
Adaptation-Based Programming in Java

Tim Bauer Martin Erwig Alan Fern Jervis Pinto
School of EECS

Oregon State University
{bauertim,erwig,afern,pinto}@eecs.oregonstate.edu

Abstract
Writing deterministic programs is often difficult for problems
whose optimal solutions depend on unpredictable properties of
the programs’ inputs. Difficulty is also encountered for problems
where the programmer is uncertain about how to best implement
certain aspects of a solution. For such problems a mixed strategy
of deterministic programming and machine learning can often be
very helpful: Initially, define those parts of the program that are
well understood and leave the other parts loosely defined through
default actions, but also define how those actions can be improved
depending on results from actual program runs. Then run the pro-
gram repeatedly and let the loosely defined parts adapt.

In this paper we present a library for Java that facilitates
this style of programming, called adaptation-based programming.
We motivate the design of the library, define the semantics of
adaptation-based programming, and demonstrate through two eval-
uations that the approach works well in practice. Adaptation-based
programming is a form of program generation in which the creation
of programs is controlled by previous runs. It facilitates a whole
new spectrum of programs between the two extremes of totally de-
terministic programs and machine learning.

Categories and Subject Descriptors D [3]: 3

General Terms Languages

Keywords Java, Reinforcement Learning, Partial Programming,
Program Adaptation

1. Introduction
Programs written in traditional programming languages are typi-
cally deterministic, that is, at every step they specify exactly which
action to take next. In contrast, there are many problems that do
not lend themselves easily to such a deterministic implementation.
This is particularly the case for applications that involve decisions
for which the best choice depends on aspects of the program input
that are unpredictable. Consider, for example, the implementation
of an intelligent agent for a real-time strategy game. If the choices
are to retreat or attack, to wait or advance, to move toward or away
from an object, etc., the best course of action depends on many
aspects of the current game state. It is practically impossible to an-
ticipate all the situations such an agent can be faced with and pro-
gram a specific strategy for each and every case. The programmer is
left with considerable uncertainty about how to write deterministic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’11, January 24–25, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0485-6/11/01. . . $10.00

code that makes good choices across all possibilities. Note, how-
ever, that even in these situations a programmer is still often able to
specify a numeric reward/penalty function that distinguishes good
program behavior from poor behavior. For example, in a real-time
strategy game this reward might relate to the damage inflicted on
an enemy versus the damage taken.

In situations like these, it would be nice if a programmer could
leave specific decisions that they are uncertain about as open and
instead provide “reward” signals that indicate whether the program
is performing well or not. Of course, this would only be useful if the
program could automatically “figure out” how to select actions at
the open decision points in order to maximize the reward obtained
during program executions. One approach to achieve this behavior
is to provide functionality for the program to learn, over repeated
runs of the program, to optimize the selection of actions at open
decision points. This learning functionality should not be visible
for the programmer, who needs only to specify their uncertainty
about decisions and provide the reward signal.

We call this approach to programming adaptation-based pro-
gramming (ABP) because programs are written in a way that de-
fines their own adaptation based on the situations encountered at
runtime. In this paper we describe the realization of ABP as a li-
brary for Java. The design of this library [4] has to address many
questions. For example:
• How can program decisions be made adaptable? We need con-

structs to mark parts of a program as adaptable, and we must be
able to specify default and adaptive behaviors as well as rewards
and the allocation of rewards to behaviors.

• What granularity of adaptation should be supported? How can
rewards be shared among different decisions, and how can they
be kept separate if needed? How can adaptation be properly
scoped with respect to program time and locality?

• What mechanisms do programmers need for controlling the
adaptation process? Under which conditions can a decision be
considered fully adapted as opposed to still adapting? How can
adaptations be made persistent?

Answers to these questions determine the design of a library for
adaptation-based programming, and will be addressed in Section
2 by discussing variations of a small ABP example. Specifically,
this section provides a programmer’s point of view on the library
design, which is an important aspect since ease of use and clarity
of concepts is an essential precondition for a widespread adoption
of a library.

Our library is designed to be used by regular programmers,
not machine-learning experts. Hence this work is distinct from
Java reinforcement learning libraries (e.g. [20]). In fact, the user is
insulated from the details of the RL algorithm used and they need
not understand its implementation to use our library. By design the
library interface and concepts necessary to use it are minimal.

Before we describe the details we briefly discuss the question
regarding the scope of program adaptation supported by our ABP
library. One could certainly envision the adaptation of, say type

definitions, in response to repeated program executions to opti-
mize data representations. Similarly, the change of control struc-
tures could be a response to feedback gathered from runtime infor-
mation. However, one practical problem with such an approach is
that it generally requires recompilation of programs after adapta-
tion, which leads to a more complicated framework compared to
a system that only works completely within a single compiled pro-
gram. Moreover, if the adaptation system does not require recompi-
lation, this will certainly lead to a more efficient runtime behavior
of adaptation, which is a very important aspect since problems that
are amenable to ABP often require an enormous number of pro-
gram runs to successfully adapt, see also Section 4. The design of
our Java ABP library is therefore based on compilation-invariant
adaptations.

The remainder of this paper is structured as follows. After
illustrating the use of our Java ABP library in the next section,
we will provide a more formal description of the semantics of
ABP in Section 3. In particular, we will describe the meaning of
an ABP program as an optimization problem and then define the
meaning through the learning of good (or optimal) policies. Section
4 provides an evaluation of our library using a dice game and a real-
time strategy game. We discuss related work in Section 5, future
work in Section 6, and conclude with Section 7.

2. Library Support for ABP in Java
To illustrate our program generation approach suppose we are im-
plementing a simple hunting simulation involving two wolves hunt-
ing a rabbit. Our goal is to write a program where the wolves work
together to trap the rabbit.

In Section 2.1 we provide some implementation details about
the example application to set the stage for the application of ABP.
In Section 2.2 we then illustrate how to realize the application us-
ing our ABP library. We will also use the example to motivate the
design of the library components. In Section 2.3 we discuss some
additional aspects regarding the programmer’s control over the ma-
chine learning process. In particular, we show how a programmer
can improve (that is, speed up) the adaptation process by coding
insights about the domain. Finally, we discuss in Section 2.4 the
flexibility and safety that our library design offers for working with
multiple adaptations.

2.1 Example Scenario
Our game world’s state is represented by a two-dimensional grid as
in the class given below.

class Grid {
Grid moveWolf1(Move m);
Grid moveWolf2(Move m);
Grid moveRabbit(Move m);

boolean rabbitCaught();

...

static Grid INITIAL;
}

This class maintains the coordinate positions of each animal on
the grid and implements game logic and rules. We omit some
of the details that are not important for the following discus-
sion. Changes to the state are made via three move methods
moveWolf1, moveWolf2, and moveRabbit. Each of these methods
returns a new Grid with the move applied. Additionally, a method
rabbitCaught is given that checks to see if the rabbit has been
captured in the current game grid. The static constant INITIAL cor-
responds to the instance of the world with the wolves at the top-left
and the rabbit at the bottom right. This is used for the game’s initial
configuration.

Permissible moves for each animal are described via a Move
enumeration.

enum Move {
STAY,LEFT,RIGHT,UP,DOWN;

static final Set<Move> SET =
unmodifiableSet(EnumSet.allOf(Move.class));

}

For our example the Rabbit class given below is an interface for
any number of fixed strategies that the rabbit may take.

abstract class Rabbit {
abstract Move pickMove(Grid g);
static Rabbit random();

}

The static method random returns a rabbit that moves randomly.
A game proceeds as follows. First, the rabbit may observe the

location of the wolves and then move one square in any direction.
Next, the first wolf gets to observe the rabbit’s move and move
itself. After that the second wolf gets to observe both prior moves
and then move itself. If at the end of a round either wolf has landed
on the rabbit’s square, the rabbit is captured. Otherwise, the hunt
continues.

To make the problem more interesting we allow the x-
coordinate of the world to wrap. Hence an animal at the left end
of the grid can wrap around to the right end and vice versa. In this
way, the rabbit could always escape if the wolves close from the
same direction. Hence, the wolves must be smart enough to coop-
erate and close from opposite directions.

A programmer solving this problem with the above definitions
might initially sketch out pseudocode such as that given below.

Rabbit rabbit = Rabbit.random();
Grid g0 = Grid.INITIAL;
while (true) {

Move rabbitMove = rabbit.pickMove(g0);
Grid g1 = g0.moveRabbit(rabbitMove);

// ... pick move for wolf 1
Move wolf1Move = ???
Grid g2 = g1.moveWolf1(wolf1Move);

// ... pick move for wolf 2
Move wolf2Move = ???
Grid g3 = g2.moveWolf2(wolf2Move);

if (g3.rabbitCaught()) {
... raise our score a large amount
break;

}

g0 = g3;
... lower our score a small amount

}

The grid g0 represents the world state at the beginning of the loop
each iteration. Again this includes the location of each animal. We
move each animal as described before in the rules. The Grids g1,
g2, and g3 correspond to the game state after each animal’s move.

For now, we are uncertain about how to select the wolf moves,
so we indicate that with question marks. Near the end of the loop,
we check to see if the rabbit has been captured. If not, we reassign
g0 and perform another round.

This pseudocode motivates some observations.
• There is a natural sense of constrained uncertainty when our

wolves select their moves. They have to pick one of a small
finite set of moves.

• We can consider the score as a reward or indicator of success
or failure. It can be used as a metric telling us how successful
our wolves are. Moreover, it suggests that it is easier to classify
good and bad solutions than to generate them.

• There is an inherent dependency between each wolf’s strategy.
They must work together. Moreover, the reward or score applies
to both as they share a common goal.

2.2 Adaptation Concepts
The coupling between choice and reward suggests that some sort
of abstraction could automatically select sequences of moves and
then evaluate those moves by checking the score. Over time, this
abstraction could identify better and better sequences of choices so
as to optimize their average reward. Implementing these notions is
the goal of our ABP library which we now describe.

We define an adaptive variable (adaptive for short) as one of
these points of uncertainty in a program where we must make some
decision amongst a small discrete set of choices. A value generated
by one of these variables is called an adaptive value. We call the
location of this uncertain selection a choice point.

An adaptive can suggest a potential action at a choice point. But
in order to do so, it requires some unique descriptor that identifies
the state of the world. In our above example, there are two points of
uncertainty, namely the wolf move selection indicated with ???. In
our library we represent adaptive variables via the Adaptive class
shown below.

public class Adaptive<C,A> {
public A suggest(C context, Set<A> actions);

}

Adaptive values are parameterized by two type variables. The first
(C) corresponds to the context or world state, and the second (A)
corresponds to the type of permissible actions that the adaptive can
take.

The context parameter C gives the library a clean and efficient
description of what the world looks like at any given point. In our
hunting example, this will initially be the Grid class.

The suggest method is our way of asking the adaptive for an
appropriate value for some context. Moreover, we pass a set of
permissible actions for the adaptive to choose from. We are asking
the adaptive value, “If the state of the world is context, what is a
good move from the set of actions?”

In our wolf hunt example, each of our wolves could be repre-
sented by an adaptive. The context type parameter would be the
world state Grid, and the action type would simply be a Move. We
illustrate this shortly.

The dependency between the moves we select for our wolves
elicits another important observation: multiple adaptives might
share a common goal. Under this view our adaptive wolves must
share a common reward stream. The score in the game (the reward)
applies to both wolves, not just one. This sharing of rewards asks
for a scoping mechanism that allows the grouping of multiple adap-
tive variables.

We define this common goal as an adaptive process. It repre-
sents a goal that all its adaptives share, it distributes rewards (or
penalties) to its adaptives, and it manages various history informa-
tion that its adaptive variables learn from.

We show the basic interface in our ABP framework defining an
adaptive process below.

public class AdaptiveProcess {
static AdaptiveProcess init(File status);
public <C,A> Adaptive<C,A>

initAdaptive(Class<C> contextClass,
Class<A> actionClass);

public void reward(double r);
public void disableLearning();

}

A new adaptive process is created via the class’s init method. The
source file argument permits the AdaptiveProcess to automati-
cally be persisted between runs. The first time the program is run,
a new file is created to save all information about adaptives. When

the program terminates, the process and all its adaptives are au-
tomatically saved. Successive program invocations will reload the
learning process information from the given file. This persistence
permits the adaptive variables contained in the process to evolve
more effective strategies over multiple program runs.

Individual adaptives are created with the initAdaptive
method. The context and action type parameters are passed in as
arguments, typically as class literals. This permits us to dynami-
cally type check persisted data as it is loaded.

In our wolf example we would use the following code to initial-
ize our process and the adaptives for each wolf.

public class Hunt {
public static void main(String[] args){

AdaptiveProcess
hunt = AdaptiveProcess.init(new File(args[0]));

Adaptive<Grid,Move>
w1 = hunt.initAdaptive(Grid.class,Move.class),
w2 = hunt.initAdaptive(Grid.class,Move.class);

We specify the aforementioned rewards of an adaptive process with
the reward method. Positive values indicate positive feedback and
tell the process that good choices were recently made, negative
values indicate bad choices were recently made.

Upon receiving a reward, the adaptive process will consider
the previous actions it has taken and adjust its view of the world
accordingly. This permits later calls to suggest to generate better
decisions. Details of the mechanics are described more formally
in Section 3. We discuss the final method of AdaptiveProcess,
disableLearning, later.

Continuing with the previous block of code, the body of our
game we sketched out earlier in pseudo code could be implemented
as follows.

Rabbit rabbit = Rabbit.random();
Grid g0 = Grid.INITIAL;
while (true) {

Move rabbitMove = rabbit.pickMove(g0);
Grid g1 = g0.moveRabbit(rabbitMove);

// ... pick move for wolf 1
Move wolf1Move = w1.suggest(g1,Move.SET);
Grid g2 = g1.moveWolf1(wolf1Move);

// ... pick move for wolf 2
Move wolf2Move = w2.suggest(g2,Move.SET);
Grid g3 = g2.moveWolf2(wolf2Move);

if (g3.rabbitCaught()) {
// ... raise our score a large amount
hunt.reward(CATCH_REWARD);
break;

}

g0 = g3;
// ... lower our score a small amount
hunt.reward(MOVE_PENALTY);

}
}

}

The interesting pieces of this code are those near the comments
where we filled in adaptive code and we discuss them here. First,
the wolf strategies are as simple as calls to the adaptive variables’
suggest methods. In each case, we pass in the current game state
(the Grid) and the set of all moves Move.SET. Note that every
move is legal; we simply translate moves into walls as Move.STAY
for simplicity.

Second, where we referred to scores earlier, we place calls
to the reward method of the adaptive process representing our
hunting goal. After each unsuccessful round we assess a small
penalty MOVE PENALTY. Once the rabbit is captured we reward a
large amount CATCH REWARD. In our example we use−1 and 1000,

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ov

es
 to

 C
at

ch
 R

ab
bi

t

Learning Games

Full Move Set
Constrained Move Set

Figure 1. Average number of moves to catch the rabbit.

respectively.
If we run the game over multiple iterations, the average number

of moves for the wolves to catch the rabbit drops fairly quickly.
After a few thousand runs the average is between 4 and 6 moves.
With grid dimensions of 3× 4 from the initial state, the worst-
case optimal solution is 4 moves. That is, if the rabbit stays as far
away from the wolves as possible each round, it will take up to 4
moves to capture it. With a random rabbit, we should expect smaller
averages.

The reason for this initial discrepancy is two-fold. First, a few
thousand iterations is not a long time for the adaptive process to
learn an optimal strategy; indeed after a few thousand more games,
the average drops lower. Second, and more importantly, even once
an optimal strategy is found, the adaptive process will continue to
search for better ones and may try suboptimal strategies. An ini-
tially bad looking move might lead to a better overall solution.
Hence, it is necessary for the adaptive process to operate subop-
timally as its adaptive variables try various move sequences.

Recall the disableLearning method of AdaptiveProcess
whose description we deferred earlier. This method tells the adap-
tive process to suspend its search through suboptimal values and
use only the best moves for every given world state. This is a means
for the programmer to indicate to the adaptive process that it should
stop searching and work deterministically with the knowledge it
currently has. During practice we explore new strategies, but dur-
ing the big game we use what we know works. If we transition to
this optimal mode and run the wolf hunt program shown before, the
average number of moves to catch the rabbit drops to around five
after just a few thousand rounds.

In Figure 1 the plot titled “Full Move Set” shows the average
number of rounds necessary to catch the rabbit as a function of the
number of games learned when playing in this optimal mode. We
discuss the second plot presently.

2.3 Optimizing the Adaptation Behavior
Recall in one extreme we consider algorithms that are fully speci-
fied, where the programmer completely describes how to solve the
problem and manually handles all cases. Such algorithms can be
complicated even for easy tasks. In an opposite extreme we offload
the entire strategy to some function that we learn via machine learn-
ing algorithms. But in doing so we forfeit control over various as-
pects of it. Furthermore, debugging such algorithms is difficult.

One of the goals of our ABP library is to offer a middle ground;
the programmer can specify some of the analytical solution, but
leave small pieces to be learned. An example of this is shown by
the suggest method of Adaptive. The second argument takes a
set of permissible moves.

Let us suppose that our programmer implementing the wolf
hunt game observed that any successful strategy would require the
two wolves moving in opposite directions. In that case, we could
easily specify this partial knowledge by passing in a subset of the
permissible moves. We illustrate this by showing a slice of the
earlier code inside the game loop.

// ... pick move for wolf 1
Move wolf1Mv = w1.suggest(g1,setOf(LEFT,DOWN,STAY));
Grid g2 = g1.moveWolf1(wolf1Mv);

// ... pick move for wolf 2
Move wolf2Mv = w2.suggest(g2,setOf(RIGHT,DOWN,STAY));
Grid g3 = g2.moveWolf2(wolf2Mv);

Including the above constraint gives the more efficient “Con-
strained Move Set” plot shown in Figure 1. (The setOf function
just wraps a list into a Set.) This constrained learning permits a
better solution, and one that can typically be learned faster since
the adaptives must explore fewer alternatives.

2.4 Varying Context and Action Types
In general, different adaptives within a process may contain
different context and action types. Recall the method from
AdaptiveProcess to create a new adaptive.

public <C,A> Adaptive<C,A>
initAdaptive(Class<C> contextClass,

Class<A> actionClass);

Hence, the type variables C and A for the context and action type are
applied to the adaptives, not the process. For example, suppose our
hunting game contained a lion and a wolf working together. These
different animals might have completely different capabilities and
different move types. Imagine that a lion can POUNCE as well as
do the other basic moves. Then the adaptive representing the lion
might have a LionMove as its action type and the wolf adaptive
could have a WolfMove.

The parametric polymorphism here gives us some extra static
type checking and saves us having to explicitly cast objects. We are
less likely to ask the wrong adaptive for an incorrect move type.

3. Formalizing ABP: Semantics and Learning
In the previous section, we illustrated how an AdaptiveProcess
allows a programmer to explicitly encode their uncertainty about
a program via Adaptive objects, as well as the desired program
behavior via reward statements. The intention is for the result-
ing adaptive program to learn, over repeated executions, to make
choices for adaptive values that maximize reward. However, the
notions of “learning” and “maximize reward” have not yet been
made precise. In this section, we first formalize these notions
by providing a semantics that defines how a program with an
AdaptiveProcess defines a precise optimization problem that
serves as the learning objective. Next, we describe how this se-
mantics allows us to draw on work in the field of reinforcement
learning (RL) to solve the optimization problem over repeated runs
of the program. Finally, we describe some useful extensions beyond
the basic semantics, which are supported by the library and provide
the programmer with additional flexibility.

3.1 Induced Optimization Problem
For simplicity, and without loss of generality, we describe the se-
mantics for programs that include a single AdaptiveProcess and
where the set of adaptive objects appearing in the program is fixed
and statically determined. We also assume that the context and
action types of each adaptive are discrete finite sets. The relax-
ation of these assumptions is discussed at the end of this sec-
tion. Recall that the Wolf-Rabbit program from Section 2 contains
a single AdaptiveProcess and two adaptives, each responsible
for selecting actions for a wolf via calls to the suggest method.

The programmer did not need to specify an implementation for
suggest, but rather expects that the ABP machinery will optimize
this method for each adaptive in order to produce good program
behavior, that is, capture the rabbit quickly.

To specify the optimization problem induced by an adaptive
program, we first introduce some definitions. A choice function for
an adaptive with context-type C and action-type A is a function
from C to A. A policy for an adaptive program is an assignment
of a choice function to each adaptive that appears in the program.
In the Wolf-Rabbit example, a policy is a pair of functions, one
for each wolf, that returns a movement direction given the current
game context.

Given an adaptive program P and a policy π, we define the ex-
ecution of P on input x with respect to π to be an execution of P
where each call to an adaptive’s suggest method is serviced by
evaluating the appropriate choice function in π. Each such execu-
tion is deterministic and results in a deterministic sequence of calls
to the reward method, each one specifying a numeric reward value.
The sum of these rewards is of particular interest and we will de-
note this sum by R(P,π,x), noting that R is a deterministic function
of its arguments. In our Wolf-Rabbit example, the program input x
might correspond to an initial position of the wolves and rabbit or a
random seed that determines those positions and R(P,π,x) depends
on whether the wolves catch the rabbit and if so how long it took
when following π.

Intuitively, we would like to find a π that achieves a large value
of total reward R(P,π,x) for inputs x that we expect to encounter.
More formally, let D be a distribution over possible inputs x in
our intended application setting. For instance, in the Wolf-Rabbit
example, D might be the uniform distribution over possible initial
positions of the wolves and rabbit, or might assign probability one
to a single initial position. Given such a distribution D and an
adaptive program P, we can now define the induced optimization
problem to be that of finding a policy π that maximizes the expected
value of R(P,π,x) where x is distributed according to D. That is, our
goal is to find π∗ as defined below.

π
∗ = argmax

π∈Π
E [R(P,π,x)] , x∼ D (1)

That is we wish to find the arguments that maximizes the expression
where Π is the set of all policies, E[·] is the expectation operator,
and x∼D denotes that x is a random variable distributed according
to distribution D. In order to make this a well defined objective we
assume that all program executions for any π and x terminate in a
finite number of steps so that R(P,π,x) is always finite.1

In all but trivial cases finding an analytical solution for π∗ will
not be possible. Thus, the ABP framework attempts to “learn” a
good, or optimal, π based on experience gathered through repeated
executions of the program on inputs drawn from D. Intuitively, dur-
ing these executions the learning process explores different possi-
bilities for the choices of the various adaptives in order to settle on
the best overall policy for the program. Once this policy is found,
the learning process can be turned off and the policy can be used
from that point onward to make choices for the adaptives.

3.2 Learning Policies
Now consider how we might learn a good, or optimal, policy via re-
peated program executions. First, note that given a particular policy
π we can estimate the expected reward E [R(P,π,x)] by first sam-
pling a set of inputs {x1, . . . ,xn} from D, then executing the pro-
gram on each xi with respect to π to compute R(P,π,xi), and then
averaging these values. A naive learning approach then is to esti-
mate the expected reward for each possible policy and then return

1 If this does not hold, for example, for a continually running program, other
standard objectives are available including temporally-averaged reward and
total discounted reward. There are straightforward adaptations to the learn-
ing algorithm described below for both of these objectives [11].

the policy with the best estimate. This, however, is not a practical
alternative since in general there are exponentially many policies.
For example, in our Wolf-Rabbit example, the number of choice
functions for each of the wolf adaptives is equal to the number of
mappings from contexts to the five actions, which is exponential
in the number of contexts. Thus, this naive enumeration approach
is only practical for problems where the number of adaptives and
contexts for those adaptives is trivially small.

To deal with the combinatorial complexity we leverage work in
the area of RL [18] for policy learning. RL studies the problem of
learning controllers that maximize expected reward in controllable
stochastic transition systems. Informally, such a system transitions
among a set of control points with rewards possibly being observed
on each transition. Each control point is associated with a set of
actions, the choice of which influences (possibly stochastically)
the next control point and reward that is encountered. An optimal
controller for such a system is one that selects actions at the control
points to maximize total reward. It is straightforward to view an
adaptive program as such a transition system where the control
points correspond to the adaptives in a program. In particular, each
program execution can be viewed as a sequence of transitions
between control points, or adaptives, with interspersed rewards,
where the specific transitions and rewards depend on the actions
selected by the adaptives.

More formally, it has been shown [2, 13] that state-machine or
program-like structures that are annotated with control points are
isomorphic to Semi-Markov Decision Processes (SMDPs), which
are widely used models of controllable stochastic transition sys-
tems. The details of SMDP theory and this result are not critical
to this paper. However, the key point is that there are well-known
RL algorithms for learning policies for SMDPs based on repeated
interaction with those systems. This means that we can use those
algorithms as a starting point for the learning mechanisms of our
ABP library. In particular, our first version of the library is based
on an algorithm known as SMDP Q-learning [5, 12], which extends
the Q-learning algorithm [22] from Markov Decision Processes to
SMDPs. Below we describe SMDP Q-learning in terms of its im-
plementation in our ABP library. Naturally, future work will inves-
tigate other learning approaches, both existing and new, to under-
stand which approaches are best suited for optimizing the adaptive
programs produced by end programmers.

In the context of ABP, SMDP Q-learning aims to learn a Q-
function for each adaptive in a program. A Q-function for an adap-
tive with context-type C and action-type A is a function from C×A
to real numbers. In our current library, the Q-function for each
adaptive is simply represented as a table, where rows correspond
to the possible contexts and columns correspond to possible ac-
tions. The Q-function entry for adaptive object o, context c, and
action a will be denoted by Qo(c,a). Intuitively, SMDP Q-learning
aims at learning values so that Qo(c,a) indicates the goodness of
adaptive o selecting action a in context c. Thus, after learning a Q-
function, the choice function for each adaptive o simply returns the
action that maximizes Qo(c,a) for any given context. Accordingly,
the policy for the program after learning is taken to be the collec-
tion of the choice functions induced by the learned Q-function. It
remains to describe the formal semantics of the Q-function and the
algorithm used to learn it from program executions.

The intended formal meaning of the Q-function entry Qo(c,a) is
the expected future sum of rewards until program termination after
selecting action a in context c for adaptive o and then assuming
that all other adaptives act optimally. If the table entries satisfy
this definition, then selecting actions that maximize the Q-functions
results in an optimal policy. SMDP Q-learning initializes the Q-
function tables arbitrarily (often to all zeros) and then incrementally
updates the tables during program executions in a way that moves
the tables toward satisfying the formal definition of the Q-function.
Under certain technical assumptions the algorithm is guaranteed to

converge to the true Q-function and hence the optimal policy. We
now describe the simple updates performed by the algorithm.

SMDP Q-learning initializes the Q-table to all zeros and then
iteratively executes the adaptive program P on inputs drawn from
D while exploring different action choices for the adaptives that it
encounters. In particular, when the adaptive process is in learning
mode, each call to the suggest method of an adaptive is serviced
by the Q-learning algorithm, which returns one of the possible
actions for that adaptive and also updates the Q-table based on the
observed rewards. Specifically, for the i’th call to suggest for the
current program execution, let oi denote the associated adaptive,
ci denote the associated context, and ai denote the action selected
by Q-learning for that call to suggest. Also let ri denote the sum
of rewards observed via calls to the reward method between oi
and oi+1. Note that in some cases there will be no calls to reward
between oi and oi+1 in which case ri = 0. After encountering
the (i + 1)’th call to suggest, SMDP Q-learning performs the
following two steps:
(1) Update Q-function. Update Qoi(ci,ai) based on ri and the Q-

table information for context ci+1 of adaptive oi+1 (see Equa-
tion 2 as detailed later).

(2) Select Action. Select an action to be returned by suggest for
the adaptive oi+1.

Notice that this learning algorithm does not require the storage
of full trajectories resulting from the program executions, rather
it only requires that we store information about the most recent and
current adaptives encountered. It remains to provide details for each
of these two steps.

Q-Function Update When the (i + 1)’th call to suggest is en-
countered, the Q-learning algorithm performs an update to the Q-
table entry Qoi(ci,ai) according to the following equation,

Qoi (ci,ai)← (1−α)Qoi (ci,ai)+α(ri +max
a

Qoi+1 (ci+1,a)) (2)

where α is a real-valued learning rate between 0 and 1. Intuitively,
this update is simply moving the current estimate of Qoi(ci,ai)
toward a refined estimate given by ri + maxa Qoi+1(ci+1,a). Since
the update for entry Qoi(ci,ai) is done at the (i + 1)’th call to
suggest and references the Q-table for oi+1 via the max operation,
the above update is not well defined for that last adaptive in the
program execution. Thus, we adjust the update for the last adaptive
as follows. Let t be the number of calls to suggest throughout the
program execution until termination. When the program terminates
we update Qot (ct ,at) according to,

QoT (cT),aT)← (1−α)QoT (cT ,aT)+α · rT (3)

where rT is the total reward observed after oT until the program
terminates.

Theoretically, the above update rule is guaranteed to converge to
the true Q-value, provided that α is decayed according to an appro-
priate schedule. However, the theoretically correct decay sequences
typically lead to impractically slow learning. Thus, in practice, it is
common to simply select a small constant value for α. The default
in our library is 0.01.

Action Selection After performing a Q-table update for a call to
suggest, Q-learning selects an action to be returned by suggest
for the adaptive. In theory, there are many options for this choice
that all guarantee convergence of the Q-learning algorithm to the
true Q-function. In particular, any action selection strategy that is
greedy in the limit of infinite exploration (GLIE) suffices for con-
vergence. A selection strategy is GLIE if it satisfies two conditions:
(1) For every adaptive and context it tries each action infinitely of-
ten in the limit, and (2) In the infinite limit it selects actions that
maximize the Q-function, that is, for adaptive oi in context ci select
ai = argmaxa Qoi(ci,a). One simple and common GLIE strategy is
ε-greedy exploration [18] and is what is currently implemented in

our library. This strategy selects the greedy action with probability
1− ε and selects a random action with probability ε for 0 < ε < 1.
If ε is decreased at an appropriate rate, this strategy will be GLIE.
In practice, however, it is common to simply select a small con-
stant value for ε, which is used throughout the learning period. The
default value in our library is 0.3.

To summarize, the SMDP Q-learning algorithm implemented
in our library has two parameters: the learning rate α and the
exploration constant ε, which have small default values (0.01 and
0.3 respectively), but can also be set by the programmer if desired.
The Q-function table is initialized to all zero values and updated
each time a call to suggest is encountered. It is worth noting that,
in addition to the conditions mentioned above, the convergence of
Q-learning also requires that the adaptive contexts satisfy certain
theoretical assumptions [12]. In practice these assumptions rarely
hold, but nevertheless, Q-learning has proven to be a practically
useful algorithm in many applications even when such conditions
are not satisfied [7].

3.3 Extensions
Multi-Process Adaptive Programs Recall that the above seman-
tics were defined for programs that include a single adaptive pro-
cess. In some cases it is useful to include multiple adaptive pro-
cesses in a program, and our library supports this. Each such pro-
cess has its own set of adaptives and its own reward statements
throughout the program. For example, in the Wolf-Rabbit example,
a programmer might want to include one adaptive process for the
wolves and a different adaptive process for the rabbit. The rabbit
process could be used to learn avoidance behavior for the rabbit,
with the reward structure for this process the opposite of that of the
wolves. In particular, yielding positive rewards for each step the
rabbit stays alive and a large negative reward for being caught.

As another example, it is sometimes the case that a program can
be broken into independent components that can each be optimized
independently yet still yield overall good program behavior. For
example, suppose we are writing a controller for a video game
character where we must control both high-level choices about
which map location to move to next and lower-level choices about
exactly how to reach those locations. The problems of selecting a
good location and how to get to those locations often decouple and
we could treat these as separate adaptive processes. The motivation
for doing this is that it is possible that optimizing the individual
processes is easier than attempting to optimize a single process that
mixes all of the decisions together.

Our framework handles multi-process programs by simply run-
ning independent learning algorithms on each of them. Theoreti-
cally, this extension puts us in the framework of Markov Games
[9], which are the game-theoretic extension of Markov Decision
Processes. Such games can be either adversarial, where the objec-
tives of the different processes are conflicting (such as the first ex-
ample) or cooperative, where the objectives of the processes agree
with one another as in the second example. Understanding the con-
vergence properties of RL algorithms in such game settings is an
active area of research [16] and is much less understood than the
single process case. As such we do not pursue a characterization
of the solution that will be produced by our library at this time, but
note that in practice the type of independent training pursued by our
library has often been observed to produce useful results [14, 19].

Multi-Episode Adaptive Programs In the above framework,
learning occurred over many repeated executions of the adaptive
program, each execution using a program input drawn from some
distribution. In the Wolf-Rabbit example, each program execution
corresponds to a single game. While it is possible to use scripts
to “train” the program through repeated executions, this is often
not convenient for a programmer. Rather, it may be preferable to be
able to effectively run a large number of games via one execution of
the program and learn from all of those games. In our Wolf-Rabbit

example, one way this might be done is to simply have a high-level
loop in the main program that repeatedly plays games, allowing the
AdaptiveProcess to learn from the entire game sequence.

In concept, learning may be successful on such a multi-game
program execution. However, this basic approach has a subtle flaw,
which can result in some amount of confusion for the learning
algorithm. In particular, the learning algorithm will observe a long
sequence of calls to suggest and to reward. In the case where a
single program execution corresponds to multiple games, the calls
to suggest and reward do not all correspond to the same game,
but rather are partitioned across multiple games. It is clear to the
programmer that actions selected by adaptives in one game have
no influence on the outcome or reward observed in future games.
However, this is not made explicit to the learning algorithm and
can result in a more difficult learning problem. In particular, the
learning algorithm will spend time trying to learn how the actions
choices in a previous game influence the rewards observed in the
next and future games. After enough learning, the algorithm will
ideally “figure out” that indeed the different games are independent,
however, this may take a considerable amount of time depending on
the particular problem.

In order to allow programmers to perform such multi-game
training, while avoiding the potential pitfall above, we introduce
the concept of an episode into the library. In particular, we give
the programmer the ability to explicitly partition the sequence
of suggest and reward calls into independent sub-sequences.
Each such independent sub-sequence will be called an episode,
which in the Wolf-Rabbit example corresponds to a single game.
We instantiate this concept in our library by adding the following
method to the AdaptiveProcess class.

public void endEpisode()

The programmer can then place calls to this method at the end
of each episode, which make the episode boundaries explicit for
the learning algorithm. Thus, the learning algorithm will now see
a sequence of calls to suggest and reward between calls to
endEpisode.

It is straightforward to exploit this episode information in the
SMDP Q-learning algorithm. The only adjustment is that upon
encountering a call to endEpisode an update based on Equation 3
is performed instead of Equation 2. Further, no update is performed
when encountering the first call to suggest after any endEpisode.
The effect of these changes is to avoid Q-table updates that cross
episode boundaries. The formal semantics for the multi-episode
setting is almost identical to the one described above. The only
difference is that we define R(P,π,x) to be the average total reward
across episodes during the execution of P on input x with respect
to policy π. With this change the overall optimization problem is as
specified in Equation 1.

Finally, we note that the concept of multi-episode program ex-
ecutions can be particularly useful when combined with multi-
process programs. For example, there can be cases where the natu-
ral episode boundaries of two different processes in a program do
not coincide with one another. Since calls to endEpisode are as-
sociated with individual adaptive processes, our library can easily
handle such situations. The above multi-process example involving
navigation in a video game environment provides a good exam-
ple of when this situation might arise. The adaptive process cor-
responding to the high level choice about which location to move
to next may have episode boundaries corresponding to complete
games. However, these boundaries are not natural for the process
dedicated to the details of navigating from one location to another.
Rather, the natural episode boundaries for that process correspond
to the navigation sequences between the goal locations specified by
the high-level process.

void yahtzeePlayer(AdaptiveProcess player,
Adaptive<GameCtx,Category> c1,
Adaptive<GameCtx,Category> c2,
GameState s1) {

for (int i = 1; i <= 13; i++) {
Category cat1 = c1.suggest(getCtx(s1),

s1.getEmpty());
State s2 = rollFor(cat1);
Category cat2 = c2.suggest(getCtx(s2),

s2.getEmpty());
State s3 = rollFor(cat2);

//out of rolls here
State s4 = assignBest(s3.getEmpty());
player.reward(s4.score - s3.score);

}
}

Figure 2. An Adaptive Yahtzee Algorithm

4. Evaluation
In Section 2 we have already provided positive experimental results
on our example Wolf-Rabbit program. It was shown that through
the use of our library the wolves could effectively learn to capture
the rabbit. In this section we describe two more substantial appli-
cations of our library to problems where encoding a full solution
by hand is not trivial. The first domain is the dice game of Yahtzee,
and the second domain is multi-unit tactical battles in a real-time
strategy game. In each case, we write adaptive programs using our
library and show that the learning mechanism is able to effectively
optimize the program behavior.

4.1 Yahtzee
Yahtzee is a well-known dice game. Players roll some dice and
then apply the combination of numbers given to some category
such as “three of a kind”. Each category can only be applied once.
Additionally during a round, a subset of the dice may be re-rolled.
The goal is to maximize one’s score over 13 rounds.

Here we consider the problem of using our library to create a
program that can achieve good performance in Yahtzee. The struc-
ture of our adaptive program is based on observing the fundamen-
tal decisions that are made in each round of play. Specifically, each
round involves up to two rolls of the dice. The decision about which
of the dice to re-roll can be decomposed into a decision about which
category to apply and then selecting the dice to re-roll with the aim
of achieving the target category. Given a particular target category,
it is relatively easy for humans to select a good set of dice to re-roll
and accordingly straightforward to write standard code to select
that set of dice. However, the selection of the target category before
each roll is a key source of uncertainty that is not straightforward to
program. This motivates an adaptive program where the adaptives
correspond to choices about target categories and where the selec-
tion of dice to re-roll is hand-coded by the programmer without the
use of adaptive elements. Our program shown in figure 2 has two
Adaptive objects c1 and c2 with identical contexts and actions.
The actions selected from are simply the set of empty categories
at a particular moment in the game. The context represents the die
faces and the number of empty categories remaining. The first re-
roll is executed by first obtaining the set of empty categories in the
current game and then making a call to the suggest method of c1
to obtain a target category. This category is then passed as an argu-
ment to our hard-coded function rollFor which selects dice and
re-rolls them based on the category. Next, this same process is re-
peated, but using the c2 adaptive instead of c1. After the second re-
roll, which means that a category must be selected for scoring, we
use a simple scoring function assignBest to pick the empty cate-
gory that will result in the highest score. Finally, after each round
the adaptive process receives a reward equal to the increase in score

achieved in that round. Note that with this reward function the total
reward over a game is equal to the game score. Thus a program that
optimizes the expected reward also optimizes the expected Yahtzee
score.

We trained the program by having it play several million games
over a period of approximately 30 minutes. The results in Table 1
show that the average score for our program (labeled ABP) be-
fore learning was 119, while after learning the average score was
195. This shows that the learning process results in a significant
improvement in the program performance.

Table 1 gives the performance of our adaptive Yahtzee player
compared to a state-of-the-art Monte-Carlo planning algorithm [8]
called UCT. We see that the slow version achieves an average score
of 208 compared to the 195 achieved by our adaptive program.
However, UCT requires 6 orders of magnitude more time per game
to achieve this result. On the other hand, UCT-fast achieves an av-
erage score of 161, which is significantly worse than our adaptive
program, while still requiring several orders of magnitude more
computation time. Unlike UCT our approach does require a train-
ing period to gradually improve its performance, however, this is a
one-time cost that UCT will incur for each move. More important
to us than the timing comparison though is the score comparison.
With very little programming effort we were able to use our adap-
tive library to achieve competitive results compared to a state-of-
the-art planning algorithm.

Program Avg. Score Avg. Game Time (sec)
ABP (before learning) 119 0.001
ABP (after learning) 195 0.001
UCT-fast 161 0.8
UCT-slow 208 152.0

Table 1. Performance on Yahtzee. All results are averaged over
1000 games.

We also verified that our program is learning useful informa-
tion by observing the score at regular intervals during learning.
Figure 3 shows the improvement in performance for our Yahtzee
program as the number of learning games increases. Each point in
the graph represents the average score over 1000 games played by
the adaptive program in non-learning mode. Note that after only a
small number of learning games, performance jumps from 119 to
approximately 145. After this the performance steadily improves.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

110

120

130

140

150

160

170

180

190

200

210

Number of learning games

A
v
e
ra

g
e
 s

c
o
re

UCT−fast (161)

UCT−slow (208)

ABP (195)

ABP before
learning
(119)

Figure 3. Performance of the Yahtzee program as the number of
learning games is increased.

It is important to note that the context provided to the adaptives
is not ideal. To make truly optimal decisions the contexts would

need to encode the precise information about which categories are
still empty. Rather our current contexts only include information
about the number of empty categories (in addition to the values
showing on the dice). Unfortunately, expanding the context to in-
clude exact information about which categories are open exceeds
reasonable memory limitations. This is due to the fact that our cur-
rent library requires the storage of Q-tables, which grow linearly
in the number of contexts. There are 213 possible combinations of
open categories and expanding our context space by this factor was
not practical. As mentioned in Section 6, this limitation can be re-
moved using more advanced RL techniques which do not require
storing Q-functions as explicit tables, but rather use more compact
representations. We expect that including such techniques in future
versions of the library will offer even better learning performance
as more detailed contexts can then be used.

4.2 Tactical Battles in Wargus
Wargus [21] is a real-time strategy (RTS) game, which runs on the
open-source RTS game engine Stratagus. RTS games involve con-
trolling large numbers of game units in order to build an economy, a
military, and to eventually overtake an opponent via military force.
A major challenge for RTS game developers is developing the game
AI. Unfortunately, current game AIs are relatively static and non-
adaptive, which degrades their entertainment value for experienced
human players. One of the reasons for this is that it is extremely dif-
ficult and time-consuming to hand-code flexible strategies for RTS
games that can handle the breadth of situations that will eventu-
ally occur. Thus most approaches to game AI development centers
around scripted behaviors. ABP offers an alternative paradigm for
developing such strategies, allowing programmers to leave certain
choices open to be optimized by the program automatically via re-
peated play. Here we consider the application of our library to the
Wargus sub-problem of tactical battles.

Tactical battles are an important aspect of RTS games, where
two groups of military units come into close contact and battle until
one side is destroyed. Here we consider a tactical battle scenario in
Wargus where we control 4 ground military units against 4 other
ground military units controlled by the native Stratagus AI. The
goal of the experiment is to write an adaptive program using our
library that can learn to defeat the Stratagus AI by as large a margin
as possible, where the margin of a win is measured with respect to
the remaining hit points of our forces at the end of the game. For
this purpose we have created a Java API to the Stratagus engine,
that allows for Java programs to easily control units in the game.

Writing a good strategy even for this relatively small scenario
can be challenging: Is it better to gang up on an enemy unit at
any cost? Or is there some point after which we should attack the
nearest enemy? How do we get our units to stay in formation? We
are interested in writing an adaptive program using minimal effort
that can learn to win this battle by automatically finding a good
way to handle the above issues. More generally we are interested in
using our library to learn a strategy that works well for any tactical
battle, though that is beyond the scope of this work.

Our adaptive program must control the activities of each of our
4 military units. In this experiment we limit the actions that each
unit considers to actions that attack one of the enemy units. After
issuing an attack command to the Stratagus engine, the attacking
unit pursues the target until coming into attack range and then
continually inflicts damage on the target. Thus, the fundamental
decision that must be made at each point in time is which enemy
unit each of our units should attack. This is also the key source
of uncertainty faced by the programmer when designing a control
program for the units. With this motivation the structure of our
adaptive program is as follows.

Our adaptive program contains a single adaptive process with a
single adaptive that has a binary action set over the values target
and non-target. The context of this adaptive will be specified

later. After every 10 cycles of the Stratagus engine our program
enters a decision phase where a target enemy unit is selected for
each friendly unit. This decision phase contains nested loops over
each of our friendly units and each enemy unit, which considers
each pair of friendly and enemy units. For each pair (f ,e), where
f is a friendly unit and e is an enemy unit, the suggest method
of our adaptive is called with a context that depends on (f ,e). If
the method returns target then e is set as the current target of f ,
otherwise the target of f remains unchanged. Thus, at the end of
this phase, each friendly unit is assigned to attack the last enemy
unit for which the adaptive returned target. A call to the reward
method is made at the beginning of each decision phase with an
argument equal to HPe −HP f , where HPe and HP f are the total
hit points deducted from the enemy and friendly units respectively
during the previous 10 game cycles. Thus the total reward over a
single game is equal to the difference in total damage inflicted on
the enemies minus the total damage inflicted on the friendly units,
as desired.

It remains to specify the context of our adaptive. The context
should capture useful information for making a decision about
whether an enemy unit e is a good target for friendly unit f . Some
of the key pieces of information relevant to this decision are: (1)
the nearness of f to e, which we discretize to the values CLOSE,
NEAR, FAR, (2) The number of other friendly units already targeting
e, which can be one of four values, and (3) the health of e, which
we discretize as HEALTHY, MEDIUM, WEAK. The context space for
our adaptive is the cross-product of these three features, yielding a
total of 36 possible contexts. These contexts are trivial to compute.
The challenge is in selecting the best decision based on the context,
which is a job we have left to the learning process.

We allowed our adaptive program to learn for 1000 repeated
games of this 4 vs. 4 battle. Before training, our adaptive program
achieved a health difference of −23, which indicates that the pro-
gram was losing to the native Stratagus AI. By the end of train-
ing, the adaptive program learned to defeat the Stratagus AI by
a hit point difference of 44, winning by a significant margin. For
comparison purposes we wrote a deterministic program that im-
plemented a simple strategy of attacking the nearest enemy unit.
Initially, we expected this strategy to do reasonably well and at
least win the game by a small margin based on our inspection of
the map. Surprisingly, this deterministic program performs quite
poorly and loses to the Stratagus AI by a margin of −22 hitpoints.
This shows that the adaptive program is apparently learning a strat-
egy that somehow trades-off proximity, the amount of “ganging
up”, and the enemy health. Overall these results are promising and
suggest the investigation of ABP for more sophisticated scenarios
and other aspects of RTS games.

5. Related Work
Our work is inspired by a variety of previous efforts in the field
of reinforcement learning (RL). RL [18] is a subfield of artificial
intelligence that studies algorithms for learning to control a system
by interacting with the system and observing positive and negative
feedback. RL is intended for situations where it is difficult to write
a program that implements a high-quality controller, but where it
is relatively easy to specify a feedback signal that indicates how
well a controller is performing. Thus, pure RL can be viewed as an
extreme form of ABP where the non-adaptive part of the program is
trivial, requiring the RL mechanisms to solve the full problem from
scratch. As such, successful applications of RL typically require
significant expertise and experience. It is somewhat of an art to
formulate a complex problem at the appropriate abstraction level
so that RL will be successful.

The inherent complexity of pure RL led researchers to develop
different mechanism for humans to provide natural forms of “ad-
vice” to RL systems, for example, in the form of a set of rules
that specify hints about good behavior in various situations [10],

or example demonstrations of good behavior by a domain expert
[1]. However, these forms of advice still require an RL expert who
is very familiar with the underlying algorithms for their successful
application. In addition, the expressiveness of the types of advice
that can be provided are quite limited, particularly in comparison
with programming languages.

The desire to increase the expressiveness of advice provided to
RL systems has resulted in research on hierarchical reinforcement
learning [6, 13]. Here a human specifies behavioral constraints on
the desired controller, or program, to be learned in the form of sub-
task, or sub-procedure, hierarchies. The hierarchies specify poten-
tial ways that the high-level problem can be solved by solving some
number of sub-problems, and in turn how those sub-problems can
potentially be broken down and so on. Not all of the possibilities
specified by the hierarchies will be successful or optimal, but the
space of possible controllers can be dramatically smaller than the
original unconstrained problem. Given these constraints, RL algo-
rithms are often able to solve substantially more complex problems.

Provided with enough constraints the hierarchies described
above can be viewed as defining programs. This idea was made
explicit under the name partial programming, where a simple lan-
guage based on hierarchical state machines was developed to pro-
vide guidance to an RL agent [2]. This language was soon replaced
by the development of ALISP [3], which was a direct integration of
RL with LISP. The key programming construct that ALISP adds to
LISP is the choice point, which is qualitatively similar to Adaptive
objects in our library. The primary focus of work on ALISP has
been to develop adaptation rules for choice points and to under-
stand the conditions under which learning in the infinite limit will
result in controllers that achieve certain notions of optimality when
executed in the world/environment. A more recent proposal for an
adaptive programming language is A2BL [17], which integrates RL
with the agent behavior language (ABL). The proposal for A2BL
can be viewed as an instance of ABP for a language that is special-
ized to behavioral-based programming of software agents. Few de-
tails concerning a concrete syntax, implementation, semantics and
learning rules are currently available for A2BL.

An important semantic distinction between the work in this
paper and existing languages for partial programming in RL is that
the semantics of languages such as ALISP are tightly tied to an
interface to a world/environment that is external to the program.
That is, an ALISP program by itself does not have a well defined
semantics from a learning perspective until it is coupled with a
world/environment, or more formally a Markov decision process
(MDP). This requirement is most clearly reflected by the fact that
the ALISP language does not include native reward statements.
Rather rewards are assumed to be provided by an external MDP.
A likely reason for the tight coupling to MDPs is that ALISP
grew out of the area of RL where MDPs are already an assumed
entity. However, this strict coupling to MDPs makes it difficult for
a programmer who is not knowledgeable about RL to understand
the semantics and exploit the potential power of the language.

On the other hand, the semantics provided for our ABP Java li-
brary are not tied to the notion of an external world, environment,
or MDP in any way. Rather the semantics are defined completely
in terms of just a program and a distribution over its inputs, which
could be a constant input. In this sense, our library can be imme-
diately applied in any context that Java programs might be written.
Importantly, it is straightforward to write adaptive programs using
our library that do interface to an external world, but this is not
a native requirement of the library. Our work is arguably the first
to develop an ABP framework for a language as widely used as
Java. With the exception of ALISP, which is based on LISP, all
other work on ABP that we are aware of has been in the context
of non-mainstream and highly specialized languages, for example,
A2BL and PHAM [2], which greatly diminishes their potential im-
pact. Our primary motivation was to develop a library for ABP that

is highly flexible and has the potential for wide use by non-RL
experts. We believe that our current library represents significant
progress in identifying some of the key constructs needed to make
this goal a reality in the object-oriented Java language.

There are numerous RL libraries and frameworks for Java and
other object-oriented languages (e.g. Rl-Glue [20]). However, such
libraries are designed for people with extensive experience in RL
and their goal tends to be providing a test harness for experimenting
with new algorithms. In contrast, ABP’s goal is to provide a library
that a non-expert can use to naturally describe adaptive constructs
in their programs with.

6. Future Work
One of the immediate directions for future work is to support adap-
tives for which the number of possible contexts is enormous. For
example, in Yahtzee we would have liked to have used a richer
context for the adaptives that encoded the precise set of open cate-
gories. However, this was not practical due to the use of a table-
based Q-function representation. To support such large context
spaces we will implement support for compact representations of
Q-functions and other related structures, which grow sub-linearly
with respect to the number of contexts. This will also require de-
veloping learning algorithms that operate directly on these compact
representations. The RL literature has studied a variety of such rep-
resentations and learning algorithms [7], and we will initially draw
on that work.

More fundamentally we believe that there is much work to be
done with respect to understanding how different RL algorithms
interact with different types of programming patterns involving
adaptives. In particular, is it possible to analyze the structure of
a program or its execution patterns in order to derive learning
algorithms that learn more quickly? In addition, developing notions
of equivalency-preserving transformations of adaptive programs
might also be useful for automatically transforming programs to
ones that are easier for learning. Some encouraging preliminary
results are available in [15] where we use program analysis to
automatically feed the learning algorithm better information. The
resulting method achieves impressive results on a set of complex
adaptive programs.

Finally, we are interested in understanding how programmers
will think about and use ABP. In this direction, we plan to conduct
studies where programmers use our library to write adaptive pro-
grams for problems where ABP appears beneficial. These studies
will hopefully inform future library design decisions as well as di-
rect research on the learning algorithms to better handle situations
that are likely to arise with programmers.

7. Conclusion
For many problems, programmers have uncertainty about various
choices to be made when solving a problem with a deterministic
program. However, despite this uncertainty the programmer is still
often able to specify a reward signal that indicates whether a pro-
gram’s run-time behavior is good or bad. The ABP paradigm is
aimed at matching the programmer’s knowledge in such situations,
by allowing them to directly encode their uncertainty along with a
reward signal. The goal then is for the resulting adaptive program
to learn to optimize its decisions over repeated runs of the program.

The work in this paper has developed the first Java library for
ABP and arguably the first ABP implementation for any language
as widely used as Java. We provided examples of this library, spec-
ified a semantics for adaptive programs written using this library,
and demonstrated its utility on non-trivial application problems.
This work has set the stage for a more widespread use of the ABP
paradigm by programmers that are not experts in machine learning.

Acknowledgments
This work is supported by the National Science Foundation under
the grant CCF-0820286 “Adaptation-Based Programming”.

References
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse

reinforcement learning. In ICML, pages 1–, 2004.
[2] David Andre and Stuart J. Russell. Programmable reinforcement

learning agents. In NIPS, pages 1019–1025, 2000.
[3] David Andre and Stuart J. Russell. State abstraction for programmable

reinforcement learning agents. In AAAI/IAAI, pages 119–125, 2002.
[4] Tim Bauer, Martin Erwig, Alan Fern, and Jervis Pinto. ABP.

http://groups.engr.oregonstate.edu/abp/.
[5] Steven J. Bradtke and Michael O. Duff. Reinforcement learning

methods for continuous-time markov decision problems. In NIPS,
pages 393–400, 1994.

[6] Thomas G. Dietterich. The maxq method for hierarchical reinforce-
ment learning. In ICML, pages 118–126, 1998.

[7] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learn-
ing: A survey. Journal of artificial intelligence research, 4(237-
285):102–138, 1996.

[8] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo
planning. In ECML, pages 282–293, 2006.

[9] Michael L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In ICML, pages 157–163, 1994.

[10] Richard Maclin, Jude W. Shavlik, Lisa Torrey, Trevor Walker, and Ed-
ward W. Wild. Giving advice about preferred actions to reinforcement
learners via knowledge-based kernel regression. In AAAI, pages 819–
824, 2005.

[11] S. Mahadevan. Average reward reinforcement learning: Foundations,
algorithms, and empirical results. Machine Learning, 22(1):159–195,
1996.

[12] R.E. Parr. Hierarchical control and learning for Markov decision
processes. PhD thesis, University of California, Berkeley, 1998.

[13] Ronald Parr and Stuart J. Russell. Reinforcement learning with hier-
archies of machines. In NIPS, pages 1043–1049, 1997.

[14] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack
Kaelbling. Learning to cooperate via policy search. In UAI, pages
489–496, 2000.

[15] Jervis Pinto, Alan Fern, Tim Bauer, and Martin Erwig. Robust learning
for adaptive programs by leveraging program structure. In ICMLA
’10: Proceedings of the 2010 International Conference on Machine
Learning and Applications, Washington, DC, USA, to appear. IEEE
Computer Society.

[16] Y. Shoham, R. Powers, and T. Grenager. Multi-agent reinforcement
learning: a critical survey. In AAAI Fall Symposium on Artificial Multi-
Agent Learning, 2004.

[17] Christopher Simpkins, Sooraj Bhat, Charles Lee Isbell Jr., and Michael
Mateas. Towards adaptive programming: integrating reinforcement
learning into a programming language. In OOPSLA, pages 603–614,
2008.

[18] Richard Sutton and Andrew Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 2000.

[19] Ming Tan. Multi-agent reinforcement learning: Independent versus
cooperative agents. In ICML, pages 330–337, 1993.

[20] Brian Tanner and Adam White. RL-Glue : Language-independent
software for reinforcement-learning experiments. Journal of Machine
Learning Research, 10:2133–2136, September 2009.

[21] The Wargus Team. Wargus. http://wargus.sourceforge.net/.
[22] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine learning,

8(3):279–292, 1992.

