Chapter 7 - Assembly Language

Macros

Assembly

Linking and Loading

Final Study Guide: #1, 5,9, 13, 18, 23

Assembly Language

e What is an assembly language?
— Symbols

Label Opcode Operands Comments
FORMULA: MOV EAX,| ; register EAX = |
* Opcodes ADD EAX.J : register EAX = | + J
MOV N,EAX N=1
* Operands © : PN=t

o Statement labels

— Meta-level language facilities
* Macros
* Conditional assembly

— Modularization facilities

The assembly language level is the last level we will look at, and the highest
level you will probably never touch!

A radical shift: the assembly language level is the first level implemented via
translation. We’ve seen direct execution and interpretation before, but never
translation. Most higher levels are implemented via translation.

Essentially, this chapter is a very brief introduction to many issues in
compilation of higher-level languages.

Assembly language: each statement corresponds to one instruction at the OS
level.

Plus: access to ALL machine instructions and capabilities
Minus: NOT PORTABLE.

What is an assembly language?
1. Symbolic Op codes
2. Symbolic operands
3. Labels
4. Macros

5. Modularization facilities

Symbols make it easier to read and write code. Also make it easier to change,

nnnnnnnnnn Ann? lhaxria ta vananliilata a lhasnalh AF v lhAwa Axrasesr f1vmn A adA A

Psuedolnstructions

 BASE EQU 100
e Count. DWO
. . Pseudoinsti Meaning
L FlbOIlaCCl PI‘OC cee SEGMENT Start a new segment (text, data, etc.) with certain attributes
ENDS End the current segment
° Swap Macro ALIGN Control the alignment of the next instruction or data
o .. EQU Define a new symbol equal to a given expression
DB Allocate storage for one or more (initialized) bytes
L PUB LIC/EXTERN -DD Allocate storage for one or more (initialized) 16-bit halfwords
_ PUBLIC XyZ DW Allocate storage for one or more (initialized) 32-bit words
DQ Allocate storage for one or more (initialized) 64-bit double words
- XyZ DW 3 PROC Start a procedure
ENDP End a procedure
MACRO Start a macro definition
ENDM End a macro definition
— Extern XYz PUBLIC Export a name defined in this module
_ addc XyZ, 3 EXTERN Import a na.me from another module
INCLUDE Fetch and include another file
IF Start conditional assembly based on a given expression
ELSE Start conditional assembly if the IF condition above was false
ENDIF End conditional assembly
COMMENT Define a new start-of-comment character
PAGE Generate a page break in the listing
END Terminate the assembly program

Assembly introduces a few additional opcodes beyond the OS level. Some of
these make writing assembly easier, others affect the assembly process.

Many of these have correlaries in higher level languages (EQU, DB, PROC,
PUBLIC)

Many others don’t (MACRO, IF,...)

PUBLIC allows you to declare that a symbol defined in one file should be
made avaialble to other files

(why not just make ALL symbols available? Namespace issues... explain this)

EXTERN allows you to say that a symbol you are referencing in one file is
defined somewhere else.

(then how can you run the program? Can’t, untill you gather all the files
together.)

Conditional Assembly

- WDSZ EQU 16
— IF WDSZ GT 16
- WSIZE: DW 32
— ELSE

— WSIZE: DW 16
— ENDIF

— WDSZ EQU 16
— IF WDSZ GT 16
— Constl: DD 0
— ELSE

— Constl: DW 0
— ENDIF

Conditional assembly statements are INTERPRETED AT ASSEMBLY
TIME!

That is, you can write code that runs inside the assembler.

This can be VERY confusing, but is very powerful, and is heavily used by
experienced assembly (and C) pgmrs. Note that since this code runs at
ASSEMBLY time, it can only refer to variables whose values are known at
assembly time (typically, those defined by EQU or statement labels or the
like).

So, in the above two examples, space for only ONE copy of the parameter
WSIZE or Constl will be allocated.

MOV EAX,P
MOV EBX,Q
MOV QEAX
MOV P,EBX
MOV EAX,P
MOV EBX,Q
MOV QEAX
MOV P,EBX
SWAP MACRO
MOV EAX,P
MOV EBX,Q
MOV Q,EAX
MOV P,EBX
ENDM
SWAP
SWAP

Macros

MOV EAX,P CHANGE MACRO P1, P2
MOV EBX,Q MOV EAX,P1
MOV Q,EAX MOV EBX,P2
MOV P.EBX MOV P2,EAX
MOV P1,EBX
MOV EAX,R ENDM
MOV EBX.S
MOV S,EAX CHANGE P, Q
MOV R,EBX
CHANGER, S
Item Macro call Procedure call

When is the call made?

During assembly

During execution

Is the body inserted into the object
program every place the call is
made?

Yes

No

Is a procedure call instruction No Yes
inserted into the object program

and later executed?

Must a return instruction be used No Yes

after the call is done?

How many copies of the body ap-
pear in the object program?

One per macro call

C++ calls them “inline” methods.

Macros do a code substitution at assembly time!

A macro can include formal parameters and conditional assembly statements,
in which case it is best thought of as a program for generating code!

Most modern higher level languages don’t have anything like this - Until ...

the web level!

This style is very common in web programming (e.g., javascript or VBS
embedded in HTML is pretty much the same idea...)

The Assembly Process
BUFSZ EQU 100
L1 MOV EAX,I 5
L2 MOV EBX,K 6
MOV ECX, BUFSZ 6
IMUL EAX, EAX 2
JMP L2 5
I DW 1001 4
J DD 1 8
K DD 3 8 Symbol | Value | Other
BUFSZ | 100
First Second Hexadecimal Instruc- | Instruc-
Opcode | operand | operand opcode tion tion
| | length | class
_ AAA | — - 37 | 1 | 6
ADD EAX immed32 05 5 4
ADD reg req 01 2 19
AND EAX immed32 25 5 4
AND reg reg 21 2 19

Why do we care how an assembler works?

For the same reason we care how digital logic implements the
microarchitecture level

- because it is good for you.
(because many of the same problems occur in programs you will have to write

And analogous solutions will be useful).

Symbol table is usually maintained as a hash table.

Consider the small piece of code above, and the corresponding IJVM binary.
What do we need to do to assemble it?

Well, we could just try translating one instruction at a time.
Note we have to remember the constant assigned to BufSize.

But, how do we compile the mov? We don’t know where 1 is yet...

So, we need TWO passes. Pass 1 figures out where everything is and
remembers

In the Symbol Table

Pass 2 outputs code.

public static void pass_one() { Assembly
// This procedure is an outline of pass one of a simple assembler.
boolean more_input = true; /! flag that stops pass one
String line, symbol, literal, opcode; / fields of the instruction PaSS 1
int location_counter, length, value, type; // misc. variables
final int END_STATEMENT = -2; // signals end of input

location_counter = 0; /l assemble first instruction at 0
initialize _tables(); /! general initialization
while (more_input) { /I more_input set to false by END

line = read_next_line(); // get aline of input

length =0; /! # bytes in the instruction

type = 0; /! which type (format) is the instruction

if (line_is_not_comment(line)} {

symbol = check_for_symbol(line); //is this line labeled?

if (symbol = null} if it is, record symbol and value
enter_new_symbol{symbol, location_counter);

literal = check_for_literal(line); // does line contain a literal?

if {literal != null) /1if it does, enter it in table
enter_new_literal(literal);

/I Now determine the opcode type. -1 means illegal opcode.

opcode = extract_opcode(line); // locate opcode mnemonic

type = search_opcode_table(opcode); //find format, e.g. OP REG1,REG2

if (type < 0) /1 if not an opcode, is it a pseudoinstruction?
type = search_pseudo_table{opcode);
switch(type) { // determine the length of this instruction

case 1: length = get_length_of_type1(line); break;
case 2: length = get_length_of_type2(line); break;
/!l other cases here

}

write_temp_file(type, opcode, length, line);// useful info for pass two

location_counter = location_counter + length;// update loc_ctr

if (type == END_STATEMENT) { // are we done with input?
more_input = false; 11 if so, perform housekeeping tasks
rewind_temp_for_pass_two(); / like rewinding the temp file
sort_literal _table(); /I and sorting the literal table
remove_redundant_literals();// and removing duplicates from it

Pass one reads the code,
process label, if present, t
look up opcode, checks type
process line according to opcode type (real or psuedo)

then outputs information it has gathered

Note it sorts literal table at end - why?

public static void pass_two() {

// This procedure is an outline of pass two of a simple assembler.
A S S embly Pas S 2 boolean more_input = true; // flag that stops pass one

String line, opcode; 1/ fields of the instruction

int location_counter, length, type; // misc. variables

final int END_STATEMENT = -2; //signals end of input

final int MAX_CODE = 16;// max bytes of code per instruction

byte code[] = new byte[MAX_CODE]; // holds generated code per

location_counter = 0; /I assemble first instruction at 0
while (more_input) { // more_input set to false by END
type = read_type(); 1/ get type field of next line
opcode = read_opcode(); // get opcode field of next line
length = read_length(); // get length field of next line
line = read_line(); 1/ get the actual line of input
if (type != 0] /'type 0 is for comment lines
BUFSZ EQU 100 (tsyvatch(«yLé)(" gepnerz;«e the output code
case 1: eval_type1(opcode, length, line, code); break;
Ll MOV EAX’ I S case 2: e;a\,ﬁ;;ezzogcode, \ength. I:ne. code;: break;
Il other cases here
L2 MOV EBX,K 6 ,
MOV ECX, BUFSZ 6 write_output(code); I/ write the binary code
write_listing(code, line); // print one line on the listin,
IMUL EAX,EAX 2 locaton. oot — location-counter » longth updge foc_ ol
if (type == END_STATEMENT) {// are we done with input?
more_input = false; // if so, perform housekeeping tasks
JMP L2 S finish_up(); 1/ odds and ends
I DW 1001 4 }
¥
J DD 1 8
K DD 3 8 Symbol | Value | Other
BUFSZ | 100 EQU
L1 0 INST
First Second Hexadecimal Instruc- Instruc-
Opcode | operand | operand opcode tion tion 1.2 5 INST
i | | length | class
AAA — — a7 1 6 1 24 W
ADD EAX immed32 05 5 4
ADD | reg reg 01 2 19 J 32 D
AND EAX immed32 25 5 4
K 40 D
AND reg reg 21 2 19

Now we have enough information to actually output code.
Let’s walk through the process to see what we need to do to generate code
Pass 2 can skip EQU, it has already processed it.

MOV - according to table, when first operand 1s EAX, then a special opcode is
available that saves one byte

We know where I is when processing L1, so can build instruction and write
out binary

Similarly, we know where L2 is (location 5) so can build code for JMP
instruction.

So are we done? Not quite. What if we had tried to call an OS procedure? Or
reference a label in ANOTHER file.

How would we know where it was?
We wouldn’t.
Notice we started object code at O - assembler does that for each file!

We’re not done yet!

But is L1 really at location 0 in memory? We’ll talk about that later.

Obj module format

End of module

Relocation
dictionary

Machine instructions
and constants

External reference table

Entry point table

Identification

1. Identification - module a

2. Entry point table: labels that this module has declared PUBLIC, and the
addresses (0 offset)

3. External ref table: labels that this module has declared EXTERN, and
locations in the instructions and constants that need this address

Remember, an EXTERN is a label you reference, but don’t define, like an
operating system procedure entry label or the name of a procedure in another
module.

4. Machine code: binary produced by the assembler.

5. Relocation dictionary - a list of all the memory references in the machine
code and constants. We’ll see in a minute why we need that.

6. End - misc stuff.

. . Source Object
I 1 I 1 procedure 1 module 1
g) Executable
Source Object
proceduleQH Translator }—‘ module 2 }—-| Linker l—— p’:‘u"g?zw
procedure 3| module 3
.
* Construct table of obj modules and lengths
.
¢ Assign start addr to each module
. 1800 WOVESTOX Obioct 1a00 [__WOVEBTOR | Obinet
* Add relocation constant to each mem ref -
.
LT R
¢ Set addr in procedure calls oo [T o [T
150 CALLD 150 CALL 1600
Object Opject:
o) e
-
S0 T 100 |_BRANCHTO 200 | 1100 |_BRANGHTO 1300]
00 400 1000 CALLC 1000 CALL 1160
L] ——| 00 WOVE GTOX o w0
100/ 100 e e
R I — |
200 MOVERTOX 200 MOVESTOX - MOVEPTOX T”d"‘" 00 MOVE P TQ X modula
o smmcHTO R0] L e ey 10p [—EnANCRTO 0] 1op [—RANCHTON0]
jy B .

Linking is the process of combing assembler output from several modules,
deciding where each should go, resolving references to labels defined
elsewhere, etc.

Suppose we have four modules: a, b, ¢ ,d all of which need to be combined to
build a program ABCD

Step one: decide where each module will go in binary image, and put it there.

Step two: change all the addresses in the image so they are correct (this is
called: “relocation”).

Note we don’t want to change the BUFSZ constant, so we need to know the
difference between an address and an immediate.

So, may not put them both in the same table.

Steps shown in slide.

10

User process 1

DLL

Dynamic Linking (DLL)

User process 2

\ Header

A

%

B

Cc

A DLL is a dynamic link library. That is, a collection of modules (library) that
is linked when the program is started rather than at application build time.

Major reasons for this:

1. to allow multiple applications to share a single copy of the

code for the library,

2. to reduce the size of the distributed application (if you

already have the library)

3. To allow updates to the library without re-distributing the

app.

Both Windows and unix support dynamic linking. In Unix it is called shared

libraries.

11

