lower
gate are both zero, therefore Q is … 1!

Similarly, if S is 0 and R is 1… !Q = 1 and Q = 0

If S is 0 and R is 0… Then there are two stable states, depending on whether S
was 1 or R was 1 last.
So with S and R both 0, outputs stay where they are!

How about if S and R are both 1? That forces both Q and !Q to zero. Later,
when both S and R go to zero, both nor gates want to output 1. But that will
cause the other’s output to go to zero. This is an unstable state, which
eventually (ns) will be resolved by the latch going into one (unpredictable
which) of its two stable states.

10

Clocked latches

• Clocked SR latch

• Clocked D latch

Cool. But usually we need to control WHEN a register stores something. We
can use a “clock” to control this.

The Clocked SR latch above will only see 0 on its S and R input lines when
the clock is 0, so it wil stay in its current state. When the clock is 1, it will see
the actual values of S and R (remember - 1 is the identity operator for AND!)

Still a problem with that nasty undefined state: what if both S and R are 1 at
the same time?

We can fix that by deriving R from S - it is just !S, right? Also the advantage
that now we only need one line to carry the data bit around, instead of two.
Cool.

11

Clocking

One more step to the most common storage: Because of various kinds of noise,
including timing skew, it is easier to design such that we guarantee the signals
will be present at a certain place at a particular time in the cycle, rather than
for an extended duration.

So, a FLIP-FLOP stores data on an EDGE rather than during a duration.
EDGE’s can be generated locally, as shown above. We can then use that as the
input to our D latch, generating a D flip-flop

(this is not completely standard notation. I am used to hearing “edge-
triggered” vs “level-triggered” to be completely unambiguous).

12

D Flip-Flop

Above is the digital logic diagram for a D flip-flop. It uses our edge generator
to extract an up edge from the clock

Below are some symbols typically used to represent various D latches and flip
flops. What is the difference? Note the > and o. What do these mean?

ÿ “>” Means edge triggered.

ÿ “o” has its usual meaning - inversion. So a “o” on the clock input means
this one stores when the clock value is 0, or, for edge triggered, when the clock
is going from 1 to 0.

13

4 x 3 (3?)

Ok, what might a memory look like, then? For example, a register set inside a
cpu?

Shown above is a 4 x 3 bit register set. Why three bit? Because that is how
many fit on the page in the book!

Notice inconsistency in numbering input and output lines!

We see each bit is stored in a d flip-flop.

We see the three data in lines coming in at the top.

We see three output lines going out at the bottom.
What else? We see three control lines:

CS - chip select
RD - read
OE - output enable

So, if chip select is true, this block is active (that enables us to combine
multiple chips to make a 8x3 or 12x3 or 16x3 or … using external logic to
decode the add’l address lines.

<Explain for 8x3 how this would work>

So, what does cs actually do? Well, first of all let’s decode the D clock inputs.
We see that CS+!RD is an input to the “write gates” - in other words, the
flip-flops will only see a clock positive when CS is true AND RD is false.

But that is only one of two inputs to the write gate for each row. The other
input is the adress decode output. Check out the address decode logic at
left: if Ao and A1 are both zero, then the top row sees a 1 on its word
select line, and all other rows see a zero. So, if we apply A1 = 0, A0 = 1,
CS=true, RD=false, THEN the three top gates will see a clock true, and
store the data on the input lines. Note that ALL these must be true for this
to happen.

Similarly for A0=1, A1 =0 (note I tend to use “0/1” when talking about bits
representing integers, like memory addresses, and “true/false” when
talkiing about values that represent logical values, like clock true/false. For
this course, “true == 1”, “false == 0”, always.

Now let’s look at the output side: if A0=0 and A1=0 then word 0 select line
will be true and all other word select lines will be false.

This means of the four input lines to the lower right or gate, the one from word
0 will have the same value as word 0 bit 2, whereas the other three will be
0.

So will O1 have the value of Word 0 bit 2?

Well, maybe. What is that last funny symbol? Looks like an inverter without
the circle at the end.

Non-inverting buffer. When its “control input” is true, its output is connects to
its input. When its “control input” is false, its output is essentially
disconnected.

Why? So you can
(1) Connect a bunch of these together, all connected to the same wires.
(2) Connect outputs and inputs together! (Huh?)

14

Simple Bus

Simple? Surely you jest! No really.

We’ll look at buses in more detail shortly, but just to close off the discussion
of memory, lets see how some of those features at the memory level translate
into features at the bus level.

First of all, notice the overall bus organization: control, address, and data.

Second, notice the bus data wires are directionless! The memories can both
read and write to the same wires.

But, notice this design can’t transfer from one memory to the other directly,
because there is no way to address both at once.

Notice the use of an inverter on the CS of the second ram to use the thurd
address line as a select for which chip is selected.

15

Dynamic RAM

Dynamic ram uses a different storage mechanism that relies on storing charge
in a capacitor.

ROM uses yet a different mechanism for storage.

16

CPU chip I

Surprise: a cpu chip typically has a set of wires (address, data, control) that
look just like what we just saw: this is the main CPU bus. There are a few
others as well.

Clock

Power

Status - running, halted, etc.

Coprocessor - ignore.

Bus arbitration - we’ll talk about that next.

17

Buses Everywhere!

We looked at a bus to connect to internal cpu registers, at left.

We also saw the cpu bus, in terms of pins on the cpu chip itself - that is the bus
connecting the cpu to the Bus controller.

Above is typical modern layout. The bus “chipset” is the dominant component
you hear techies talking about when they say “oh, that motherboard has the
Intel 8xyz!q###1 chipset!”

So what’s the big deal? Everyone knows about cpu clock, memory size, etc.
Don’t hear nuch about busses. Let’s look at Buses

18

Bus overview

• P IV (.013 micron)
– 36 addr lines
– 64 data lines
– MANY control lines

At the most abstract level, critical bus parameter is bandwidth: width * cycle-
time

We can see at left how bus width (in this case address width) tends to expand
over time. Twenty-bits is only enough to address 1 MB of memory
(assuming byte-level addressing). 24 bit can address 16MB.

32 bits can address? 4 GB. We’ll run out of that pretty soon.

Latest P IV has 36 addr lines - 64BG directly addressable ram.

19

Synchronous bus overview

Ok, so here is a “synchronous” bus.

In a synchronous bus, everything happens to the tune of a master clock (think
the old roman slave galleys, with a master drum beater setting the rowing
pace. - everyone pulls on the oars when the drum beats.)

Let’s look at a typical simplified synchronous bus: The bus “speed” is the
frequency of the clock. Although that is not necessarily the data rate, as we
will see.

This bus has four control lines: clock, !MREQ, !RD, !WAIT
 unknown number of address lines - doesn’t really matter for our purposes

here.
 similarly, unknown number of data lines

Example is a 40 mhz bus - that is, T1 is 25 ns (as is T2, T3, ….)

Here’s the deal: suppose I want to read a memory location. Then I assert
!MREQ and !RD simultaneously - that is, since they are both negative, I
set them both to zero (why -in old day made it easy to share).

But note that BEFORE I do that, I have to make sure the address is on the
address lines (in out example, TML, 6ns, earlier. Why: to give the address
decode logic in the memory subsystem a chance to stablize!

Then I wait. Usually only one full cycle, then the data is supposed to show up.
So this bus can transfer one set of data (however wide the data bus is)
every 2 cycles, or one set every 50 ns. In order to do that, it needs memory
that can go from address in to data out in 25 ns! What if memory isn’ tthat
fast?

1. Slow down bus.
2. Insert “Wait” states - if memory needs more time it can assert “wait” untill

data is available. In the example, wait is asserted for one cycle, meaning
entire request took 3 cycles, or 75 ns.

3. Assuming this is an 8 bit data bus, and memory has 2 wait states, what is
max transfer rate of this bus? 25*(2+2) = 100ns/8 bits = 10 MB/sec.

4. Above is a typical question I might ask.

20

Bus arbitration

Sometimes we have more than 1 bus master.

Bus arbitration decides who gets it.
Fixed order
Piorities

Top is example of fixed order. If any device requests bus, arbiter grants it. If
I/O device 1 wants it, it takes it and leaves its outgoing line low. Otherwise it
passes the bus grant line value out to next line.

Does this make sense? How might we implement it?

BusGrantOut = BusGrantIn * (!BusRequest_me) (what would that look like in
digital logic? Good question!)

21

P II cpu bus

• 33 ADDR
• 64 Data
• Bus pipeline

– Arbitration
– Request
– Error
– Snoop
– Response
– Data

Here is the P II pinout - 242 connectors (latest P IC has 478)

33 addr, but three extra set to 0! Addressing is to a 64 bit word! So
addressability is actually 64 GB!

Note separate sets of pins for each phase of a bus transfer.

We’ve talked about bus arbitration - allows for multiple masters on the cpu bus
(e.g., multiprocessors).
Request is obvious - once you have the bus, say what you want.
Error?
Snoop? What if the data you want is actually in another cpu’s cache, and has
been changed there?
Response - “ok, here it comes”
Data - at last…

So a PII with a 400 mhz cpu bus (there is no such thing) can do what latency
and data rate?

22

PicoJava

• Built-in ram/PROM bus
• Built-in PCI bus support
• 16 Built-in I/O lines

Embedded systems are HUGE. Far more embedded cpus than ones you see.

Many do very simple things for which speed isn’t an issue.

Pico java is a chip designed to run Java without need for a JVM (software
interpreter) in embedded apps.

23

A real bus - PCI

Overall arch of a motherboard.
Of course, these days it gets a bit worse, with AGP II for fast video.
Also, these days ISA may be gone completely, and modem, soundcard,
ethernet, printe,r all on PCI

24

PCI - more

Several varieties of PCI (voltage, width, clock) we will ignore this, assume
3.3V 66 mhz PCI bus

1. Bus is Synchronous
2. Bus is MULTIPLEXED! Data and address share same 64 physical lines,

sent one at a time
1. Complex bus protocol, sigh.

Centralized arbitration

Basic read and write cycles shown above:

For a read, address put on A/D lines, the lines are turned around, then
responder puts data on lines.

For a write, turnaround is unnecessary, so write can be done in 3 bus
cycles, whereas read takes 4.

So, how many bytes/sec can a 66mhz PCI bus transfer in read mode?
Write mode?

