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Abstract

In dynamicsituationmodelingwe do not know
at designtime all the entitiesin a situation,their
types,or the relationshipsn which they partici-
pate.We present statusreporton JPF a Frame-
basedprobabilisticrepresentatioandreasoning
systemwith embeddedsupportfor hypotheses
aboutthe structureof a situation,including exis-
tence type,andassociatiorfrelational)hypothe-
ses.We describethe externalrepresentatioand
its mappingto a Bayesiannetwork. We close
with a summaryof our experiencein usingthis
systemon two large DARPA projects.

1 Introduction

11 Task

Our focustaskis dynamicsituationmodeling. Given an
input streamof reportsfrom multiple sensorsof multiple
types,the taskis to infer the entitiespresenttheir states,
relationshipsandactivities. For example,given aninput
streanof reportsfrom network intrusiondetectiorsystems
andintelligencesourcesarewe undercyber attackandif
soby whom,with whatintent?Thistaskis essentiallycon-
structive. It is not possibleto pre-specify at a sufficient
level of detail,asingleBayesiametwork thatencompasses
all possiblesituationsonemightencounterFor example,in
the cyberattackdomain,onemay be simultaneouslyinder
multiple attacksform several sourceswith varying objec-
tives. An unknovn numberof cyberagents(e.g. viruses,
trojans)maybepresenbnoneor morehostsin our system,
organizednto teamgo pursueary of anumberof possible
objecties.

The taskis relatedto mary other “understandingtasks.
We briefly exploretherelationshipto three:diagnosisjm-
age understandingand plan recognition. It is different
from eachin significantways. Diagnosigypically assumes
known entitiesandstructure Herewe know only theentity

typesthatmightbe presentandhow they mightberelated.
For example , we modelthe domainfactthatan exfiltration
(removal of data)attackon aclassifiedsiteis mostlikely to
be carriedout by a highly skilled attacler. We canusethis
factwhenerer we suspectinattackon a classifiedsite.

Image understandinglike situation assessmentiocuses
on hypothesizingentities and relationshipsamongthem.
However, for image understandinghe relationshipsare
typically staticgeometricmneswhereasn situationassess-
mentthe relationshipsare primarily functional. Using the
exampleabove,the agentof anattackis in a functionalre-
lationshipto the attackitself.

Finally, the above examplemay seem,andis, very similar
to planrecognition.However, while planrecognitionusu-
ally startsfrom known entities, we get only indirect evi-

denceaboutthe possibleexistenceof entitiesin a situation.
We canlack prior knowledge,not only aboutthe attacks
underway, but alsoaboutthe agentsvho executethoseat-
tacks,both humanandcyber, aswell asthe resourcesiti-

lized, suchashostsandnetwork infrastructure.

1.2 Research Program

We have developedJPF a probabilisticframe-basedepre-
sentatiolanguagefor usein thesedynamicsituationmod-
eling tasks.JPFprovidesthreemajor facilities, thefirst of
whichis alanguagdor constructingsituation-independent
modelsof a domain. Thesemodelscontaininformation
abouttypesof entities(for example,“hostswith classified
informationareusuallyhardto attack”),but do notreferto
specificentitiesat all.

Thesecondmajorfacility JPFprovidesis a setof structural
uncertaintyprimitives. Taken togethey a domain model
andthesestructuraluncertaintyprimitivesconstitutea lan-
guagefor constructingsituationmodelsin thatdomain.Fi-
nally, JPFproduceghesituationmodelin Bayesnetform.

Our initial hypothesesvere that: (1) the domain model-
ing languagewvould have the expressvity neededo model
interestingdomains;(2) the situationmodelinglanguage,



comprisedof the domainmodelandthe structuraluncer
tainty primitives, would permit reasonablyparsimonious
constructionof dynamicsituationmodels;and(3), there-
sulting Bayesnet would be computationallytractible for
moderatelylargesituations.

1.3 Representational Requirements

The task of situationassessmerdswe have describeds
constructve,andthereforeourrepresentatiomustbecom-
positional.We usea two-level representatiorin which en-
tities and relationshipsin a situationare describedasin-
stancesf generictypes. Much of the knowledge about
types, and significantelementsof reasoningabout situa-
tions, is taxonomic. This suggestghat our generictypes
shouldexist in a type hierarchy Finally, we usuallyknow
more thanjust the type of an entity - associatedvith an
entity type is a setof attributes. The particularsetof at-
tributes,andexpectationsaboutvaluesthoseattributescan
take, arebothimportantelementof domainknowledge.

Domainknowledgeof this sorthastraditionally beencap-
turedin object-orientecand, more generally frame-based
representationadystemsandsowe have adoptedhe gen-
eral syntaxof frame-baseaystems.So, for example,we
have framesfor varioustypes of cyber attack, different
typesof attackingagent,andso on. However, while use-
ful, standardrame-basedepresentationarenot sufiicient.
Situationassessmetig a taskin hypotheticakeasoningin
particular our representatiomustbe ableto supportfour
typesof hypothesesboutthe structureof constructedsit-
uations,existence type,associationandidentity hypothe-
ses.

Existence hypothesegarenecessarpecausave oftenhave
indicative, but not definitive, evidenceaboutthe presence
of an entity or actiity. For example,a software upgrade
eventmay introducea maliciousagentalongwith the up-
gradedsoftware. An attemptto contactaninvalid IP hum-
beron our network maybe part of a network mappingat-
tack. However, until further confirmatoryevidencecauses
acceptancef theexistenceof theagentor attack,it remains
hypothetical.

Type hypothesearenecessarpecausénitial information,
in additionto being uncertain,is partial. A statusreport
may imply no morethanthatwe maybeunderattack.Yet,
asmentionedearlier muchof the informationavailableto
confirmor rejectthe attackhypothesiss underspecificat-
tack types. Becausehe taxonomyis large, it is computa-
tionally intractableto considerall possiblesubtypesof an
abstracttype like “attack” simultaneously Rather there
is considerablexpertisein how oneexploresthe spaceof
possibletypesfor anentity or actiity.

Association hypothesesrenecessarpecausentitiesand
activities do not exist in isolation. Whenwe hearof an

attack, we surmisepossibleattaclers, attack-tagets, ob-
jectives, and so on. Note theseare not typical random
variablesbecauseheir domainsare not, in general,pre-
enumeratedRather atypeis specifiedin advanceandas-
sociationhypothesesraw specificinstance®f thattypeto
addto adomain.

I dentity hypothesearenecessarpecausét is possiblefor
multiple existencehypotheseso referto a singlething-in-
the-world. For example,we mayonly laterrealizethattwo
separatattackhypothesessachcreatedrom separatevi-
dencejn factbothdenotethe sameactualattack. We have
not yet implementech mechanisnfor identity hypotheses
andwill notdiscusghemfurther.

In summaryour representationakquirementsncludethe
ability to model entity and relationshiptypes, their taxo-
nomic relationshipsand their attributes. In addition, we
requirethe ability to form structuralhypothesesiboutthe
existencetype,andassociatiorof instance®f theseentity
typesin a particularsituation.

2 Domain Description

In this section,we describethe modelinglanguage. The
modeling languageis basedloosely on frames, a popu-
lar knowledge representatioraproach,and is augmented
with variouswaysto constructstructuralhypothesesThe
semanticof the modelinglanguages understoodby the
Bayesnetit createdor theinstantiatedrames.

2.1 Frames

The fundamentalmodeling unit is the frame. A frame
definesgeneralpropertieshold amonga classof objects,
calledframeinstances Framescontainslots roughly, at-
tributes. Eachslot canhave a numberof facetsdefinedon
it.

Someof thesefacetnamesare resened words, and their
valuesdefinethe probabilitymodeloverinstance®f frame
definitions.

Framesexist in a lattice (i.e., multiple inheritance) andin-
heritall slots(andfacetsdefinedonthem)definedin parent
frames.

211 FrameExample

Figure 1 shavs a part of the taxonomyof attacksin cyber
battlefieldave have developedior DARPA InformationAs-
suranceCyber Commandand Control (IA/CC2) program.
Simplified versionof Attack and CyberAttackframe defi-
nitionsareshaown in Figure?2.

The Attack frame definestwo slots called target and tar
getStatus. Theseslots are also available in CyberAttack
becausét is a subframeof Attack asspecifiedby an*“isa”
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Figurel: Attacktaxonomyfor IA/CC2.

frame Attack isa Activity
sl ot target
facet domai n = Agent
facet distribution =
sl ot targetStatus
facet domain = [l nopera-
tive, Operative]
facet parents = [target.status]
facet distribution =
function x,y {
if x==y then 1 else 0 end

}
end;
frame CyberAttack isa Attack
slot confidentiality
facet domain = [True, Fal se]
facet distribution =[0.5, 0.5]
slot integrity
facet domain = [True, Fal se]
facet parents = [confidentiality]
facet distribution =
function conf {
if conf==True then [0.6, O0.4]
else [0.5, 0.5] end

Uni f or nDi st

end;

Figure2: Attack andCyberAttackdefinitions.

clause.CyberAttackaddstwo slots, called confidentiality
and integrity, which representhe objecties of the cyber
attack,thatis, whatthe attacktriesto compromise.

The“domain” facetdefinegshedomainof aslot. It canbea
finite setasin thetargetStatusconfidentiality andintegrity

slots,or canbe a frameasin thetargetslot, in which case,
the slot cancontainary instanceof thatframe. We call a
slotwith aframedomainarefeenceslot

The “distribution” facetdefinesa probability distribution
over the slot domain. The distribution canbe specifiedin
variousways. The distribution for the confidentialityslot
is specifiedby avectorof probabilitynumbersandthedis-
tributionsfor thetargetStatusaindintegrity slotsarewritten
asfunctions.

If thereis a “parents”facet,thenthe distribution facetde-

finesa conditionalprobability table (CPT) conditionedby
the specifiedparentslots. For example theintegrity slotin
the CyberAttackframeis conditionedby the confidential-
ity slotin the sameframe. Its distribution saysthatif the
cyberAttackattacksthe confidentialityof thetarget,thenit
is morelikely thatit alsoattackstheintegrity of thetarget.

2.1.2 Mapping To Bayes Nets

We performinferenceby mappinga situationrepresented
by a setof frameinstancesnto a Bayesnet.

Whenaframeis instantiatedpneBayesnodeis createdor
eachuncertainslot definedin the frame. Figure 3 shows
the Bayesnetfragmentfor aninstanceof CyberAttack A.

A.confidentiality A.integrity

Figure3: Bayesnetfragmentfor a CyberAttackinstance.

2.2 Structural Hypotheses

The fundamentalstructural hypothesisis that something
existsin theworld. We termthis anexistencehypothesis.

Given that an entity exists, the next questionwe needto

answerto defineits representatioris its type thatis, its

locationin the frametypelattice. Type hypothesesrehy-

pothesesboutthe type of anentity. We currentlysupport
only subtypehypothesesthatis, hypotheseshatan entity

currently modeledat onelevel of the type lattice may be
modeledasanimmediatesubtypel

Finally, muchof interestin adomainconcerngherelation-
shipsamongentities. Associatiorhypothesegrehypothe-
sesaboutthe value of a slot whosedomainis drawvn from

a classof frameinstances.Associationhypothesesome
in two flavors: one-to-onge.g.,organizatiorbehinda par

ticular attack)or one-to-mam (e.g.,the setof missionshis

web sener is supporting). A slot with one-to-oneassoci-
ationis calleda refelenceuncertaintyslot, anda slot with

one-to-maw associatioris calleda set-valuedslot

Path expressionsare usedto defineparentsby referencing
throughassociationsAn examplepathexpressiorappears
in theparentfacetin thetargetStatuslotin Figure2, which
refersto the statusslotsof the Agentinstancestoredin the
referencauncertaintyslot called“target”.

IWe assumethat eachthings-in-the-verld is correctly mod-
eledasasingleleaftype,wejustdont know whichone.



2.2.1 Implementing Existence

The implementationof basicexistenceis pretty straight-
forward. Each hypotheticalframe instancehas an “ex-
ists” nodewith domain{“Context.In”,“Context.Out"}. All
nodesareconditionedby the existsnode,and Context.Out
is addedto the domainof all nodesso thatif exists node
is Context.Out all conditionednode also becomesCon-
text.Out. Context.Outis normallyinvisible to theuser

For example,if the existenceof a CyberAttackinstanceA,
is hypothetical anexists nodeis createdandit conditions
all nodesfoundin theframe.(SeeFigure4.)

A.confidentiality .

Figure4: Bayesnetfragmentfor a hypotheticalCyberAt-
tackinstance.

2.2.2 Implementing Subtype

Subtypehypothesearemodeledby addinga subtypenode
to theBayesnetfor theparenframeinstancewhich condi-
tionstheexistsnodesn thechild instance The conditional
probabilitytable(CPT)of thechild existsnodeis definedto

ensurahatthechild instancesxistsif andonly if theparent
instancexistsandthe subtypenoderefersto the particular
child.

Thereis animportantissueintroducedby subtyping:What
do priors meanif they canbe redefinedat ary level? We
take theprior specifiedn any frameotherthanaleafframe
to bethedefaultprior for child frames.Theactualprior for
anon-leafframe-instancés the expectationoverthe priors
of its instantiatedthroughsubtypehypothesesghildren.

The CPTsof nodesfor slotsin the parentencodethe ex-
pectatioroverthe correspondingiodesin thechildren. For
example,let frameF have two children,C, andC,. Then
the systemgenerateghefollowing CPT for the slot S of P:

P(F.§F.subtypeC,;.S,C,.S) =
1if F.subtype=C, andF.S=C..Sfor1<i <2
0 otherwise.

This CPT canbereadily generalizedor caseswith n chil-
dren.

Figure 5 shows the Bayesnet fragmentfor this example
subtyperelation,including existsnodes.

(oo
S

Figure5: Bayesnetfragmentfor the subtypeexample.

2.2.3 Implementing One-to-One Association

We usea simple “switch” or “multiplexor” representation
for the one-to-oneassociation.For example,considerthe
TwoStageCAttackramedefinedin Figure6.

frame TwoSt ageCAttack isa CyberAttack
sl ot 1st
facet domain = CyberAttack
facet distribution = UnifornDi st
sl ot 2nd
facet domain = CyberAttack
facet distribution = UnifornDi st
slot integrity
facet domain = [True, False]
facet parents = [1st.integrity,
2nd.integrity]
facet distribu-
tion = T.S. IntegrityDi st
end;

Figure6: A partof definitionof TwoStageCAttackrame.

In this frame, there are two referenceuncertaintyslots
called “1st” and “2nd”, both of which referto a Cyber
Attack. The third slot, “integrity” is conditionedby the
integrity of two CyberAttacks.Let f=T.S.IntayrityDist be
thefunctionthatspecifiegshe CPT, thatis, thefunctionthat
returnsaprobabilitynumbergiventheintegrity valueof the
first attack the secondattack,andthetwo-stageattack.

Supposethat T is an instance of TwoStageCAttack,
and its first stage can be one of CyberAttack in-
stances{A,,...,An}, andits secondstagecan be one of
{By,-..,Bn}. Then, the systemgenerateghe following
CPTfor theintegrity (1) of T:



P(TI|T.1stT.2nd AL, ...,An.l,Byl,...,Bnll) =
f(A.1,B;.1,T.1) if T.1st=A andT.2nd= B,
forl<i<mandl<j<n

Theaboverepresentatiorequireshe CPTof sizeexponen-
tial in thenumberof referencesln orderto avoid this expo-
nentialexplosion,wefactortheabose CPTmultiplicatively
usingLocal Expressior_anguagd D’Ambrosio, 1995.

Following [Takikawa andD’Ambrosio, 1999, we usethe
following notationfor generalizedlistributions:

G( Xy ey X|Yps- -5 Y
<f(X1;---;xm;Y1>---;Yn)>)>

whereX; is aconditionedvariable,Y; is aconditioningvari-
able,andf is a densityfunction specifyingactualnumeri-
cal probabilities.

Using Local ExpressiornLanguagethe above CPT canbe
factoredasfollows:

P(T.|T.1st T.2nd Al,...,Anl,Byl,...,Bnl) =
m n

|_U_|lG(T.I| T.1stT.2ndAl,B;.|
i=1 )= (f,(T.1,T.1st T.2nd A1, B, 1))

where

fij(T.I,T.lsi;T.an,Ai.I,Bj.l) =
f(A.1,B;.1.T,) if T.1st=A andT.2nd= B
1 otherwise.

In this representationgachgeneralizeddistribution con-
tainsonly onereferencdor eachparentsoits sizeis fixed
no matterhow mary referencegherearein the reference
uncertaintyslot, avoiding the exponentialexplosion.

Notethatthesameoptimizationis applicableo thesubtype
hypothesesAlso notethatary inferencealgorithmcanbe
easily extendedto handlethis multiplicative factorization
of multiplexors.

2.3 Roles

It is often importantto place expectationson slot-fillers.
For example the attaclerin a smurfattackis usuallymod-
eratelysophisticatedechnologically We represenmostof
theseasconstrints, thatis, assoft obserationson derived
values. For example,the abore might be representeds
shovnin Figure?.

In this frame, the attacler slot is a referenceuncertainty
slot, which refersto a possibleattacler Agent. The attack-
erLevel slotrepresentsheattacler’'stechnologylevel. It is

inferredfrom thetechLevel slot of the attaclerthroughthe
distribution functionwhich encodegheidentity matrix.

frame SnurfAttack isa CyberAttack
sl ot attacker
facet domain = Agent

facet distribution = UnifornDi st
sl ot attackerLevel
facet domain = [ Super, Good, Bad]

facet par-
ents = [attacker.techLevel]
facet distribution =
function x,y {
if x==y then 1 else 0 end
}
facet observation = [0.2, 0.6, 0.2]
end;

Figure7: Thedefinitionof SmurfAttackframe.

The mostimportantpartis the obsenationfacetof the at-
taclerLevel slot, which putsasoftobsenation,represented
asa likelihoodvector, to the attaclerLevel nodeof Smur
fAttack instancesn this case the soft obsenationfavors
“Good” technologylevel.

The Bayesnet for an example SmurfAttackinstance(S)
with two attacler associationhypothesegA; and A,) is
shovnin Figure8.

A,.techLevel

Figure8: Bayesnetfragmentor theSmurfAttackexample.

This representatioprovidescompositionalityis mediated
by the existencef the participatingobjectsandtheir par
ticipationin associationsandavoids ary possibliity of in-
troducingdirectedloopsin the Bayesnet.

24 Oneto-Many

We use a “SetMember”frame to build a set. SetMem-
berframesrepresent linkedlist of memberasvhosemem-
bershipis conditionedby a membershigslot, andare cus-
tomizedfor eachuse. For example, Figure 9 shaws the



AttackerSetMembeframethatis customizedo represent
asetof attaclers.

frame Attacker Set Menber
sl ot nenber
facet domain
sl ot next
facet domain =
sl ot nenbership
facet domain = [True,

At t acker

At t acker Set Menber

Fal se]

facet distribution =[.5, .5]
sl ot |evel Constraint
facet domain = [Valid, Invalid]
facet parents =
[ menber shi p, nenber.techLevel]

facet distribution =

function nenmbership, |evel {
i f menber-
shi p==True && | evel ! =Bad
then Valid

else Invalid end

}

facet observation =[.9, .1]

sl ot super Count
facet parents =
[ menmber shi p, nenber.techLevel
next . super Count ]
facet distribution =
function nmenber-
| evel , next Count {
i f menber-
shi p==True && | evel ==Super
t hen next Count +1
el se next Count end

shi p,

}
end;
frame EnptyAttacker Set Member
i sa Attacker Set Menber
sl ot superCount =0
end;

Figure9: Framedor attacler sets.

ThefirstthreeslotsareessentialThe“member”slot points
to anactualmemberthe“next” slotpointsto theremaining
set;andthe“membership’slotrepresents hypothesighat
this membetelonggo this set.

This representatiopermitsexpectationgo be placedboth
on the setitself (e.g., cardinality constraints)and on set
members.It is easyto specify providesa placeto gather
role restrictionsfor a ont-to-maly slot, anddid not require
ary extensionto the underlyingimplementation. It does,
however, suffer the major disadwantageof fixing the or-

derin which the memberof the setarerepresenteéh the
Bayesnet.

The “levelConstraint”slot is an example of a constraint
placedon all memberslt stateghatattacler's technology
level shouldnot be bad. This constraintis conditionedby

the membershigslot soit is effective only if this attacler

is indeeda memberof this set. Note that the constraintis

soft, thatis, a smallamount(10%) of leakagds allowed.

A constrainton the setitself, suchas“The numberof su-
per attaclersshouldbe at leastone] canbe placedusing
a slot thatsummarizeghe condition (the numberof super
attaclers)and putting a constrainton that condition. The
“superCount’slotin AttackerSetMembeis anexampleof

asummaryslotthatcountsthe numberof superattaclers.

3 Experience To Date

We have usedJPFprimarily aspart of an automatedsys-
temfor constructingsituationmodelswhichis lessmature
thanJPFandwill bedescribedereonly verybriefly to pro-
vide background.Our dynamicsituationmodelingengine
is, loosely a blackboardsystemwhich usesthe currentset
of JPFframeinstancesasits blackboard. Changego the
frameworld — the currentsetof frameinstances- trigger
domain-specifienodulesesponsibldéor performingmodel
constructioractions typically thecreationof structuralhy-
pothesesFor example,a modulethat watchesfor reports
of pingsto invalid addressesight hypothesize:(1) that
an existing attackmight well accountfor this report, and
socreatean associatiorhypothesidetweerthe attackand
thereport;or (2) thata new attackis neededo explainthe
report, and so createan existencehypothesidor the new
attackandanassociatiorhypothesidinking the attackand
report; or (3) both possibilities. In generalthe modules
implementcoarselocal decisionpolicies aboutstructural
hypothesiscreation. The setof constructionsuggestions
generatedby all triggeredmoduless thengloballyfiltered,
takinginto accounbothcompetindghypotheseandthecur-
rentmodelcomplexity.

We areusingthis systemon two DARPA projectsinvolv-
ing dynamicsituationmodeling. A characterizatioof our
work to dateon thetwo projectsis shavn in Tablel.

In this table,Observationsncludesboth hardandsoft ob-
senations,Computatiorinformationis for computatiorof
all maminals,andLargestTbl is specifiedn the numberof
entries.As canbeseerfrom thisinformation,thenetworks
stay sparseand computationallytractablefor moderately
largesituations Exploitationof local structureasdescribed
earlieris essentiaffor this result. The larger network is
intractablewhenthe type and associatiorexpressionsare
flattenedinto simple conditionaldistributions (the largest
table: 2.3 10 entries).

JspiScript JPFincludesits own scriptinglanguaggspiS-



| Measure | DDB ] cC2 |

Frames 138 45
slots 359 168
facets 137 168
Typical Run

Framelnstances 192 111
ExistenceHypotheses 85 29
Type Hypotheses 80 0
AssociationHypotheses 170 219
Nodes 1016 840
Local Expressions 2258 1438
Obsenations 228 217
Computation

timein seconds 44.9 22.7
# mults 22%10° | 2.8%10°
LargestThl 373,248 972

Tablel: Examplemodelcharacteristics.

cript, a completeprogramminglanguagewith additional
featuresfor defining and manipulatingdistributions, lo-

cal expressionsBayesnets,frames,and frameinstances.

Framedefinitions(includingall examplesn this paper)are
written in jspiScript, andits general-purposéeaturescan
be usedasa macrofacility. JspiScriptis usedto write test
suitesaswell assomedomain-specifienodulesfor thedy-
namicsituationmodelingengine. We useit heaily in in-
teractive modefor testinganddehugging. Finally, a frame
definitionmaycontain,in placeof a CPT, ajspiScriptfunc-
tion definingthe CPTashasbeenseenin theexamplesWe
have found the scriptinglanguageto be an essentiatom-
ponentof large-scal&knowledgeengineering.

I ssues Onefactwhich the currentversionof JPFdoesnot
representvell is coreference Supposeve have agentsA;
andA,, andone of them (but we do not know which) is
the sourceof a CyberAttackC,;. As describedabove, we
modelthis by addingA; andA, to the (previously empty)
domainof C,.source.We thenlearnof a secondCyberAt-
tack,C,, andwe determinethatC, hasthe samesourceas
C,. Thisfactis lostif we simply addA andB to thedomain
of C,.source.

We have not yet determinedhow we will extend JPFto

handlethis kind of information. One possibility is to use
areferenceuncertaintyslot asa placeholdeffor the frame
instanceto which it refers,sothatwe could put C;.source
in thedomainof C,.source.

Anotherpossibilitywe areexploringis to defineanew kind
of frameinstancethe“referencenstance” A referencen-
stancewould have the sameslots as a normalinstanceof
the sameframe, plus an extra referenceuncertaintysilot.
The domainof this extra slot would containreferentin-
stancesandthe CPTsfor the otherslotswould encodesx-
pectationoverthecorrespondinglotsin thesereferentin-

stances(Referenceénstancesreconnectedo their refer
entinstancesn muchthe sameway that parentinstances
areconnectedo their child instances.)n our example,we
would createa referenceagentinstanceHref, with referent
instancedd; andH,, andwe would put Href alonein the
domainsof bothC, .sourceandC,.source.

A secondissuewe have begunto explore is identity. As

mentionedearliet it is not unusualto createtwo existence
hypothesedor what later is discovered(or hypothesized)
to be the sameobject. It is a simple matterof program-
ming to make the cateyoricalassertiorthatthisis thecase.
It is more problematicto constructa hypothesishat this

is so, andwe are currently exploring alternateBayesnet

mappingdor identity hypotheses.

4 Related Work

Mahoneg andLaskey [1994 have written aboutconstruct-
ing situationmodels. Our work is consistentwith theirs,

but emphasizeshe engineeringaspectsof automatically
constructingand evaluatinglarge-scalesituationrepresen-
tations. Pfeffer etal. [1999 reporton a frame-basedys-

temverysimilarin syntaxto ours.In fact,muchof oursyn-

tax is unashamedIlgtolenfrom SPOOK.JPFdiffersfrom

SPOOKIin its emphasion providing facilities for hypoth-

esizingaboutandmanaginghe structureof a situationrep-

resentation.

Earlier work on knowledge-basednodel constructionin-
cludeswork by Breese[1987, Goldmanand Charniak
[199d, andWellman[199d. JPFis mostsimilarin spirit
to GoldmanandCharniaks work. As with SPOOK,a key
differenceis our focus on structuralhypotheses.Breese
focusedon the control of situationconstructionandused
backward-chainingrule-basednethodsto drive construc-
tion. This paperhasnot focusedon structuralhypothesis
managementyut, asalludedto earlier we useblackboard-
style control with explicit decision-theoretienodeling of
the cost/benefibf eachhypothesisnanagemenrdction. Fi-
nally, Wellman,like us, focusedon the needfor hierarchi-
cal refinementduring the problemsolving process.How-
ever, his work wasperformedin a qualitative probabilistic
framework andassumea@known structurewhereasve use
traditional discretedomainsand must hypothesizestruc-
ture.

5 Conclusions

We have describedIPF a probabilisticframe-basedepre-
sentationlanguagefor dynamic situationmodeling. Our
initial hypothesesverethatsucha system:(1) would have
the expressvity neededo modelinterestingdomains;(2)
would provide the primitives neededto effectively con-
trol the potentialcombinatorialexplosioninherentin dy-
namicsituationmodeling;and (3) would be computation-



ally tractablefor moderatelylarge situations.

Our experienceto dateprovidesaffirmative answerdo the
first two questions.First, while expressvity is partially a
subjectve measureywe have beenableto successfullyper

form initial modelingin two large-scaledomains.Second,
JPFhassenedastherepresentatioandreasonindayeron

which we have constructedan enginefor dynamicsitua-
tion modelingcurrentlyin useon thosesametwo projects
(separatpapercurrentlyunderdevelopment).

Ourexperienceawith respecto thethird hypothesiss some-
what more qualified. While we have reachedour initial
goal of modelingsituationsinvolving thousand®f nodes,
it is clearthatnew approachewill berequiredto reachour
goalof hundredof thousandef nodes We believeamore
continual,incrementalapproacho inference[Horvitz99],
incorporatingnotionsof locality, granularity andprecision,
will beneededo build atruly scalablesystem.
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