

	Our Group Software
	Issue: 1.0

Date: 6/13/02

Design Documentation

Power Play Digraph Editor

	
	

	
	

Overview

Power Play Digraph Editor Structure and Purpose

Purpose

To create a digraph editing tool modeled and improved upon the current Loop Group Power Play Software.
General Design

There are five main subsystems to this project.

1. Main Window and Program Flow Subsystem

This is the application’s frame. This handles menus and toolbar actions. It also controls the underlying data paths between the four other subsystems.

2. File-Handling Subsystem

This subsystem loads and saves digraph data to disk.

3. Matrix Input / Output Subsystem

This subsystem gathers matrix input from the user that can be converted into a digraph by the Digraph Data Subsystem

4. Digraph Data Subsystem

This subsystem contains all the given information of the structure of a digraph.

5. Digraph Rendering and Input Subsystem

This subsystem draws the digraph from the Digraph Data Subsystem.

[image: image1.png]Main Window and
Prograrm Flow
Cortrol

subsystem e

Meatrix Input/
Output subsystern

File Handing
subsystem

Input subsystern

DigraphFile
Handler
RenderState Interface
Interface
n
Digraph
Rendering and ®| Digraphinterface

Digraph Data
subsystern

The redesigned Power Play software is modular in nature, with clear separations between various systems. The reason for this is that the separation of functionality will increase the speed of development, and help to isolate errors in the code. This design also increases the ease with which future modules could be added onto the software system.

This is an event driven program. The execution of functions is event driven and revolves around the modification of a single data Class (the digraph). The structure is very much object oriented, but the behavior is more in line with functional programming. This only applies at the very abstract level, up close we are using as many of the advantageous and beneficial capabilities of OOP that we can.

Subsystems

Main Window and Program Flow Control Subsystem

Purpose

The Graphical User Interface (GUI) provides an easy to learn and widely recognized system of interaction with the underlying functions of the software. This allows the user to easily navigate and use the functions of the power play software by way of dropdown menus, like the ones in the popular windowing operating systems of today. In addition, the inclusion of a toolbar will increase the ease of use of the software for users that are more visually oriented.
General Design

The GUI is build out of Java Swing classes. The program starts by making a Frame, that Frame contains the rest of the program. The frame contains the content pane, which is the main surface area of the window that will be opened by the program. Into this is inserted the toolbar, when that option is turned on. Another data member of the Frame is the menu bar. The menu bar in turn contains menus. Each menu can contain multiple menu items or submenus. Menu items come in many flavors; among them are checkboxes, radio buttons, and standard items. Checkbox items serve as toggle switches, radio buttons serve as a exclusive choice among many, and standard items do something every time there used.

Data Members

In the following list if something is indented inwards from another it is held as a variable within the previous object.

Class JFrame mainFrame – container for the contents of the window

· String fileName – stores the path of the data file

· WindowListener – this class provides a place to catch pertinent events that effect the window, for example clicking on the close box up in the corner.

· ContentPane – a container for all rendered material to be displayed in the main area of the window.

· Class DigraphView – This is the class that contains the digraph rendering subsystem. It will produce the graphical representation. It will also be in charge of converting user interactions into the digraph.

· Class JMenuBar – a container that holds the contents of the menu bar.

· Class JMenu File – a dropdown menu item for the menu bar, can contain JMenu’s and JMenuItems.

· Class JMenuItem New – provides an item to click on labeled “New” in the menu.

· ActionListener NewListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the listener will check if the current digraph is dirty(ie. Modified but not saved). If so it will open a dialog box and ask if you want to save. An affirmative will execute the behavior found in the SaveListener. It will then create a Digraph with a empty Community matrix and send it to the graphical subsystem, which will send it to the Data subsystem for an update.

· Class JMenuItem Load – provides an item to click on labeled “Load” in the menu.

· ActionListener LoadListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the listener will check if the current digraph is dirty(ie. Modified but not saved). If so it will open a dialog box and ask if you want to save. An affirmative will execute the behavior found in the SaveListener. It will then create an instance of JfileChooser and ascertain the location of the file to be loaded. Next, get the current digraph through a call to the Graphic subsystem. Now make a call to the file handling subsystem to save the file, passing it the fetched digraph.

· Class JMenuItem Save – provides an item to click on labeled “Save” in the menu.

· ActionListener SaveListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the listener first checks to see if the string containing the pathname is not empty. If the string is empty it executes the behavior of SaveAsListener, other wise it makes a call to the Graphics subsystem to get the current digraph(the graphics subsystem makes a call to the data subsystem internally to get the digraph). Then it calls the file handler subsystem to execute the save, passing it the digraph and the path.

· Class JMenuItem SaveAs – provides an item to click on labeled “SaveAs” in the menu.

· ActionListener SaveAsListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the listener opens a new instance of JfileChooser, using the path in the file path string as the default opening spot. After the user chooses a file name and JfileChooser returns that name (JfileChooser will check for naming conflicts) the listener will fetch a copy of the current digraph and pass it along with the new file path to the file handling subsystem in a write command.

· Class JSeparator (anonymous) – puts a breakline between items in a menu

· Class JMenuItem Quit – provides an item to click on labeled “Quit” in the menu.

· ActionListener QuitListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In the case of this listener, the first thing it would do is to find out if the current digraph is dirty. If so it would then create a dialog box asking if you want to save the current digraph, if so it executes the behavior of SaveListener. After that it calls exit(0);

· Class JSeparator (anonymous) – puts a breakline between items in a menu

· Class JMenu DataTools – a dropdown menu item for the menu bar, can contain JMenu’s and JMenuItems.

· Class JMenuItem ShowMV – provides an item to click on labeled “Show Matrix&Vector” in the menu.

· ActionListener ShowMVListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. This listener first gets a copy of the current digraph through the graphic subsystem(which gets it from the data subsystem). Then it converts the digraph to a community matrix. Then it calls the matrix input/output subsystem passing it the community matrix.

· Class JMenuItem DataInp - provides an item to click on labeled “Data Input” in the menu.

· ActionListener DataInputListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In the case of this listener, the first thing it would do is to find out if the current digraph is dirty. If so it would then create a dialog box asking if you want to save the current digraph, if so it executes the behavior of SaveListener. After this, the listener will make a call to the Data input subsystem which will execute its behavior and return a community matrix. This will then be converted into a digraph and then be passed to the graphical subsystem which passes it to the Data subsystem.

· Class JMenu DefNodeAr – provides a item to click on labeled “Default Node Arrangement” in the menu.

· JRadioButtonMenuItem Circle - provides a item to click on labeled “Circle” in the menu. However note that this menu item is nested inside another menu, this make this a submenu item. In addition, due to the nature of the RadioButton this JMenuItem needs no ActionListener. It is merely queried to see if it is selected or not.

· JRadioButtonMenuItem Line - provides a item to click on labeled “Line” in the menu. However note that this menu item is nested inside another menu, this make this a submenu item. In addition, due to the nature of the RadioButton this JMenuItem needs no ActionListener. It is merle queried to see if it is selected or not.

· Class JMenu View – a dropdown menu item for the menu bar, can contain JMenu’s and JMenuItems.

· Class JMenu Zoom – provides an item to click on labeled “Zoom” in the menu.

· Class JMenuItem Z_12.5 - provides an item to click on labeled “12.5% Zoom” in the menu.

· ActionListener Z_12.5Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 0.125 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_25 - provides an item to click on labeled “25% Zoom” in the menu.

· ActionListener Z_25Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 0.25 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_50 - provides an item to click on labeled “50% Zoom” in the menu.

· ActionListener Z_50Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 0.50 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_75 - provides an item to click on labeled “75% Zoom” in the menu.

· ActionListener Z_75Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 0.75 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_100 - provides an item to click on labeled “100% Zoom” in the menu.

· ActionListener Z_100Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 1.0 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_150 - provides an item to click on labeled “150% Zoom” in the menu.

· ActionListener Z_150Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 1.5 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_200 - provides an item to click on labeled “200% Zoom” in the menu.

· ActionListener Z_200Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 2.0 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_400 - provides an item to click on labeled “400% Zoom” in the menu.

· ActionListener Z_400Listener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the Zoom variable is set to 4.0 using the RenderState Interface and a signal is sent to the rendering subsystem to refresh.

· Class JMenuItem Z_custom - provides an item to click on labeled “Custom Zoom” in the menu.

· ActionListener Z_customListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. In this case, the listener will create a dialog box that will ask for user input on the new zoom factor. That number is entered into at text field and submitted. The listener then converts that number to a double and sets Zoom to that value using the RenderState Interface. Finally, it sends a signal to the graphics subsystem to refresh.

· Class JCheckBoxMenuItem GrphAnti - provides a item to click on labeled “Graphic Antialiasing” in the menu. Due to the nature of a checkbox there is no need for a ActionListener, one just queries as to whether the item is selected or not.

· Class JCheckBoxMenuItem FontAnti - provides a item to click on labeled “Font Antialiasing” in the menu. Due to the nature of a checkbox there is no need for a ActionListener, one just queries as to whether the item is selected or not.

· Class JCheckBoxMenuItem FFM - provides a item to click on labeled “Font Fractional Metric” in the menu. Due to the nature of a checkbox there is no need for a ActionListener, one just queries as to whether the item is selected or not.

· Class JCheckBoxMenuItem ToolBar - provides a item to click on labeled “Tool Bar” in the menu. Due to the nature of a checkbox there is no need for a ActionListener, one just queries as to whether the item is selected or not.

· Class JMenuItem BGColor - provides a item to click on labeled “BG Color” in the menu.

· ActionListener BGColorListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. Here we first create a new dialog box that contains a JcolorChooser which will return a Color, which will be assigned to the BGColor variable using the RenderState Interface. Lastly a signal will be sent the refresh the screen.

· Class JMenu Help – a dropdown menu item for the menu bar, can contain JMenu’s and JMenuItems.

· Class JMenuItem HotKeys - provides an item to click on labeled “Hot Keys” in the menu.

· ActionListener HotKeysListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. This listener will make a call to the data input subsystem to create a instance of help frame and display it, while set to hot keys. If a help window is already open, it will switch it to hot keys.

· Class JMenuItem UseExp - provides an item to click on labeled “Use explanation” in the menu.

· ActionListener UseExpListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. This listener will make a call to the data input subsystem to create an instance of help frame and display it, while set to use explanation. If a help window is already open, it will switch it to hot keys.

· Class JMenuItem About - provides an item to click on labeled “About” in the menu.

· ActionListener AboutListener – This Class contains the functions that are called when specific events related to the parent JMenuItem are encountered. This listener will make a call to the data input subsystem to create an instance of help frame and display it, while set to About menu. If a help window is already open, it will switch it to about menu.
Screen Shots

[image: image2.png]=aix]

Fle. Data Tools [View | Help
[Node ool ar " Zoom e
¥ Graphic Antialiasing CtikA. 25% -
™ Font Antialiasing AR 50%
[Font Fractional Metric cti-% | 75y
oot Bar ot | 1om
86 Color 150%
0%
a0
custom zoom

<

[image: image3.png]=lolx|

Fio [DataTools | iow Hob
W StowMaviavecior i]

et z
i [—

® Line curL

File-Handling Subsystem

Purpose

The file-handling module is responsible for parsing out the contents of a file and building a digraph for the rest of the program to use. It is also responsible for taking a digraph and converting it into a file to be stored. It is NOT responsible for identifying the file name or location.
General Design

The DigraphFile class will handle storing and loading digraph files. The file format must also be compatible with Loop Group Project Two. They need to obtain all the node information such as name and position but none of the effect information. The file format for a digraph is a XML based document. XML was used because of its simplicity, it is readable by any text editor, many Java XML parsers already exist, and other projects can easily parse out the information they need.

The format for the Digraph XML file is constrained to the following Document Type Description (DTD):

<!ELEMENT digraph (

numNodes,numEffects,size,nodeList,effectList,communit

yString?)>

<!ELEMENT numNodes (#PCDATA)>

<!ELEMENT numEffects (#PCDATA)>

<!ELEMENT nodeList (node*)>

<!ELEMENT effectList (effect*)>

<!ELEMENT communityString (#PCDATA)>

<!ELEMENT node (id,name,position?)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT effect (parentId,childId,value,position?)>

<!ELEMENT parentId (#PCDATA)>

<!ELEMENT childId (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT size (width,height)>

<!ELEMENT width (#PCDATA)>

<!ELEMENT height (#PCDATA)>

<!ELEMENT position (x_pos,y_pos)>

<!ELEMENT x_pos (#PCDATA)>

<!ELEMENT y_pos (#PCDATA)>

An example of a digraph file following this DTD can be found on page 20.

The DigraphFile class will have a Java Dom XML parser that will be used to read in the XML file and build the Digraph.

Functions

The DigraphFile class implements the DigraphFileHandler interface with the following methods.
public interface DigraphFileHandler {

public Digraph loadDigraph(File file) throws

DigraphFileException, FileNotFoundException;

public void saveDigraph(File file, Digraph graph) throws

DigraphFileException, FileNotFoundException;

}

loadDigraph

This method returns a digraph that is parsed from the specified Digraph XML file. All parsing error information will be encapsulated in DigraphFileException.

saveDigraph

This method saves the digraph in Digraph XML form to the specified file. All parsing error information will be encapsulated in DigraphFileException.
Data Members

 None

Matrix Input / Output Subsystem

Purpose

The Matrix Input and Output systems are used to facilitate expedient entry of matrixes and vector strings. It allows the user to input either and easily convert it into the other, as well as the ability to load a matrix or vector string from a file. We will also have a simple output window showing the digraph in matrix and vector string form.

General Design

The module for data input will be using a simple JTable interface for matrix input, with a simple matrix size determining the number of input slots. Vector string input will use a simple text box to allow quick copy and paste. File input will be required to be in vector string format (will be defined).

CommunityMatrix

Description

The CommunityMatrix class is an abstraction of the data found in an actual community matrix. A community matrix ‘s data includes a list of node names along with an array of double effect values. A vector string representing a community matrix can be generated.

Functions
· public CommunityMatrix (double[][] effects, String[] nameList);

· Constructor for a new CommunityMatrix with the effects and nameList passed as arrays.

· public double[][] getEffects();

· Public method to get the effects array in the correct format usable in the module.

· void setEffects(double[][] effects);

· Sets the effects given a double array of effects.

· public String[] getNameList();

· Public method to get the nameList array in the correct format usable in the module.

· void setnameList(String[] nameList);

· Sets the effects given an String array of node names.

· public String getNodeNameLabel();

· Gets the node name label String for use in MatrixOutputDialog

· public String getMapleCommand();

· Parses a command formatted for Maple uses in String format

· public String getVectorString();

· Gets the parsed vector string representing the matrix

· Public String getNodenameString();

· Gets a String representing the node names in vector string format

· void setVectorString(string myVector);

· Sets the parsed vector string representing the matrix.

· void setNodenameString(string myVector);

· Sets the parsed vector string representing the matrix node names.

MatrixInputDialog extends Jdialog implements ActionListener

Description

This is a modal dialog that allows the users to create community matrix’s using a JTable interface for inputting the node names and effect values. The user can also create a community matrix using just a vector string. It implements ActionListener for monitoring button presses.

Functions

· public MatrixInputDialog(Frame parentFrame);

· Constructor for MatrixInputDialog class, creates a new modal matrix window, passed a parentFrame so it knows where to display..

· public int showMatrixInputDialog();

· Called when contructing a new MatrixInput(),It returns either APPROVE_OPTION or CANCEL_OPTION depending on the user actions.

· public CommunityMatrix getCommunityMatrix();

· Allows retrieval of the community matrix generated by user input.

· private boolean setCommunityMatrix();

· Checks for valid input, and if so sets the CommunityMatrix for retrieval by getCommunityMatrix, returns a boolean for if it succeeded.

· private void initComponents();

· Initialize interface components.

· private void effectTableFocusLost (FocusEvent evt);

· Called when effectTable loses focus, tells it to stop editing and commit what has been input.

· private void nameTableFocusLost (FocusEvent evt);

· Called when nameTable loses focus, tells it to stop editing and commit what has been input.

· public void actionPerformed(ActionEvent e);

· Listener for button presses.

· private void setFromString();

· Sets values in the tables from MatrixInputString values.

· private String[][] getDefaultEffects(int myDim);

· Returns a string array of default effect values, size of which is determined by myDim.

· private String[][] getDefaultNames(int myDim);

· Returns a string array of default name values, size of which is determined by myDim.

· private int getNamesDimension(String myVector);

· Returns the dimention of the names string input in MatrixInputString.

· private int getEffectsDimension(String myVector);

· Returns the dimention of the effects string input in MatrixInputString.

· private void setNamesFromString(int arraysize, String myVector);

· Sets values in the names table from MatrixInputString values.

· private void setEffectsFromString(int arraysize, String myVector);

· Sets values in the effects table from MatrixInputString values.

· private void plusPressed(MouseEvent evt);

· Resizes table to one larger dimension when plus button is pressed.

· private void minusPressed(MouseEvent evt);

· Resizes table to one smaller dimension when minus button is pressed.

· private void setAtts();

· Sets miscellaneous attributes of the GUI

· private void closeDialog(WindowEvent evt);

· Listens for close window operation and disposes of the module.

· static final int APPROVE_OPTION;
· Flag to determine if user has pressed OK, which will replace the digraph with a new one. Needed for JDialogue.
· static final int CANCEL_OPTION
· Flag to determine if user has pressed cancel, which will cancel the action of replacing the digraph and return to the current one. Needed for JDialogue.

MatrixInputString extends Jdialog implements ActionListener

Description

This is a modal dialog that accepts input of effect and name strings for MatrixInputDialog.

Functions
· public MatrixInputString(Frame parent)

· Opens the dialogue for matrix output in modal state with a frame to determine where it will display in relation to the parent.

· public void initComponents();

· Initializes interface components.

· public int showMatrixStringDialog();

· Called to display the dialog for input from the user.

· public void actionPerformed(ActionEvent e);

· Listener for button presses.

· private void closeDialog(WindowEvent evt);

· Listens for close window operation and disposes of the module.
· static final int APPROVE_OPTION;
· Flag to determine if user has pressed OK, which will replace the digraph with a new one. Needed for JDialogue.
· static final int CANCEL_OPTION
· Flag to determine if user has pressed cancel, which will cancel the action of replacing the digraph and return to the current one. Needed for JDialogue.
MatrixOutputDialog extends JDialog

Description

This is a non-modal dialog that accepts and displays a community matrix to the screen.

Functions
· public MatrixOutputDialog(Frame parentFrame, CommunityMatrix matrix)

· Opens the dialogue for matrix output in non-modal state.

· public void initComponents();

· Initializes interface components.

· private void closeDialog(WindowEvent evt);

· Listens for close window operation and disposes of the module.
Digraph Data Subsystem

Purpose

The digraph data subsystem holds the digraph data and structure that will be drawn in the graphics and rendering subsystems. This means that the data for a digraph is kept separate from the actual drawing of the digraph.
General Design

A digraph is represented by a collection of nodes. The digraph storage and handling system controls all node and effect insertions, moves, and deletions. This is where the actual state of a digraph is maintained. Each individual node keeps track of its parents, children, and effects. A parent node influences a child node and is represented on a digraph as an arrow originating from a parent node and pointing to a child node. All nodes in a given digraph should also have a unique id number, name, and position.

A digraph also has two-dimensional size. All contained nodes must be within these boundaries. If a node is moved outside of these bounds, the digraph will be extended.

The main communication to the Digraph Data subsystem will be from the Digraph Rendering subsystem. The Rendering subsystem should only communicate directly to the Digraph class for the changing of any component within that digraph in order to assure proper operation.

Classes

DigraphInterface

Description

The DigraphInterface implements a set of methods to allow nodes and effects to be added, moved, and removed from a digraph. Methods are also available to adjust the size of the area for a given digraph. All digraph manipulation must be directed through this class.

A digraph also can layout the position of nodes when nodes have undefined positions. If any of the nodes in a given digraph have unknown position, the isLayedout member variable will be false. The user can set a layout type and call the reLayout() method. This will adjust all of the node positions to follow the given layout. The layout types have not yet been defined. At a minimum, there with be LINE_LAYOUT that will position all of the nodes along a horizontal line.

Functions
 public void setDigraph(CommunityMatrix matrix);

public void setDigraph(Digraph newDigraph);

public void addDigraph(CommunityMatrix matrix);

public void addDigraph(Digraph newDigraph);

public CommunityMatrix getCommunityMatrix();

public Digraph getDigraph();

public void clear();

public Enumeration elements();

public NodeList getNodeList();

public int getNumNodes();

public Dimension getSize();

public void setSize(Dimension d);

public Node addNode(Node n) throws DuplicateNodeException;

public Node addNode(String name, Point position) throws

DuplicateNodeException;

public Node addNode(String name) throws

 DuplicateNodeException;

public void removeNode(Node n) throws NoSuchNodeException;

public void moveNode(Node n, Point p) throws

 NoSuchNodeException;

public void moveEffect(PositionedEffect e, Point p) throws

 NoSuchNodeException

public void renameNode(Node n, String newName) throws

 DuplicateNodeException, NoSuchNodeException;

public Node findNode(int id) throws NoSuchNodeException;

public Node findNode(String name) throws

 NoSuchNodeException;

public void setEffect(Effect effect) throws

 NoSuchNodeException;

public Effect getEffect(Node parent, Node child)throws

 NoSuchNodeException, NoSuchEffectException;

public void removeEffect(Node parent, Node child)throws

 NoSuchNodeException, NoSuchEffectException;

public boolean contains(Node node);

public void setLayout(int layoutType);

public int getLayout();

public boolean isLayedout();

public void relayout();

Data Members

private NodeList nodeList;
// List of nodes found in

// this digraph

private Dimension size;

// Size of digraph
Effect

Description

An effect is an influence a parent node has on a child node. This is represented visually in a digraph as an arrow originating from a parent node and pointing to a child node.

Functions

public double getValue();

public void setValue(double val);

public void setParent(Node parent);

public Node getParent();

public void setChild(Node child);

public Node getChild();

Data Members

private double value;
// Sign and magnitude of effect

private Node parent;
// Parent of the given effect

private Node child;
// Child of the given effect

PositionEffect extends Effect implements PositionedEffect

Description

Adds an additional position field to an effect. This is used to keep track of arc effects.

Functions

public Point getPosition();

public void setPosition(Point p);

Data Members

private Point position; // Position of effect for arc

Node

Description

Represents a node in a digraph. A node must keep track of all of its children. Children nodes are nodes that a parent node effects. It must keep track of all of its parents. These are nodes that affect the child node. It must also keep track of all of the effects that influence this node. Individual nodes are defined by their unique id, unique name, and position.

Functions

public int getId();

public Point getPosition();

public void setPosition(Point p);

public String getName();

public void setName(String nodeName);

public void addChild(Node child);

public void removeChild(Node child) throws

NoSuchNodeException ;

public void addParent(Node parent, Effect effect);

public void removeParent(Node parent) throws

 NoSuchNodeException ;

public Effect getEffect(Node parent) throws

 NoSuchEffectException;

public void remove();

public NodeList getChildList();

public NodeList getParentList();

public EffectList getEffectList();
Data Members

private int id;
// Used to identify node

private String name; // editable display name of node

private Point position;
// Position of node on a digraph

private NodeList parentList;
// List of nodes that affect // this node

private NodeList childList;
// List of nodes that this

// node affects

private EffectList effectList;// List of effect that this

// node is influenced by

Digraph Rendering and Input Subsystem

Purpose

The Digraph Rendering and Input Subsystem serves two separate tasks. The first is to draw the digraph represented by its Digraph member variable. The second is to receive user input (Key Presses/Mouse Clicks and Drags) and modify and redisplay the current digraph accordingly.
General Design

The DigraphView class is used to render a given digraph. This class extends upon the JPanel class. It consists of a Digraph, which represents its internal data, and a collection of DigraphComponents used to graphically represent Nodes and Effects found in the Digraph. DigraphComponent extends upon JComponent. The individual components available are NodeComponent to visually represent nodes and EffectComponent to visually represent effects. User input is received by all three of these classes so each will have its own MouseInput handlers. Manipulations made to a component are handled directly by that component. The DigraphView and the other components will be updated accordingly. The DigraphView class picks up all user input not grabbed by the individual components. Each component also has the ability to draw itself.

The main communication for the DigraphView is with the Main Window and Control subsystem. That subsystem sets which digraph is to be rendered using the setDigraphMethod(). It also can set the zoom factor and several different rendering options. It is the DigraphView’s responsibility to alert the Main Window when a Digraph has changed. The DigraphView and its components will also query the Main Frame for which tool is selected on the toolbar. This information is necessary in order to properly interpret mouse input.

Classes
DigraphView extends JScrollPanel implements DigraphViewInterface, RenderStateInterface

Description

This panel provides a visual representation for a given digraph. It also has an inner class for handling mouse input.

DigraphViewInterface

public Digraph getDigraph();

public void setDigraph(Digraph graph);

public void addDigraph(Digraph graph);

public void clear();

public int getLayout();

public void setLayout(int layoutType);

public void reLayout();

public void update();

public void paintComponent(Graphics g);

public void setParentFrame(JFrame parent);

public JFrame getParentFrame();

public int getToolSelected();

public void setToolSelected(int tool);

public void setDigraphDirty(Boolean);

public boolean isDigraphDirty();

public void addNode(Point position) throws

 DuplicateNodeException;

public void addNode(Node node) throws

 DuplicateNodeException;

public void renameNode(NodeComponent n, String name) throws

 DuplicateNodeException, NoSuchNodeException;

public void removeNode(NodeComponent node);

public void moveNode(NodeComponent node, Point p);

public void addPartialEffectComponent

(EffectComponent effect);

public void addEffectComponent(EffectComponent effectComp,

Effect effect, Point endPoint);

public void addEffectComponent(NodeComponent parent,

NodeComponent child);

public void removeEffectComponent(EffectComponent effect);

public void moveEffect(EffectComponent effect, position);

public void setSelectedComponent(DigraphComponent comp);

public DigraphComponent getSelectedComponent();

RenderStateInterface
public Color getBGColor(void)

public double getZoom(void)

public boolean isGraphicAnitAliasing(void)

public boolean isFontAntiAliasing(void)

public boolean isFontFractionalMetrics(void)

public void setBGColor(Color)

public void setZoom(double)

public void setGraphicAnitAliasing(boolean)

public void setFontAntiAliasing(boolean)

public void setFontFractionalMetrics(boolean)

Data Members

private JFrame parentFrame;
// The high-level container // of this panel

private Digraph digraph;
// The digraph that is being

// drawn

private DigraphComponentList compList;

// List of visual components

double zoom – stores current zoom factor

boolean graphicAntiAliasing – stores whether graphic antialiasing is turned on

boolean fontAntiAliasing – stores whether font antialiasing is turned on.

boolean fontFractionalMetrics – stores whether font fractional metrics is turned

 on

Color bGColor – stores the background color

Int toolSelected – stores which tool is currently selected.

boolean digraphDirty – records if the digraph has been changed.

NodeComponent extends DigraphComponent

Description

Component used to visually represent a node. This component also has an inner class that handles all mouse input. There is also an inner class for a popup menu and dialog for editing node names. The DigraphView should be the only class interacting with these components.

Functions

public void paintComponent(Graphics g);

public Node getNode();

public String getName();

public void setNode(Node n);

public void remove();

public void rename(String newName);

public void move(Point p);

public void update();

public boolean contains(Point p);

public void select(boolean select);

public boolean isSelected();
Data Members

private Node node; // Node that is being represented

EffectComponent extends DigraphComponent

Description

Component used to visually represent an effect. This component also has an inner class that handles all mouse input. There is also an inner class for a popup menu and dialog for editing effect values. The DigraphView should be the only class interacting with these components.

Functions

public void paintComponent(Graphics g);

public NodeComponent getParentNodeComponent();

public NodeComponent getChildNodeComponent();

public void setParentNodeComponent(NodeComponent n);

public void setChildNodeComponent(NodeComponent n);

public void setEffect(Effect e);

public Effect getEffect();

public void remove();

public void move(Point p);

public void update();

public boolean contains(Point p);

public void select(boolean select);

public boolean isSelected();
Data Members

private NodeComponent childNodeComponent;

// Child Node of Effect

private NodeComponent parentNodeComponent;

// Parent Node of Effect

Digraph XML File Example
<?xml version="1.0" encoding="ISO8859-1" ?>

<!DOCTYPE digraph SYSTEM "digraph.dtd">

<digraph>

<numNodes>4</numNodes>

<numEffect>5</numEffect>

<size>

<width>200</width>

<height>100</height>

</size>

<nodeList>

<node>

<id>1</id>

<name>node1</name>

<position>

<x_pos>10</x_pos>

<y_pos>10</y_pos>

</position>

</node>

<node>

<id>2</id>

<name>node2</name>

<position>

<x_pos>20</x_pos>

<y_pos>10</y_pos>

</position>

</node>

<node>

<id>3</id>

<name>node3</name>

<position>

<x_pos>10</x_pos>

<y_pos>20</y_pos>

</position>

</node>

<node>

<id>4</id>

<name>node4</name>

<position>

<x_pos>20</x_pos>

<y_pos>20</y_pos>

</position>

</node>

</nodeList>

<effectList>

<effect>

<parentId>4</parentId>

<childId>4</childId>

<value>1</value>

<position>

<x_pos>-1</x_pos>

<y_pos>-1</y_pos>

</position>

</effect>

<effect>

<parentId>4</parentId>

<childId>3</childId>

<value>1</value>

<position>

<x_pos>-1</x_pos>

<y_pos>-1</y_pos>

</position>

</effect>

<effect>

<parentId>2</parentId>

<childId>1</childId>

<value>-1</value>

<position>

<x_pos>-1</x_pos>

<y_pos>-1</y_pos>

</position>

</effect>

<effect>

<parentId>1</parentId>

<childId>3</childId>

<value>1</value>

<position>

<x_pos>-1</x_pos>

<y_pos>-1</y_pos>

</position>

</effect>

<effect>

<parentId>3</parentId>

<childId>3</childId>

<value>-1</value>

<position>

<x_pos>-1</x_pos>

<y_pos>-1</y_pos>

</position>

</effect>

</effectList>

<communityString>

[1,0,0,0],[0,0,-1,0],[1,0,0,0],[0,1,0,-1]

</communityString>

</digraph>

2
3

