
1

Chapter 7 - Assembly Language

• Macros
• Assembly
• Linking and Loading

• Final Study Guide: #1, 5, 9, 13, 18, 23

2

Assembly Language

• What is an assembly language?
– Symbols

• Opcodes
• Operands
• Statement labels

– Meta-level language facilities
• Macros
• Conditional assembly

– Modularization facilities

The assembly language level is the last level we will look at, and the highest
level you will probably never touch!
A radical shift: the assembly language level is the first level implemented via
translation. We’ve seen direct execution and interpretation before, but never
translation. Most higher levels are implemented via translation.
Essentially, this chapter is a very brief introduction to many issues in
compilation of higher-level languages.

Assembly language: each statement corresponds to one instruction at the OS
level.
Plus: access to ALL machine instructions and capabilities
Minus: NOT PORTABLE.

What is an assembly language?
 1. Symbolic Op codes

2. Symbolic operands
3. Labels
4. Macros
5. Modularization facilities

Symbols make it easier to read and write code. Also make it easier to change,
since you don’t have to recaclulate a bunch of numbers every time to add or
delete a line of code (show this - goto labels would move…)

Meta-level facilities make writing code easier, and make it automatically
tailorable at translation time (e.g., for different hardware environments).

Modularization means you don’t have to translate “the whole thing” - e.g., OS,
device drivers, all possible apps, etc, at once.

As with other levels, we will spend a little bit of time seeing what is provided
at this level, and a little bit seeing how it is provided.

3

PsuedoInstructions

• BASE EQU 100
• Count DW 0
• Fibonacci Proc …
• Swap Macro
• …
• PUBLIC/EXTERN

– PUBLIC xyz
– xyz DW 3

– Extern xyz
– addc xyz, 3

Assembly introduces a few additional opcodes beyond the OS level. Some of
these make writing assembly easier, others affect the assembly process.
Many of these have correlaries in higher level languages (EQU, DB, PROC,
PUBLIC)
Many others don’t (MACRO, IF,…)

PUBLIC allows you to declare that a symbol defined in one file should be
made avaialble to other files
(why not just make ALL symbols available? Namespace issues… explain this)

EXTERN allows you to say that a symbol you are referencing in one file is
defined somewhere else.
(then how can you run the program? Can’t, untill you gather all the files
together.)

4

Conditional Assembly
– WDSZ EQU 16
– IF WDSZ GT 16
– WSIZE: DW 32
– ELSE
– WSIZE: DW 16
– ENDIF

– WDSZ EQU 16
– IF WDSZ GT 16
– Const1: DD 0
– ELSE
– Const1: DW 0
– ENDIF

Conditional assembly statements are INTERPRETED AT ASSEMBLY
TIME!
That is, you can write code that runs inside the assembler.
This can be VERY confusing, but is very powerful, and is heavily used by
experienced assembly (and C) pgmrs. Note that since this code runs at
ASSEMBLY time, it can only refer to variables whose values are known at
assembly time (typically, those defined by EQU or statement labels or the
like).
So, in the above two examples, space for only ONE copy of the parameter
WSIZE or Const1 will be allocated.

5

Macros

C++ calls them “inline” methods.
Macros do a code substitution at assembly time!
A macro can include formal parameters and conditional assembly statements,
in which case it is best thought of as a program for generating code!

Most modern higher level languages don’t have anything like this - Until …
the web level!

This style is very common in web programming (e.g., javascript or VBS
embedded in HTML is pretty much the same idea…)

6

The Assembly Process
BUFSZ EQU 100
L1 MOV EAX, I 5
L2 MOV EBX, K 6

MOV ECX, BUFSZ 6
IMUL EAX, EAX 2
JMP L2 5

I DW 1001 4
J DD 1 8
K DD 3 8

100BUFSZ

OtherValueSymbol

Why do we care how an assembler works?
For the same reason we care how digital logic implements the
microarchitecture level
 - because it is good for you.
(because many of the same problems occur in programs you will have to write
And analogous solutions will be useful).

Symbol table is usually maintained as a hash table.

Consider the small piece of code above, and the corresponding IJVM binary.
What do we need to do to assemble it?
Well, we could just try translating one instruction at a time.
Note we have to remember the constant assigned to BufSize.
But, how do we compile the mov? We don’t know where I is yet…

So, we need TWO passes. Pass 1 figures out where everything is and
remembers
In the Symbol Table
Pass 2 outputs code.

Let’s look at the opcode table - bunch of stuff we need to know to figure out
what opcode to generate, and how long the instruction will be (this for pentium
- somewhat simpler for sparc…)

Symbol table is usually maintained as a hash table in pass one. You all
remember hash tables, right?

7

Assembly
Pass 1

• ≈

Pass one reads the code,
 process label, if present, t
 look up opcode, checks type
 process line according to opcode type (real or psuedo)

 then outputs information it has gathered

Note it sorts literal table at end - why?

8

Assembly Pass 2

BUFSZ EQU 100
L1 MOV EAX, I 5
L2 MOV EBX, K 6

MOV ECX, BUFSZ 6
IMUL EAX, EAX 2
JMP L2 5

I DW 1001 4
J DD 1 8
K DD 3 8

D32J

D40K

W24I

INST5L2

INST0L1

EQU100BUFSZ
OtherValueSymbol

Now we have enough information to actually output code.
Let’s walk through the process to see what we need to do to generate code
Pass 2 can skip EQU, it has already processed it.
MOV - according to table, when first operand is EAX, then a special opcode is
available that saves one byte

We know where I is when processing L1, so can build instruction and write
out binary
Similarly, we know where L2 is (location 5) so can build code for JMP
instruction.

So are we done? Not quite. What if we had tried to call an OS procedure? Or
reference a label in ANOTHER file.
How would we know where it was?
We wouldn’t.

Notice we started object code at 0 - assembler does that for each file!

We’re not done yet!

But is L1 really at location 0 in memory? We’ll talk about that later.

Symbol tables are usually maintained as hash tables during pass 1

9

Obj module format

1. Identification - module a
2. Entry point table: labels that this module has declared PUBLIC, and the
addresses (0 offset)
3. External ref table: labels that this module has declared EXTERN, and
locations in the instructions and constants that need this address
 Remember, an EXTERN is a label you reference, but don’t define, like an
operating system procedure entry label or the name of a procedure in another
module.
4. Machine code: binary produced by the assembler.
5. Relocation dictionary - a list of all the memory references in the machine
code and constants. We’ll see in a minute why we need that.
6. End - misc stuff.

10

Linking

• Construct table of obj modules and lengths
• Assign start addr to each module
• Add relocation constant to each mem ref
• Set addr in procedure calls

Linking is the process of combing assembler output from several modules,
deciding where each should go, resolving references to labels defined
elsewhere, etc.

Suppose we have four modules: a, b, c ,d all of which need to be combined to
build a program ABCD
Step one: decide where each module will go in binary image, and put it there.
Step two: change all the addresses in the image so they are correct (this is
called: “relocation”).
Note we don’t want to change the BUFSZ constant, so we need to know the
difference between an address and an immediate.
So, may not put them both in the same table.

Steps shown in slide.

11

Dynamic Linking (DLL)

A DLL is a dynamic link library. That is, a collection of modules (library) that
is linked when the program is started rather than at application build time.

Major reasons for this:
 1. to allow multiple applications to share a single copy of the
code for the library,

2. to reduce the size of the distributed application (if you
already have the library)

3. To allow updates to the library without re-distributing the
app.
Both Windows and unix support dynamic linking. In Unix it is called shared
libraries.

