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1 Introduction and Requirements 
 
As a culminating term project, a task was assigned to create a system that detected musical notes 
from sampled audio signals. This was to be done with an Arduino Nano, an electret microphone, 
and the accompanying filtering, amplifying, and output circuits. The agreed upon 
implementation used the Arduino output pins to power one of eight LED lights, indicating which 
note was detected.  
 
To calculate which note is detected, a Fast Fourier Transform (FFT) algorithm is used within the 
arduino. An FFT algorithm estimates the discrete Fourier transform which decomposes a given 
signal into its corresponding frequency components. Where the discrete Fourier transform is 
slow and complex (O(N^2) complexity), an FFT can be performed rapidly and accurately with 
significantly less resources.  
 
The requirements of this assignment were given explicitly as follows: 

1. Each of the 8 notes, reasonably in tune (+/- 5%) , must turn on only one LED. 
Computation can be performed on the Arduino or in MATLAB, but the LEDs must be 
controlled by the Arduino. 

2. The audio source must be more than 10 feet away from the audio amplifier microphone 
supplied in the 341 kit. 

3. Audio amplifier must have a signal with more than 1 volt of amplitude when stimulated 
with an audio source. 

4. Audio amplifier must have less than .1 .2 volts of amplitude when not stimulated with an 
audio source. 

5. More than 20 samples must be acquired for the detected period. 
6. At least 3 periods of acquired audio data must be graphed in MATLAB.  This is not 

required to be done during a live session. CSV data can be recorded and then post 
processed for this requirement. 

7. Compute the SNR (Signal to Noise Ratio) of the sampled audio signal in MATLAB.  The 
SNR must be at least 20. 

8. Plot the spectrum of Power vs Frequency in MATLAB.  Plot at least 3 harmonics of the 
signal on the frequency graph. 

 
This project required a wide array of both technical and non-technical engineering skills. The 
project management and organization aspects were of even more difficulty due to COVID19 and 
remote instruction. Along with these soft skills, this project tested our electrical engineering 
technical skills by taking the work from assignments to a hands on design.  
 
Some of the tools used to complete the project were: 

- Circuit design and analysis  
- LTSpice simulation and analysis  
- Physical prototyping with breadboards and protoboards  
- MATLAB and Arduino coding 
- Digital measurement and debugging 
- Arduino firmware programming and serial communication 



2 Block Design 

 
Figure 1: Top Level Block Diagram 

 
 

From the requirements it was a relatively straightforward block diagram to create and only one 
main decision needed to be made: would the MATLAB processing take place live in the system 
to identify the tone or would it be done as post processing? The assignment requirements did not 
call for MATLAB to process the data live, so it was decided to instead: take in the raw voltage 
data, write this data as a csv file, process the signal onboard the Arduino to calculate the 
frequency, then power the LED’s from the arduino.  
 
Performing the FFT calculation onboard the Arduino avoided a potential problem with serial 
communication. If the FFT calculation was going to be done on MATLAB, this would require 
the signal data to be sent to MATLAB via serial, the data processed, and then the signal DATA 
sent back to the Arduino via serial again. Although this is definitely possible, previous problems 
had been encountered sending serial data from MATLAB to the Arduino and doing the 
calculation onboard removed the need to deal with it at all and greatly streamlined the process.  
 
As mentioned before, the method used to further process the data with MATLAB was via CSV 
file. From the Arduino code, the raw ADC data from the signal can be written directly to a .CSV 
file as soon as it is collected. For each required note (c4 to c5) there is a single recorded session 
to create a separate .CSV file for each tone. For each of these sessions a sampling frequency of 
20 times the expected frequency of the signal would be used, with a total of 256 samples 
(accomplished by manipulating the registers of the ATMEGA328p processor). This allows for 
the requirements of 20 samples per recorded period, 3 periods of data to be plotted, as well as 
keeping a fairly low resolution to ensure an accurate FFT. Then at a different time, the data from 
each file can be read into MATLAB and a separate fourier transform can be performed along 
with other further assessments such as the voltage vs time, harmonics, power vs frequency, and 
signal to noise ratio (SNR).  
 



3 Implementation 
 
Block 1: Instrument/Tone Source 
 
For the purpose of this project, the tone source was fairly arbitrary. For testing purposes, a 
frequency generator phone application was used. Frequency generators are very simple to use 
and allow the designer to test many different frequencies with ease. The downside of these 
applications is that they are typically fairly quiet unless connected to an external speaker. For the 
final test of the tone detector, an unamplified acoustic guitar was used to tie the project to 
real-world application. The guitar was typically louder than the frequencies being output from 
the phone speakers which allowed for the tone detector to analyze frequencies from a further 
distance. However, the guitar had its flaws including being able to error check the tone being 
played and the note the tone detector was finding. 
 
Block 2: Microphone with Circuitry 
 
The microphone that was used to start the analysis of the tone from the source was an electret 
condenser microphone - the CMC-5042PF. In a very basic sense, an electret microphone uses a 
thin diaphragm made of a polarized material called an electret and a metal back plate as a 
capacitor. When the audio signal reaches the diaphragm, the vibrations of the audio signal move 
the diaphragm back and forth - changing the voltage across the diaphragm and the back plate. 
This changing voltage results in the audio signal that is then amplified through the rest of the 
circuit.  
 
In Figure 2 below, the schematic is given for the microphone block of the project. For the 
purpose of this project, the microphone will be powered with a 3.3V source from the Arduino 
Nano, as the datasheet for the CMC-5042PF recommends an operating voltage of 2V with a 
maximum operating voltage of 10V. The 2.2k  resistor is used to limit the amount of currentΩ  
flow out of the microphone block - as the data sheet states the current consumption of the 
CMC-5042PF is 0.5 mA. The capacitor acts as a high-pass filter, getting rid of the DC bias and 
noise that is presented by the 3.3V source used to power the microphone block.  
 

 
Figure 2: Schematic of the microphone circuit. 



Block 3: Microphone Amp LMC6032 

 
 

Figure 3: Block diagram of the microphone amplifier circuit with mic circuit included.  
 
Debatably the most important portion of the project, the microphone amplifier circuit takes the 
input signal from the microphone and increases the amplitude to a viable range so that the signal 
can be analyzed. When the microphone circuit block was created in hardware, the signal from 
the output had a maximum voltage of 0.01V - barely high enough for the DMM to accurately 
read. For the purpose of this project, the signal at the output had to have a minimum of 1V 
amplitude during excitation. Taking an input signal from 0.01V maximum amplitude to 1V 
requires a gain of 100. This gain is set by the microphone amplifier circuit by manipulating 
resistor values surrounding the LM6032 op-amp. Through this section, resistor values will be 
noted by their label R1-R6 and capacitors C1-C4 which can be found in the full annotated 
schematic in Figure 4 below.  
 
Figure 3 above shows the block diagram of the microphone amplifier. The purpose of this block 
is to both increase the input signal from the microphone and filter out some of the unnecessary 
noise from the signal. This amplifier circuit was given in the documentation for this project and 
consists of 6 main parts: a biasing resistor, 3 high pass filters (blocks 1, 2, and 4), a low pass 
filter (block 3), and an op-amp (the LMC6032). 
 
The biasing resistor is used to ensure the minimum amount of current (specified by the 
microphone) is met, as well as ensuring the ratio of output and input voltage meets the desired 
gain value. This resistor is chosen such that the majority of current being output by the 
microphone flows through it, implying it must be of a lower resistance than the resistors used for 
the high pass filter (filter 1). The calculations for finding the desired value for the biasing 
resistors goes as follows: 
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For simplicity of implementation, the R1 value found above was changed to 2.2k .Ω   
 
Filter 1 in figure 3(a) above was used without changes from the schematic given in the lab 
documentation. The filter consists of two 200k  resistors, one from Vcc and one to ground, asΩ  
well as a 330nF capacitor. Figure 4 below shows the schematic for the filter described. This filter 
acts as a high-pass filter, with a cutoff frequency of 3.956Hz.  

 
The op-amp used for the physical implementation of the microphone amplifier differs from that 
given in the documentation for this project. The LMC6032 was used, which has a recommended 
supply voltage range of 4.75V to 15.5V. During physical testing, it was found that supplying the 
LMC6032 with a lower voltage of 3.3V resulted in less noise at the output, allowing for better 
analysis. This lower supply voltage also resulted in an overall lower maximum output voltage 
amplitude, with a maximum of approximately 1.5V in implementation rather than the 2.3V 
maximum that was found when the op-amp was powered with 5V. With this in mind, we found 
that using the 3.3V supply for gathering data for the analysis to be done in MATLAB was more 
suitable, while the 5V voltage source was better suited for the distance requirement. Both voltage 
sources were used depending on the desired application of the amplifier.  
 
The gain of the entire amplifier was set simply by two resistors (R4 and R5) found in filters 2 
and 3, respectively. The LMC6032 op-amp was set in a non-inverting fashion. The gain for a 
non-inverting amplifier is given as , in which RF is the feedback resistor (R5)ain 1G =  +  R2

RF  
and R2 is resistor R4 in filter 2. For an amplifier with low noise, it is good practice to set the 
feedback resistance to be higher (rather than lower) and have a low filtering resistance. For the 
initial gain of approximately 110, an R5 value of 110k  amd R4 value of 1k  were chosen.Ω Ω  
With this in mind, during the physical application of this resistor network the output voltage 
resided much lower than the desired value of 1V. To reach the limit, the R4 value was decreased 
to a value of 220  to implement a much larger gain of 501. After this switch, the voltageΩ  
surpassed the required voltage of 1V with ease.  
 
Filter 2 consists of the 220  resistor in series with a 47 F capacitor, acting as another highΩ μ  
pass filter. Using the equation , the cutoff frequency was calculated to approximatelyf c = 1

2πRC  
15Hz, letting all frequencies higher than 15 Hz pass through to the output of the amplifier. 
 



Filter 3, on the other hand, acts as a low pass filter, with the R5 resistor of 110k  in parallelΩ  
with the 120pF capacitor, with a cutoff frequency of approximately 12kHz in order to eliminate 
some of the high frequency noise created by the microphone at the output node.  
 
Filter 4 also acts as a high pass filter that removes a majority of the DC bias found at the input 
terminal of the LMC6032. This allows for a voltage plot consisting of purely AC values to be 
analyzed. During periods in which the microphone was resting (no external excitation from the 
tone source), the requirement of the amplifier was to keep an AC voltage below 0.2V. The use of 
filter 4 allowed for this requirement to be met, while also filtering out some of the extraneous 
low-frequency noise that resided below the 33Hz cutoff frequency that this filter portrays.  
 

Table 1: List of filters with corresponding resistor and capacitor values, followed by the cutoff 
frequencies of each of the filters. 

 

 
 

 
Figure 4: Schematic of the microphone amplifier with filters highlighted in red.  

 
 

Filter 
Number 

Equivalent 
Resistance ( )Ω  

Capacitor Value 
(F) 

Cutoff Frequency 
(Hz) 

1 100k 330  n 3.956 

2 220 47 μ  15 

3 110k 120 p 12075 

4 10k 3 μ  33 



Block 4: Arduino Nano 
 
The Arduino Nano microcontroller was used in this project with the following four main 
functions: 

- Take in audio signal raw voltage data with the ADC 
- Write raw ADC data to .CSV file  
- Compute an FFT calculation of the signal and determine the frequency of the tone 
- Determine which LED to power based on the calculated frequency 

 
The detailing here will explain parts of the code but for reference the full Arduino sketch code is 
located in APPENDIX 1.  
 

 

 
Knowing that an FFT computation will be done, the first step of the Arduino code was to find an 
appropriate FFT library. A library expands on the basic Arduino sketch functionality by 
providing many extra functions. The FFT library that this project used was created by Enrique 
Condes and can be retrieved from this Github link: FFT Library. Looking at the API, the library 
has many functions of different computations relating the FFT. This library was retrieved from 
the Arduino project found here. This project's code is based around the example code given in 
that project by lbf20012001.  
 

 
Figure 5: Example clip of the setup of the Arduino script for tone detection. 

 
The next main aspect of the Arduino code is the setup. Knowing that the Arduino is going to be 
communicating via serial (either to the serial monitor or MATLAB), the Serial.begin() function  

https://github.com/kosme/arduinoFFT
https://create.arduino.cc/projecthub/lbf20012001/audio-frequency-detector-617856


Initiates the serial communication with the chosen baud rate of 115200 which would be fast 
enough to export the high frequency sampling data.  
 
In the setup, the sampling period is also set based on the inputted sampling frequency global 
variable. This is done by taking 1 over the given frequency and then multiplying it by 10^6 to 
convert the period to microseconds.This number is then rounded for simplicity as precision to the 
decimal number of microseconds is not needed for this application. 
 
The last part of the setup sets the used digital pins as outputs. Configuring these pins as output 
with the pinMode() function allows the pin to be powered with  up to 40mA of current at 5V 
which is more than enough to turn on the LED note indicator lights. Setting the pins to outputs 
can also be done via firmware programming if more control is needed (EG a pullup resistor). 
This was not necessary for this project so the pinMode() function was adequate.  
 

 
Figure 6: Main loop for taking in ADC values of the output of the microphone amplifier.  

 
From here the main loop of the code begins. The first step is sampling the output signal from the 
microphone amplifier circuit. This is done in a for loop that runs until the desired number of 
samples are collected which is once again set as a global variable. In the loop itself it simply 
reads the ADC value of the analog input pin 0 and sets that to the index of the sample number in 
the array. Note that the FFT function used takes in complex numbers so for every sample the 
imaginary term of the number is set to 0, making it fully real.  
 
The timing of the loop had to be considered to achieve the correct sampling frequency which was 
implemented by using pauses (in the form of a while loop). At the beginning of each iteration of 
the for loop, a ‘timing’ variable is set using the function micros(). This returns the number of 
microseconds since the program began running on the Arduino. Then after the sampling occurs 
for that iteration, a while loop pauses the program according to the frequency. This is done by 



checking if it has been the entire sampling period since the ‘timing’ variable was set earlier. If 
the entire sampling period has not passed, the empty while loop pauses until it has. This ensures 
that only one sample is recorded every sampling period.  
 
This is not the most robust method of programming as it is assumed that the sampling itself does 
not take the entire sampling period. If it did and the entire sampling period had already passed 
once it got to the timing while loop in the code, there would be no pause and the sampling 
frequency would be incorrect. For this reason, the code is only truly accurate for when the 
sampling period is longer than how long it takes to actually sample. 
 
Some quick research and calculation shows that the analogRead() function takes 100 
microseconds to read an analog input. Therefore the maximum sampling frequency is 10KHz 
and anything faster the timing is off. The code still works, but the sampling period data is 
inaccurate.  

 

Figure 7: Arduino script surrounding the FFT portion of the tone detection. 

The next block of code in the main loop is the FFT calculation. The windowing is set 
automatically to a ‘hamming’ window which is a type of FFT windowing that leaves a slight 
discontinuity and gives a more accurate peak reading. The compute() function actually computes 
the FFT and the ComplexToMagnitude() calculates the magnitude of the complex results. Once 
the FFT is computed, a frequency variable ‘freq’ is set to the major peak (largest spike in 
analyzed signal) which is the dominant frequency of the signal. This value is then serial printed 
so that it can read from the serial monitor.  

 

Figure 8: Example of the classification of the note found by the FFT and illuminating 
corresponding LEDs. 



The final block of code in the main Arduino loop is the note detection and powering the LED 
circuit. The if statement above is repeated for each note to detect if it is within the frequency 
range. If the note is detected to be within the range, the name of the note detected is serial printed 
and then the corresponding output pin is powered for 2 seconds. 

A separate but related Arduino sketch was used to sample tones and print the data to .CSV files 
to be used in MATLAB. This sketch was much simpler than the one used for lighting the LEDs. 
It needed to have a higher sampling frequency so that it could get 20 samples per second for the 
project requirement. The code, shown in Appendix 2, takes in the same data as the other arduino 
code, but it manipulates the ADC using registers to maximize speed. The code used to set the 
registers of the ADC is shown below. 

 

Figure 9: Register adjustments made for taking in voltage data to be output into a .CSV file. 

Most of the bits of both ADCSRA and ADMUX were set to their default values, but bits 2 
through 0 of the ADCSRA register were set to 110 to set the ADC clock speed to 1/64 of its 
original speed. This is to increase the ability to sample at higher frequencies. Also, rather than 
serial printing the voltage value during every sampling period, the data is gathered in an array 
and serial printed all at once at the end of the code. The serial monitor can then be used to copy 
voltage data into a CSV file for plotting in MATLAB. 

 

 

Block 5: MATLAB 
 
The MATLAB script for this project is used to plot voltage over time data read from a CSV file 
generated by the Arduino taking input from the microphone amp. After the voltage is plotted, the 
power vs frequency plot is generated using MATLAB’s fft() function. Finally, the signal to noise 
ratio (SNR) is calculated and plotted using MATLAB’s snr() function. 
 
For each note, the CSV file generated is loaded into MATLAB in the form of a table. That table 
is then turned into an array. The sampling frequency of the given CSV file is also taken in from 
the Arduino code and loaded into MATLAB. The code for the above mentioned processes along 
with the process of creating the time scale is shown in the figure below.  
 



 
Figure 10: MATLAB code for taking in data from CSV file 

 
When taking in data, the data variable has to be changed to the name of the CSV file and Fs has 
to be changed to the sampling frequency of the data in the CSV file. The code will automatically 
turn the ADC values in the CSV file into voltage values. The code also calculates the sampling 
period and creates a time vector against which the voltage values can be plotted. Once the data 
has been transferred to MATLAB, the fft() function is used to find the power vs frequency 
distribution of the voltage data. The code for the FFT section is shown in the figure below. 
 

 
Figure 11: MATLAB code for taking the FFT of voltage data 

 
After the FFT has been taken, the SNR of the voltage data is taken and all of the information is 
plotted. The voltage over time data is plotted, the power vs frequency data is plotted, and the 
SNR plot is plotted. All three of these subplots are placed into one figure. The code for this 
section is shown in the figure below. 
 

 
Figure 12: MATLAB code for plotting data and taking SNR 



4 Testing  
 
For this section of the report, each block of the block diagram was tested or simulated with mock 
data to see how that particular block functions on its own. Then, all the blocks can be brought 
together to create the full circuit. 
 
Block 1: Instrument/Tone Source 
 
To test the tone source, all of the necessary notes were played with the signal generator app on a 
cellphone. They all worked. 
 
Block 2: Microphone with Circuitry 
 
When the microphone amplifier was first built with the original gain of 110, the functionality of 
the microphone with attached circuitry was tested using a DMM to measure the microphone’s 
output current. In this stage of the design, it was found that the microphone was not working 
properly, with a much lower current flow than the calculated maximum current flow in Section 3 
above. This lack of current flow was taken into account as a malfunction by the microphone, 
giving reason behind the lack of output voltage the microphone amplifier with a gain of 110 was 
producing. After manipulating the gain to a much higher value of 501, the microphone was able 
to be used to output a voltage greater than 1 volt in amplitude. This circumvention of the 
microphone problem by raising the overall gain of the amplifier (though not ideal) allowed for 
sufficient analysis for the purposes of this project.  
 
Block 3: Microphone Amplifier 
 
To simulate the workings of the designed microphone amplifier circuit, LTSpice was used. Two 
different simulations were run; one pertaining to finding the desired gain of the amplifier, and 
one to represent the filter design of the circuit.  
 
For the gain simulation, an AC current source with 7.221 A current at 440Hz was simulated.μ  
This AC current source is used to mimic the workings of the microphone circuit block working 
at its maximum output current with a frequency that’s in the range of notes to be analyzed (A4). 
Both the amplifier and the circuitry in this simulation is powered by a 5V source to correspond to 
the 5V source from the Arduino Nano.  
 



 
Figure 13: Schematic in LTSpice of the microphone amplifier design. 

 

 
 

Figure 14: Plot of input and output voltage over time for circuit gain analysis.  
 

Analyzing Figure 13, it can be found that the biasing resistor (R1) biases the input of the 
amplifier to a voltage of 2.5V. The amplitude of the input signal can be found to be 0.0303V, 
which is far too small to be analyzed by the Arduino Nano accurately. The output voltage was 
taken after the 3 F capacitor C4 to bias the output back to 0. Had the analysis taken place on theμ  
left side of C4, the signal would be biased at the input voltage of 2.5V. The voltage plot for the 
output, however, has a somewhat peculiar shape which is much more aggressive than that of the 
input signal. This may be attributed to limitations to the LMC6032, implying that the output 
voltage is “clipping” before it can hit its maximum amplitude. With the fault found in the 
microphone used, it was believed that this clipping would not be experienced during the physical 
implementation and was thoughtfully overlooked for the time being. The amplitude of the 
simulated output signal was calculated to be 4.796V, as the maximum and minimum voltage 



values were 2.429V and -2.429V, respectively. Taking the gain to be the ratio of output voltage 
over input voltage, it was found that the gain of the simulation was 158.3 .V

V  
ain 58.3G =  Input V oltage 

Output V oltage = 4.796
0.0303 ≈ 1  

 
By using the frequency sweep command in LTSpice, the effects of the four filters in the 
microphone amplifier could be visualized. The command used in LTSpice tested frequencies 
from 0.1Hz to 16kHz to fully encompass the expected cutoff frequencies each of the filters has. 
Figures 15 and 16 below show both the schematic used in LTSpice as well as the frequency 
analysis.  

 
Figure 15: Schematic used for the frequency analysis of the microphone amplifier.  

 

 
Figure 16: Filter analysis of the microphone amplifier.  

 
Figure 16 shows the frequency response of both the input and output of the amplifier design. As 
apparent in the frequency response of the input node, filter 1’s cutoff frequency limits the effect 
of frequencies below approximately 4 Hz, while the rest of the frequencies can pass through. 
Analyzing the output frequency response, it is apparent that filter 2’s cutoff frequency of 15 Hz 



allows for signal frequencies above the cutoff to pass to the output, while all frequencies above 
1kHz begin to taper off.  
 
Block 4: Arduino Nano 
 
The Arduino code was tested to have the proper sampling frequency by recording the time of 
micros() before the sampling begins and then checking how long it took to sample by using 
micros() after sampling is complete. This time is divided by the number of measurements and 
checked against the sampling frequency. Using this method, it was found that the Arduino code 
had the ability to sample up to 18kHz.  
 
Block 5: MATLAB 
 
To test the MATLAB code, a simple signal containing two sine waves and 0.2 volts of random 
noise was put through the FFT and SNR calculations. The frequencies of the two sine waves 
were 261 and 440 Hz, respectively, and their amplitudes were each 0.5. The signal was biased at 
2.5V. The following figure shows the results of the FFT and SNR calculations for that signal. 
 

 
 

Figure 17: MATLAB FFT and SNR results for Test Signal 
 
As can be seen from the figure above, the FFT analyzes the signal and picks out very close to the 
proper frequencies. It got 259 Hz instead of 261 and 442 Hz instead of 440. This is within the 
5% interval that it needs to be, so this FFT code checks out. And the SNR is non zero, showing 
that there is noise. 
 
 
 
 
 
 



5 Results  
 
The microphone circuit was built in a small protoboard according to the schematic in figure 2. A 
picture of the finished circuit can be seen in the figure below. The inputs, outputs, and 
components are labeled. 
 

 
 

Figure 18: Microphone Circuit 
 
The microphone amplifier circuit was also assembled according to the schematic, but in a larger 
protoboard. The completed circuit, with inputs, outputs, components, and filters labeled. 
 

 
 

Figure 19: Microphone Amplifier Circuit 
 
The microphone, amplifier, Arduino, and LEDs were set up according to the block diagram. The 
figure below shows the microphone circuit and the microphone amplifier in one circuit together. 



 
Figure 20: Finished Microphone Circuit Schematic 

 
Once everything was set up, the Arduino code was loaded onto the Arduino board and the circuit 
started receiving information. The tone source (cellphone with a signal generator) was held 10ft 
away from the microphone and set to play a C4 (261 Hz). After the Arduino gave its output to 
the serial monitor, the button on the Arduino was pressed to start the code again, and the next 
note was played. This process was repeated for all of the notes up to C5. The serial output of the 
Arduino for this test of all notes is shown in the figure below. The following figure shows that 
the LED corresponding to C4 lights up when a C4 note is played by the signal generator. 
 

 
 

Figure 21: Serial Monitor Output for Circuit 



 

 
 

Figure 22: Validation of the LED circuit function with a note of C4. 
 
After the circuit was proven to detect the proper notes from 10 ft away and light up the correct 
LED, the circuit was used to take in some data purely for the purpose of data analysis. The 
Arduino code with the faster sampling rate (shown in Appendix 2) was loaded onto the Arduino 
and the same test was done as above with all 8 notes. Except this time the phone was held at only 
1 inch from the microphone in order to be able to see what note was being played. And the 
sampling frequency for each note was set to 20 times the frequency of the note (to reach the 20 
samples per period requirement). 
 
The CSV files containing voltage data for each note were loaded into MATLAB and then the 
following 8 figures were created, one for each note. Each figure contains 3 plots. The first plot is 
the voltage over time data for the note being played into the microphone. The second plot shows 
the power vs frequency plot generated by an FFT. The third plot also shows the frequency data 
that it uses to calculate the SNR. 
 
Important data points are labeled on these figures, like the frequencies of harmonics and the 
SNR. For convenience sake, there is also a table showing all of this important data. The table is 
shown following the 8 figures. 
 



 
 

Figure 23: C4 Note Voltage, FFT, and SNR plots 
 

 
 

Figure 24: D4 Voltage, FFT, and SNR plots 
 



 
 

Figure 25: E4 Voltage, FFT, and SNR plots 
 

 
 

Figure 26: F4 Voltage, FFT, and SNR plots 



 
 

Figure 27: G4 Voltage, FFT, and SNR plots 
 

 
 

Figure 28: A4 Voltage, FFT, and SNR plots 



 
 

Figure 29: B4 Voltage, FFT, and SNR plots 
 

 
 

Figure 30: C5 Voltage, FFT, and SNR plots 
 
 
 
 
 



Table 2: Final Results for All Notes 
 

 
Many of the frequencies calculated by the FFT do not match up perfectly with the actual 
frequency of the note. In most cases, it was found that this was merely an issue with binning. For 
example, D4 was measured at 312 Hz when the actual is 293 Hz. But the 2nd harmonic, which 
would be twice the original frequency was 600. Which puts the original at 300, much closer to 
the actual. The Arduino was at its maximum number of samples, so the resolution of the FFT 
could not go any lower without sacrificing the 20 samples per period requirement. 
 
The maximum voltages measured were all much higher than expected. It might have to do with 
the gain of 500 in the microphone amp circuit or the fact that the tone source was held directly in 
front of the microphone. But it did not affect the data much. Just a larger signal. The SNR values 
calculated were all below the required SNR of 20, but many of them were very close. It might 
have something to do with the fact that the voltage input was not given a DC bias before being 
input into the ADC. The ADC cannot read negative voltages, so the signal was clipped at zero, 
possibly causing more noise. 
 
 
 

6 Conclusion  
 
Overall this project was successful. The tone detector worked correctly, detecting frequencies 
from 10ft and outputting above a 1V signal.  
 
Each block of the circuit was designed, tested, prototyped, then implemented. The electret 
microphone and amplifier circuit were drawn out as schematics, with each block testing and 
verified individually on LTSpice before testing and verifying the entire circuit again on LTSpice. 
From here the circuits were built physically on a breadboard and tested with a DMM and once 
verified, they were soldered into protoboards.  
 

Note 

Actual 
Frequency 
(Hz) 

Measured 
Frequency 
(Hz) 

2nd 
Harmonic 
(Hz) 

3rd 
Harmonic 
(Hz) 

4th 
Harmonic 
(Hz) 

Max Voltage 
Amplitude (V) 

SNR 
(dB) 

C4 261.63 278.33 535.25 813.59 1070.51 3.00 13.57 

D4 293.66 312.46 600.88 913.34 1201.76 2.80 17.68 

E4 329.63 350.85 701.70 1025.55 1376.40 2.90 17.78 

F4 349.23 372.18 715.72 1059.27 1431.45 2.90 13.8 

G4 392.00 418.03 836.06 1254.09 1639.97 3.00 12.29 

A4 440.00 469.22 902.344 1371.56 1804.69 2.00 16.58 

B4 493.88 525.74 1051.48 1577.21 2143.39 2.60 18.47 

C5 523.25 557.73 1115.46 1673.19 2188.02 2.70 16.92 



Code for the Arduino was written bit by bit debugging along the way until it reached the desired 
functionality of detecting the tone with an FFT calculation and powering the correct LED.  Once 
the code was verified working for test data, the circuit and the Arduino were connected together 
and the whole system was confirmed working together.  
 
The MATLAB code was written to take in data from the Arduino code, and then the SNR and 
FFT functions were implemented based on their documentation. It was tested with simulated 
signals, then given some data from an actual test to confirm that it worked correctly. 
 
After the entire design was verified and the analysis completed it was time to compile the 
documentation done along the way into this final report.  
 
 
Project Timesheet Data  
 
Throughout the project the team recorded the approximate amount of time spent working per 
day. Our team's overall communication and collaboration worked extremely well, with no 
problems to report. Much of the time spent working on the project was done in person together at 
one of the three member’s houses. The team being comfortable with in-person meetings was an 
advantage as completing this project 100% virtually would likely not have went as smoothly.  
 
 

Table 3: Time sheet of hours worked on the project.  
 

Date 
Kyle 
(hrs) 

Samuel 
(hrs) 

Miles 
(hrs) Task 

10/21 0.5 0.5 0.5 Getting familiar with project and requirements 

10/22 1 1 1 Building microphone circuit 

10/29 5 5 5 
Troubles with gain, but simulated some working designs 
on LTspice. 

10/30 1 1 1  

11/3 3 3 3 
Mic amp gain and building and testing and circuit. Error in 
gain? 

11/10 3 3 3 "first draft" of mic amp on protoboard and testing 

11/12 2 2 2  

11/19 4 4 4 Arduino FFT and FFT background 

11/22 3 3 3 
Arduino IDE progress - voltage v time, note accuracy. 
MATLAB analysis 

11/24 4 3 3 ^ 

11/25 2 2 2 Arduino sampling improvements 

11/27 1 1 1 ^ 



 
 
 
 

 
 

Figure 31: Work Time Graphs 
 
As seen in the datasheet above, every member of the group put in a fairly equal amount of time 
on the project which was somewhere around 47 hours total. Over the course of 5 weeks this is a 
reasonable amount of time which resulted in a successful project. The team could have been 
more efficient with time as small problems often caused large hold ups, with hours or even days 
spent on fine details.  
 
The graph compiled from the timesheet shows that a relatively even amount of time was spent 
throughout the project from start to finish. The team got an early start which helped to even out 
the time and reduce the ‘crunch time’ intensity.  
 
 

11/28 2 4 4 ^ 

11/29 3 3 3 
Final signal sampling for MATLAB analysis (FFT, SNR, 
Voltage over time) 

11/30 2 2 2 ^ 

12/1 2 3 2 Final Report 

12/2 2 3 3 ^ 

12/3 1 2 1 ^ 

12/4 4 3 4 ^ 

Total 45.5 48.5 47.5  



 
Improvements  
 
The system worked, but it was not perfect. Below are a few improvements that could be made if 
the project was replicated.  
 
A simple improvement that could be made was better circuit layout design and physical 
construction. The protoboards worked well, but lots of jumper wires and breadboards were still 
required for testing which often proved problematic. Loose connections took sometimes 15 
minutes to troubleshoot which was all time wasted. Once the circuit is tested and verified, a well 
thought out protoboard or ‘workbench’ board with easy access and sturdy testing points would 
be very helpful.  
 
Another aspect that could be improved upon is the noise of the system as a whole. Our team 
made an effort towards this by separating clean and dirty ground, and using clean power sources, 
but the end system was still noisy and it could be seen in the data. Further detecting and isolation 
where the noise is coming from would give a cleaner signal to be analyzed and a more accurate 
frequency calculation. Some of the unfiltered noise may be attributed to the LMC6032 Op-Amp, 
as increasing the input voltage to the op-amp resulted in higher noise levels on the output 
terminal. The LMC6032 consists of 2 separate op-amps with pins located on either side of the 
component. For the purpose of this project, only one of the two op-amps were used, and (as 
brought up in lecture) connecting the remaining pins to ground may have decreased the noise 
enough to bring our SNR values up to reach the desired value of 20 dB. Another solution to the 
noise problem found may be reducing the gain to the minimum level to achieve an output voltage 
when the microphone was stimulated may reduce the clipping found in our analysis. This 
clipping may be increasing noise by pushing the boundaries of the LMC6032 and other 
components, making a more distorted and “noisy” output signal. 
 
Another possibly more complex improvement would be further streamlining the Arduino code. 
This could be done by creating a self adjusting frequency that changes the sampling frequency 
based on a first rough estimate of the frequency of the tone. Using a sampling frequency as close 
to twice the expected tone frequency makes the FFT calculation much more accurate. Other 
information surrounding the FFT could likely be found and implemented into the code as well.  
 
One improvement that could be made to the MATLAB portion of the project would be to 
automate the process of taking in data from the CSV file, or even directly from the Arduino. As 
it is now, the Arduino outputs voltage data to serial, and then that data is copy and pasted into 
MATLAB along with the sampling frequency. If the Arduino could tell MATLAB the sampling 
frequency as well as loading the data in automatically, the process would be much more 
streamlined. 
 
 
Skills Gained 
 



This project had many parallels to professional engineering. As with every large project, the 
management and process as a whole is an important skill that will be used in nearly any career. 
Understanding what needs to get done, making a plan, then executing it in a timely manner is at 
the base of every project no matter the size.  
 
Along with these soft skills of professional work and communication, many technical skills were 
gained that will be useful in future schooling and eventually careers. Testing designs using 
available resources and verifying your own designs before moving on is one example.  
 
Some more specific technical skills gained were introductions to signal processing and analog 
circuits. Some of the team members are interested in focusing on these topics and creating 
careers around them so this project was a very good first taste in that aspect.  
 
One thing that can not be overlooked throughout this project is independence. Given the 
circumstances with remote instruction, no available labs or lab equipment, and no ability for  in 
person TA or instructor help to verify our designs, this project was a lesson on using what you 
have. Nearly all of the problems and concepts were figured out via our own research. Although 
this is not always possible and it is more efficient to use resources as they are available, knowing 
that a project like this can still be completed with minimal help boosts confidence.  
 
 
Final Thoughts 
 
Overall this project was both fun and meaningful. Lots of experience was gained on a technical 
level as well as on a personal level. It was challenging but paid off in the end to see a finished 
product. 
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8 Appendixes  
 
Appendix 1 - Overall Arduino Sketch for FFT and Tone Detection 
 
/* ECE 341      TONE DETECTOR ARDUINO CODE  

 *  

 * AUTHORS:     Kyle Barton , Samuel Barton, Miles Drake 

 *  

 * DATE:        November 22, 2020 

 *  

 * DESCRIPTION: This code takes in raw analog voltage data from the microphone  

 *              amplifier circuit via ADC sampling and performs a Fast Fourier Transform calculation  

 *              on the data, finding the frequency of the highest energy sound detected. This  

 *              information is then used to power a digital output pin with 5V based  

 *              on which frequency is detected.This program only provides an approximation of the frequency.  

 *  

 * REFERENCES:  Code is based off Clyde A. Lettsome's code retrieved from this Arduino project:  

 *              https://create.arduino.cc/projecthub/lbf20012001/audio-frequency-detector-617856  

 */ 

 

 

/* Required libraries */ 

#include "arduinoFFT.h" 

 

/* Global Variables */ 

#define SAMP_FREQ 1050 

#define NUM_SAMP 64 

 

unsigned int samp_period; 

unsigned long timing; 

 

/* Vectors to hold samples */ 

double real[NUM_SAMP];  

double imag[NUM_SAMP];  

double freq; 

 

/* Create object named FFT from library */ 

arduinoFFT FFT = arduinoFFT(); 

 

 

 

void setup() { 

 

  /* Begin serial comm */ 

  Serial.begin(115200); 

 

  /* Set sampling period */ 

  samp_period = round(1000000 * (1.0 / SAMP_FREQ)); 

 

  /* Set digital output pins to power LEDs */ 

  pinMode(3, OUTPUT); 

  pinMode(4, OUTPUT); 

  pinMode(5, OUTPUT); 

  pinMode(6, OUTPUT); 

  pinMode(7, OUTPUT); 

  pinMode(8, OUTPUT); 

  pinMode(9, OUTPUT); 

  pinMode(10, OUTPUT); 

 

} 

 

 

 

void loop() { 

 

  /* Sampling */ 

  for (int i=0; i<NUM_SAMP; i++) { 

 

    /* Time since Arduino began script */ 

    timing = micros(); 

 

    /* Take in ADC measurement from pin A0 */ 

    real[i] = analogRead(0); 

 

    /* Set imaginary term of sample to 0 */ 



    imag[i] = 0; 

 

    /* Pause to set frequency */ 

    while((samp_period + timing) > micros()){ 

    } 

  

  } 

 

 

  /* FFT */ 

  FFT.Windowing(real, NUM_SAMP, FFT_WIN_TYP_HAMMING, FFT_FORWARD); 

  FFT.Compute(real, imag, NUM_SAMP, FFT_FORWARD); 

  FFT.ComplexToMagnitude(real, imag, NUM_SAMP); 

 

  /* Calculate most prominant frequency */ 

  freq = FFT.MajorPeak(real, NUM_SAMP, SAMP_FREQ); 

  Serial.println(freq); 

 

 

  /* Calculate note and power corresponding output pin */ 

  if ((freq > (261.63 * .95)) && (freq < (261.63 * 1.05))) { 

    /* Print note */ 

    Serial.println("Note: c4"); 

    /* Write pin high for 2 seconds */ 

    digitalWrite(3, HIGH); 

    delay(2000); 

    digitalWrite(3, LOW); 

    delay(2000); 

  

  } 

  if ((freq > (293.66 * .95)) && (freq < (293.66 * 1.05))) { 

    Serial.println("Note: d4"); 

    digitalWrite(4, HIGH); 

    delay(3000); 

    digitalWrite(4, LOW); 

    delay(3000); 

  } 

  if ((freq > (329.63 * .95)) && (freq < (329.63 * 1.05))) { 

    Serial.println("Note: e4"); 

    digitalWrite(5, HIGH); 

    delay(3000); 

    digitalWrite(5, LOW); 

    delay(3000); 

  } 

  if ((freq > (345.45)) && (freq < (349.23 * 1.05))) { 

    Serial.println("Note: f4"); 

    digitalWrite(6, HIGH); 

    delay(3000); 

    digitalWrite(6, LOW); 

    delay(3000); 

  } 

  if ((freq > (392 * 0.95)) && (freq < (392 * 1.05))) { 

    Serial.println("Note: g4"); 

    digitalWrite(7, HIGH); 

    delay(3000); 

    digitalWrite(7, LOW); 

    delay(3000); 

  } 

  if ((freq > (440 * .95)) && (freq < (440 * 1.05))) { 

    Serial.println("Note: a4"); 

    digitalWrite(8, HIGH); 

    delay(3000); 

    digitalWrite(8, LOW); 

    delay(3000); 

  } 

  if ((freq > (493.88 * .95)) && (freq < (493.88 * 1.05))) { 

    Serial.println("Note: b4"); 

    digitalWrite(9, HIGH); 

    delay(3000); 

    digitalWrite(9, LOW); 

    delay(3000); 

  } 

  if ((freq > (518.574)) && (freq < (523.25 * 1.05))) { 

    Serial.println("Note: c5"); 

    digitalWrite(10, HIGH); 

    delay(3000); 

    digitalWrite(10, LOW); 

    delay(3000); 

  } 

 

 



  /* Only run code once */ 

  while(1); 

} 

 

Appendix 2 - Arduino script for .CSV file of voltage over time plot to be analyzed in MATLAB. 
 

#include <avr/io.h> 

 

 

#define SAMP_FREQ 8800 //set to 20x expected frequency of signal 

#define NUM_SAMP 512 

 

unsigned int samp_period; 

unsigned long timing; 

unsigned int adcin[NUM_SAMP]; 

 

/* Vectors to hold samples */ 

double real[NUM_SAMP]; 

 

 

void setup() { 

 

  /* Begin serial comm */ 

  UCSR0A = 0b00100010; 

  UCSR0B = 0b00001000; // bit 2 in this one and 

  UCSR0C = 0b00000110; // bits 2 and 1 in this one control the # bits of the serial out 

  UBRR0H = 0b00000000; 

  UBRR0L = 0b00000000; 

 

  ADCSRA = 0b11110110;//Bit 7 (ADEN) is set to 1 to enable the ADC 

                      //Bit 6 (ADSC) is set to 1 to start conversion 

                      //Bit 5 is set to 1 to enable auto trigger 

                      //Bit 4 is set to 1 to clear the interrupt flag 

                      //Bit 3 is set to 0 to deactivate complete interrupt 

                      //Bits 2 through 0 are set to 0 to select a 1/2 clock division for the ADC 

  

  ADMUX = 0b01100000; //Bit 7 and 6 are set to 0 and 1 respectively to select AVcc as the reference voltage 

                      //Bit 5 is a 1 to left adjust ADC output 

                      //Bit 4 is unused 

                      //Bits 3 through 0 are set to 0 to select Analog Input A0 as the input to the ADC using the 

input mux 

  

  /* Set sampling period */ 

  samp_period = round(1000000 * (1.0 / SAMP_FREQ)); 

} 

 

 

void loop() { 

  unsigned long begintime = micros(); 

  /* Sampling */ 

  for (int i=0; i<NUM_SAMP; i++) { 

 

    /* Time since Arduino began script */ 

    timing = micros(); 

 

    adcin[i] = (ADCH<<2); //take in the 8 MSBs from the ADC and shift to the left. 

 

    /* Pause to set frequency */ 

    while((samp_period + timing) > micros()){ 

    } 

  

  } 

 

  //Serial.println(micros()-begintime); 

  /* Only run code once */ 

  for (int n=0; n<NUM_SAMP; n++) { 

    Serial.println(adcin[n]);  

  } 

  while(1); 

} 

 

Appendix 2 - MATLAB code for taking in data from CSV file and plotting voltage, FFT, SNR 
 
%--------------- Sampling Info -------------------% 
Fs = 9860; %Sampling Freq 
Ts = 1/Fs; %Minimum timestep 
 
%--------------- Data Input ----------------------% 



data = b49860512;  %Take in data as a table 
adcinput = table2array(data);  %Change data into an array 
voltage = adcinput/1024*5;  %Turn ADC values into voltage values 
 
time = 0:Ts:(length(voltage)*Ts-Ts); %Create a time array for the given sampling freq 
 
%--------------- FFT Calc ------------------------% 
nfft = length(voltage);  %Length of fft 
nfft2 = 2^nextpow2(nfft);  %Find nearest power of 2 for new length 
ff = fft(voltage,nfft2);  %Take the fft 
fff = ff(1:nfft2/2);  %Just the first half because it's mirrored 
xfft = Fs*(0:nfft2/2-1)/nfft2;  %Set the frequency scale using Fs 
 
%--------------- Plotting ------------------------% 
%Plot 1, Time Domain 
subplot(3,1,1); 
plot(time, voltage,'r'); 
title('Voltage Over Time'); 
xlabel('Time (s)'); 
ylabel('Voltage (V)'); 
 
%Plot 2, Frequency Domain 
subplot(3,1,2); 
plot(xfft,abs(fff),'r'); 
title('Frequency Domain'); 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 
ylim([0 300]); 
xlim([0 2500]); 
 
%Plot 3, SNR 
subplot(3,1,3); 
plot(time,voltage); 
snr(voltage,Fs,2); 


