Chapter 3 - Digital Logic Level

* Gates
» Basic Digital Logic
* Memory

— Storage Hierarchy
« CPU

- PII

— PicoJava
* Bus

- PCI
e Homework:

— Chapter 3#1, 4, 6, 12, 25, 35, 37, 40 (Due 4/22)

Chapter 3 - digital logic. We’ll look at gates, basic digital logic, and boolean
algebra. Then we’ll see how these are used to build memory, cpu, and busses -
the three core elements of a computer.

Homework: Here is the next

Gates and Boolean Algebra

NOT NAND NOR AND OR
A A A

Do T e O
B | B B B

Al X AlB[X AlB|X AlB|X AlB[x

o1 ojo|1 ao|l0|1 Q|00 ojoj]ao

1o o1 |1 0l1]o0 KR A ERE

101 1lofo 100 B RE

1110 1[1]o0 'BERE IERE

This is the lowest level we will talk about. You can make gates out of gears,
relays, vacuum tubes, tinker toys, transistors, I don’t care.

Lines carry information. In fact, they are boolean variables! They are like
variables in a program. Boxes are operations, like plus, minus, etc.

So, that first picture is just X=!A;

Five basic boolean functions are shown below. All other boolean functions can
be created by compositions of these, just like we can write complex algebraic
functions x= 3*y%+5

(powers are just repeated multiplications, at least in integerland, which can be
built from boolean-land. Computers only approximate reals (at least
numerically).

“Truth tables” are simply EXTENSIONAL representations of the functions.
EXTENSIONAL means listing out all possible combinations of input values,
and the corresponding output. This is reasonable because, unlike real or integer
domain functions, boolean functions take a finite set of input values: 2”n,
where n is the number of input parameters

Functions

M=ABC+ABC+ABC+ABC ABC ABC
A 1
|| A &&('B)&& C A _
|| A && B &&('C) | 4 }REC
|| A && B && C

iy

Iy

=|=|=]|=|o|o|c|o|>
=[=|e|e|=]|=e|e|m
“la|=|o|=|o|=|c|D
“falalolwo|lo|e|=

{ -\ _ABC
L7

AB means A && B

A + B means A or B

Why?

Because there is a close relation between or and plus, mathematically. Try it:

04+0=0,010=0
1+0=1,110=1

1+1 =2, 1II1 = 1 (at least both results are non-zero.
Similary:

0*0 =0, 0&&0=0

1*0=0. 1&&0 =0

1¥1=1, 1&&1 =1

This under the intrepretation that 0 = false, 1 = true.

What else is interesting in the digital logic diagram above:

Convention - if lines cross but there is no circle, they don’t actually touch, so

Completeness of NAND and NOR

Any boolean function can be computed in terms of nand or nor alone!

Equivalence and Minimization
A AB
B
AB+AC A :)M
B

o} AC C B+C

A | B| C|AB|AC|AB+AC A|B|C|A|B+C|AB+C)

0 0 0 0 0 1] 0 0 0 0 0 0

0ol 0 1 0| o0 0 0|0 1 0 1 0

0 1 0 0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1 1 0 1 0

1 0 0 0 0 0 1 0 0 1 0 0

1 0 1 0 1 1 1 0 1 1 1 1

1 1 0 1 0 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

These two circuits compute the same function!
AB+AC = A(B+C)

Obviously we would like minimal realizations of functions we need, right?

We need some laws for how we can transform functions, so we can search for
simpler forms

Identities for formula transform

Name AND form OR form
Identity law 1A=A 0+A=A
Null law 0A=0 1+A=1
Idempotent law AA=A A+A=A
Inverse law AA=0 A+A=1
Commutative law | AB = BA A+B=B+A
Associative law (AB)C = A(BC) (A+B)+C=A+(B+C)
Distributive law A+BC=(A+B)(A+C) |AB+C)=AB+AC
Absorption law AA+B)=A A+AB=A
De Morgan's law |AB=A + B A+B=AB

Here are some laws, stated in two different forms, depending on whether we
are working with and gates or with or gates.

Note that, just like in regular algebra, O is the additive identity and 1 is the
multiplicative identity!

Math is cool!

You should know most of these, except maybe the null law, the Absorption
law, and DeMorgan’s law. (Actually, you should know all these from 231 -
how many don’t?)

DeMorgan’s law tells you how you can change from an AND gate to an OR
gate, or vice-versa.

Also interesting - notice in reasoning about circuits, we switched from
graphical representation to textual. Interesting.

A | B |x0R A
B
olo]| o
o1 1
1|0 1 A
111] o B
(a) (b)

>
>

Transforming formulas

>
r

Name AND form OR form
B B Identity law 1A=A 0+A=A
Null law 0A=0 1+A=1
Idempotent law AA=A A+A=A
Inverse law AA=0 A+A=1
Commutative law | AB =BA A+B=B+A
Associative law (AB)C = A(BC) (A+B)+C=A+(B+C)

Distributive law

A+BC=(A+B)A+C)

A(B +C) = AB + AC

Absorption law

AA+B)=A

A+AB=A

De Morgan's law

AB=A+B

A+B=AB

Let’s try proving some equivalences. Let’s look at the XOR implementations,

and transform one to another.

B is ('AB)+(A!B)
CIs (I(!('AB))+(!(!(A!B))

Well, that’s easy, since (!(!X)) == x

How about d? (!(!(AB))(!(A!B)))?
That is just deMorgan’s law! (show it)

.
0-60 in 4.2 sec.
Loglc‘al unit Cany
DDED_ ! a8
INVA—] —
Dy | -
[O— b OIS |
B B
e ! ene T > T -
sum
Dy f
o , e L]
o =) Ee=iD)
F
o . o 1 >0_—|) Full |
AlA|s|B|c|C I: F, DO—D
—
)
c Decher
Carry out
g A By Ag Bg As Bg Ay By A; By Az B A; By Ay By
Fq k 1| [1 1 1 1 1 1 1 1 1 1 11
o it | t-bit | F t-bit | T tebit | T 1ebit [1ebit | T bt | T 1ebit ING
ALU ALU ALU ALY ALY ALY ALY ALU
| | ! I I 1 I |
O O Qs Oy Oy 0; O, Op
Carry Carry
in out

So, we can get from individual gates to a full ALU in just a few steps.

Upper left” simple muliplexer. Last gate is an or. How does this work?

Upper right: full alu: does

()ALU instruction decode (lower right, converts two bit number into four
separate control lines, only one of which is on at a time - step throught this!

(2) Logic - A and B, A or B, ~B
(3) ALU - adds 2 1Bit numbers, with carry in and out

Do we need to step through boolean addition? Probably - add two three-bit
numbers, showing carry out of each stage to next state

Bottom shows how 1 bit slices can be combined to create an 8 bit ALU. What
is “INC” in at right? Usually 0, can be a “1” if our goal is just to increment by
one

Huh? Well, that is what “ENA and ENB are for, set ENB to false, and B will
look like all zero. So we can use the same hardware to increment A by 1,
without having a separate register to hold the “one”.

Hardware people do that all the time, sigh.

* SR Latch
5—* L a | B |noR
o o | o |1
o |10
i [o | o
! 1 1 0
A e

So far we have looked at combinatorial logic - functions!. Functions are
transformers, but they don’t remember anything!

So how can we build a register?

The SR latch is a simple one-bit memory. How does it work? Let’s try to do a
truth table for it:

I[fSisTand Ris0... (S=1 -> !1Q =0 regardless of Q. Therefore inputs to lower
gate are both zero, therefore Q is ... 1!

Similarly,if SisOandRis 1... IQ=1and Q=0

If Sis 0 and R is O... Then there are two stable states, depending on whether S
was 1 or R was 1 last.

So with S and R both 0, outputs stay where they are!

How about if S and R are both 1? That forces both Q and !Q to zero. Later,
when both S and R go to zero, both nor gates want to output 1. But that will
cause the other’s output to go to zero. This is an unstable state, which
eventually (ns) will be resolved by the latch going into one (unpredictable
which) of its two stable states.

Clocked latches
* Clocked SR latch
) a
Clock JL
Q
R
* Clocked D latch
’ Q
n —
—% Q

Cool. But usually we need to control WHEN a register stores something. We
can use a “clock” to control this.

The Clocked SR latch above will only see O on its S and R input lines when
the clock is 0, so it wil stay in its current state. When the clock is 1, it will see
the actual values of S and R (remember - 1 is the identity operator for AND!)

Still a problem with that nasty undefined state: what if both S and R are 1 at
the same time?

We can fix that by deriving R from S - it is just !S, right? Also the advantage
that now we only need one line to carry the data bit around, instead of two.
Cool.

10

Clocking

One more step to the most common storage: Because of various kinds of noise,
including timing skew, it is easier to design such that we guarantee the signals
will be present at a certain place at a particular time in the cycle, rather than
for an extended duration.

So, a FLIP-FLOP stores data on an EDGE rather than during a duration.
EDGE’s can be generated locally, as shown above. We can then use that as the
input to our D latch, generating a D flip-flop

(this is not completely standard notation. I am used to hearing “edge-
triggered” vs “level-triggered” to be completely unambiguous).

11

D Flip-Flop

RIDC >_

— CK —JCcK —p CK — CK

(a) (b) (e) (d)

Above is the digital logic diagram for a D flip-flop. It uses our edge generator
to extract an up edge from the clock

Below are some symbols typically used to represent various D latches and flip
flops. What is the difference? Note the > and 0. What do these mean?

» “>” Means edge triggered.

» “0” has its usual meaning - inversion. So a “0” on the clock input means
this one stores when the clock value is 0, or, for edge triggered, when the clock
is going from 1 to 0.

12

Data in

4x3(3?) ?T

la

Write /D Q D Q 0 Q
gate Ward 0
l—’CK l— CK |— CK J
o, D

Word 0 t_,] E._J

selact =
line

Word 1

jutsen I
Ward 1
A — selact
line

I
wpe— i, 7
Ward 2
select

line

CS -RD—

cs

AD

_—])
GE Output enable = CS - AD - OE

Ok, what might a memory look like, then? For example, a register set inside a
cpu?

Shown above is a 4 x 3 bit register set. Why three bit? Because that is how
many fit on the page in the book!

Notice inconsistency in numbering input and output lines!

We see each bit is stored in a d flip-flop.

We see the three data in lines coming in at the top.

We see three output lines going out at the bottom.

What else? We see three control lines:

CS - chip select
RD - read
OE - output enable

So, if chip select is true, this block is active (that enables us to combine
multiple chips to make a 8x3 or 12x3 or 16x3 or ... using external logic to

13

Simple Bus

Simple? Surely you jest! No really.

We’ll look at buses in more detail shortly, but just to close off the discussion
of memory, lets see how some of those features at the memory level translate
into features at the bus level.

First of all, notice the overall bus organization: control, address, and data.

Second, notice the bus data wires are directionless! The memories can both
read and write to the same wires.

But, notice this design can’t transfer from one memory to the other directly,
because there is no way to address both at once.

Notice the use of an inverter on the CS of the second ram to use the thurd
address line as a select for which chip is selected.

14

Dynamic RAM

Implant ang\e\"

= E B -‘_,Metall on top of diffusion Y

WLO .
= CHD (diffusion)
Basic cell—-ﬂ_—li:_l_! m | Folysilicon
1
10Ax7A B S —Metal)
WL2 v
et Charge fiow
WL3
Source
EEEOE

ench sidewall

mamic RAM 1-Transistor Cell: Lay:

Dynamic ram uses a different storage mechanism that relies on storing charge
in a capacitor.

ROM uses yet a different mechanism for storage.

15

CPU chip 1

Addressing ~e—+— — Bus arbitration
|——————
Data -+ Typical —~—— Coprocessor

Micro-
. Sa—
Pr r p—
Bus control ~— 0Cessor ——— Status

Interrupts —o | < Miscellaneous
=
Symbol for
d +5v electrical ground
Symbol » 1 g
for clock
signal Power is Svolts

Surprise: a cpu chip typically has a set of wires (address, data, control) that
look just like what we just saw: this is the main CPU bus. There are a few
others as well.

Clock

Power

Status - running, halted, etc.

Coprocessor - ignore.

Bus arbitration - we’ll talk about that next.

Buses Everywhere!

CPU chip

Buses
AN

Registers Memaory bus

Bus
== ol [(e====m=m=mh Memory

F:
T I/O bus

Disk Modem Printar

~ On-chip bus

We looked at a bus to connect to internal cpu registers, at left.

We also saw the cpu bus, in terms of pins on the cpu chip itself - that is the bus
connecting the cpu to the Bus controller.

Above is typical modern layout. The bus “chipset” is the dominant component
you hear techies talking about when they say “oh, that motherboard has the
Intel 8xyz!q###1 chipset!”

So what’s the big deal? Everyone knows about cpu clock, memory size, etc.
Don’t hear nuch about busses. Let’s look at Buses

17

Bus overview

20-Bit address

20-Bit address :>
:> —

20-Bit address Control
Control 4-Bit address
8088 80286 80386
Control 4-Bit address Control

8-Bit address

= L=

ontrol

L A A4V \.ULJ ALLA A Ull}

— 36 addr lines
— 64 data lines
— MANY control lines

At the most abstract level, critical bus parameter is bandwidth: width * cycle-
time

We can see at left how bus width (in this case address width) tends to expand
over time. Twenty-bits is only enough to address 1 MB of memory
(assuming byte-level addressing). 24 bit can address 16MB.

32 bits can address? 4 GB. We’ll run out of that pretty soon.

Latest P IV has 36 addr lines - 64BG directly addressable ram.

18

Synchronous bus overview

T LH] Ts

—
ADDRESS | 3{ Memory address to be read - | X
0S5 128
pATA | | * ;’“‘a X
— T T
WVREQ — * “*

Trn

S VA

TI‘iL TDH
WAIT _\
N R
Tima — =
Symbol Parameter Min Max Unit
Tan Address output delay 11 nsec
Tan Address stable prior to MREQ [nsec
Tu MRAEQ delay from falling edge of & in T 8 nsec
TaL RD delay from falling edge of & in T, a nsec
Tos Data setup time prior to falling edge of & 5 nsec
TuH MRAEQ delay from falling edge of 4 in Ty 8 nsec
Tas RAD delay from falling edge of & in T; 8 nsec
Tou Data hold time from negation of RD 0 nsec

Ok, so here is a “synchronous” bus.

In a synchronous bus, everything happens to the tune of a master clock (think
the old roman slave galleys, with a master drum beater setting the rowing
pace. - everyone pulls on the oars when the drum beats.)

Let’s look at a typical simplified synchronous bus: The bus “speed” is the
frequency of the clock. Although that is not necessarily the data rate, as we
will see.

This bus has four control lines: clock, !MREQ, !RD, !WAIT

unknown number of address lines - doesn’t really matter for our purposes
here.

similarly, unknown number of data lines

Example is a 40 mhz bus - that is, T1 is 25 ns (as is T2, T3,)

Here’s the deal: suppose I want to read a memory location. Then I assert
'MREQ and !RD simultaneously - that is, since they are both negative, I
set them both to zero (why -in old day made it easy to share).

But note that BEFORE I do that. I have to make sure the address is on the 19

Bus arbitration

Bus request

Bus grant

- N 2 I

— - \\.d - e

Bus grant —
may or may not - 1 2 3 4 5
be propagated along
the chain

11O devices

Bus request level 1
Bus request level 2
Arbiter | Bus grant level 2
Bus grant level 1

Y | Li | Y [L | L

\ L] \
) 3

“ \.
et Wty N |

——— - LISy R

Sometimes we have more than 1 bus master.

Bus arbitration decides who gets it.
Fixed order

Piorities

Top is example of fixed order. If any device requests bus, arbiter grants it. If
I/0 device 1 wants it, it takes it and leaves its outgoing line low. Otherwise it
passes the bus grant line value out to next line.

Does this make sense? How might we implement it?

BusGrantOut = BusGrantln * (!BusRequest_me) (what would that look like in
digital logic? Good question!)

20

P II cpu bus
s { BPRI# —— }~—— RESET#
LOCK# —=—5—{
. 33 ADDR arbitration Misch 3 L
33 | Interrupts
* 64 Data roay
Request 5
o o REQ# ——+— —— VID
* Bus pipeline Parity#
. . 4
— Arbitration Error { Misch ~—5r |=—+> Compatibity
— Penti 1] 1
RequeSt Snoop { Misc# 4—?‘-— eEgJLT |=— Diagnostics
— Error s 3
RS# ——— |=——=Initialization
- SnOOp Response 1THDY# —_—
. 2
_ Response Parity# |=—= Power management
D# «-—E\;‘—r 7
- Data Data {DHDY# | |+—* Miscellaneous
DBSY# =——=
Parity# —e—=
® Power

Here is the P II pinout - 242 connectors (latest P IC has 478)

33 addr, but three extra set to 0! Addressing is to a 64 bit word! So
addressability is actually 64 GB!

Note separate sets of pins for each phase of a bus transfer.

We’ve talked about bus arbitration - allows for multiple masters on the cpu bus
(e.g., multiprocessors).

Request is obvious - once you have the bus, say what you want.
Error?

Snoop? What if the data you want is actually in another cpu’s cache, and has
been changed there?

Response - “ok, here it comes”
Data - at last...

So a PII with a 400 mhz cpu bus (there is no such thing) can do what latency
and data rate?

21

PicoJava

* Built-in ram/PROM bus
* Built-in PCI bus support
* 16 Built-in I/O lines

Flash
MicroJava 701 PROM

16 CPU
Programmable ———
IO lines
Level 1 |I| / >
caches o] \ T

PCI bus Memory bus

I >

Main
memaory

Embedded systems are HUGE. Far more embedded cpus than ones you see.
Many do very simple things for which speed isn’t an issue.

Pico java is a chip designed to run Java without need for a JVM (software
interpreter) in embedded apps.

A real bus - PCI

Cache bus Local bus Memory bus

Level 2 J PCI \' Mai

civgwe <:> cPU <£> bridge < \ me:'nlgry

ﬁ? /PCI bus A
—

U T 0 I <

Graphics \
SCsl use ISA IDE adaptor Available
bridge disk PCl slot

:3: 1
x
=
y ' 00
” oo -
I I I :

Modem Sc’“gd Printer Available
can ISA slot

=

Overall arch of a motherboard.
Of course, these days it gets a bit worse, with AGP II for fast video.

Also, these days ISA may be gone completely, and modem, soundcard,
ethernet, printe,r all on PCI

PCI - more

Read Idle White
Ty —f—Ty—=—T Ts Ts Te T7—
Ca [VY I VY O WY B Y |
Turnaround
AD Address M Data X X Address X Data X
| | | | | |
C/BE# :>¢|ead cmd)(Enable X XNrite cmd)(Enable X
FRAME# __ / \ [T
IRDY# \ / \
DEVSEL# \ [\ _j__
TROY# __I __!__

Several varieties of PCI (voltage, width, clock) we will ignore this, assume
3.3V 66 mhz PCI bus

1. Bus is Synchronous

2. Busis MULTIPLEXED! Data and address share same 64 physical lines,
sent one at a time

1. Complex bus protocol, sigh.

Centralized arbitration

Basic read and write cycles shown above:

For a read, address put on A/D lines, the lines are turned around, then
responder puts data on lines.

For a write, turnaround is unnecessary, so write can be done in 3 bus
cycles, whereas read takes 4.

So, how many bytes/sec can a 66mhz PCI bus transfer in read mode?
Write mode?

24

