
Under consideration for publication in J. Functional Programming 1

Gencel: A Program Generator for Correct
Spreadsheets∗

MARTIN ERWIG, ROBIN ABRAHAM, STEVE KOLLMANSBERGER
School of EECS, Oregon State University

(e-mail: [erwig, abraharo, kollmast]@eecs.oregonstate.edu)

IRENE COOPERSTEIN†

Department of CS, University of Houston

(e-mail: Irene.Cooperstein@mail.uh.edu)

Abstract

A huge discrepancy between theory and practice exists in one popular application area
of functional programming—spreadsheets. Although spreadsheets are the most frequently
used (functional) programs, they fall short of the quality level that is expected of functional
programs, which is evidenced by the fact that existing spreadsheets contain many errors,
some of which have serious impacts.

We have developed a template specification language that allows the definition of spread-
sheet templates that describe possible spreadsheet evolutions. This language is based on a
table calculus that formally captures the process of creating and modifying spreadsheets.
We have developed a type system for this calculus that can prevent type, reference, and
omission errors from occurring in spreadsheets. On the basis of the table calculus we have
developed Gencel, a system for generating reliable spreadsheets. We have implemented a
prototype version of Gencel as an extension of Excel.

1 Introduction

Spreadsheets are functional programs (Peyton Jones et al., 2003). Although spread-
sheets offer only a subset of the functionality of modern functional programming
languages, they are widely used: It is estimated that each year tens of millions
of professionals and managers create hundreds of millions of spreadsheets (Panko,
2000). These numbers indicate not only that spreadsheet systems are among the
most frequently used software systems, they also show that spreadsheets are the
most frequently employed functional programs. This also means that functional pro-
grams outnumber by far all other programs in all other programming paradigms.
What a success of functional programming!

Not quite. One of the distinguishing claims of functional programming is that

∗ This work is partially supported by the National Science Foundation under the grant ITR-
0325273 and by the EUSES Consortium (http://EUSESconsortium.org).
† Work of Irene Cooperstein was performed at Oregon State University during summer 2004 as

part of the CRA-W Distributed Mentor Project.

functional programs are more reliable than, for example, imperative programs, and
contain fewer errors. To some degree the increased reliability is achieved through a
cleaner language design and through sophisticated type systems that help to detect
program errors early. Unfortunately, spreadsheets suffer heavily from errors. Numer-
ous studies have shown that existing spreadsheets contain errors at an alarmingly
high rate (Brown & Gould, 1987; Lerch et al., 1989; Panko, 2000). Some studies
even report that 90% or more of real-world spreadsheets contain errors (Rajal-
ingham et al., 2001). This situation should not be too surprising given the facts
that (a) spreadsheet systems offer only weak or no typing at all and (b) the lan-
guage in which spreadsheets are “written” is seldom given in an explicit form with
well-defined syntax and semantics. Instead the language is specific to a particular
spreadsheet system. (In other words, a spreadsheet system is essentially an IDE for
a particular spreadsheet language that is implicitly defined through the features of
the spreadsheet system.)

Imagine if we could bring some of the advantages of functional programming with
respect to safety and reliability to the realm of spreadsheets. This would have a great
impact in two major respects: First, it would make spreadsheet programs more
reliable. Second, it would boost the attention level for functional programming.
Altogether, this would mean a big success for functional programming in the real
world.

Why has programming language research not taken spreadsheets seriously? One
reason might be that spreadsheets are considered to be trivial and not sufficiently
challenging. After all, spreadsheets are just simple first-order, non-recursive pro-
grams with non-nested bindings, so why bother at all? Although this character-
ization is accurate, the comparison is based on a static view of one particular
spreadsheet and ignores update operations in spreadsheets. However, much of the
success of spreadsheet systems is due to their interactive nature allowing changes
to input data and the spreadsheet program with immediate feedback after changes
have been performed (Hendry & Green, 1994; Lewis & Olson, 1987; Norman, 1986;
Kay, 1984). Unfortunately, many spreadsheet errors are a consequence of how this
form of interaction is realized.

One major problem in existing spreadsheet systems is that the same user-interface
actions are used to change a program and its input. For example, placing a number
in a cell that already contains a (different) number means to change an input ar-
gument of the spreadsheet, which causes a new run of the spreadsheet program. In
contrast, placing a number in a cell that contains a formula changes the spreadsheet
program, which also causes the immediate rerunning of the spreadsheet program.
This overloading can lead to the introduction of errors through unintended overrid-
ing of formulas. Other sources of errors are the inconsistent definition of insert-row
and insert-column commands, which trigger the automatic adjustment of ranges
in aggregation formulas only in some cases. These errors are particularly insidious
since in many cases they creep into a spreadsheet unnoticed.

Since update operations are a major source of spreadsheet errors, we propose to
specify the possible evolutions of a spreadsheet in advance and to create customized
update operations for any such specification. The benefit of this approach is that

2

users still can apply update operations to their spreadsheets, but only those that
keep the spreadsheet within the specified evolution and that do not introduce any
reference, type, or omission errors.

In the following we will present the spreadsheet system Gencel, which has been
implemented as an extension of Excel. A preliminary description of the system is
given in (Erwig et al., 2005). Our approach to improving the reliability of spread-
sheets is to ensure the correctness not just of a single spreadsheet, but of all the
spreadsheets into which it can evolve over time. To this end we have defined a spec-
ification language to describe spreadsheets and their possible evolutions through
templates. Any such template is translated into an initial spreadsheet and a set
of spreadsheet update operations that are tailored to this particular spreadsheet
and ensure that the spreadsheet can be changed only according to the template.
Moreover, we have defined a type system for the specification language that can
guarantee the following form of spreadsheet evolution correctness: Any spreadsheet
that evolves from a well-typed template will not contain any reference or type errors.

In Section 2 we illustrate the idea of using program generation to support the
creation of safely evolvable spreadsheet. In Section 3 we define syntax and semantics
of a table calculus that forms the formal foundation of our Gencel system. A type
system for the table calculus is developed in Section 4 to guarantee that well typed
templates will be transformed into customized spreadsheets that can evolve only
without errors. This safety result is presented in Section 5. In Section 6 we describe
the implementation of the Gencel system as an extension of Excel. Related work is
discussed in Section 7. We present conclusions and directions for future research in
Section 8.

2 A Spreadsheet Generator

We regard a spreadsheet as a collection of tables where a table is essentially a rect-
angular area consisting of a number of rows and columns. Changes in one table of
a spreadsheet should not affect other tables unless they contain a reference to the
changed table. For simplicity, we ignore the possibility of references between differ-
ent tables in this paper and therefore consider in the following only the specification
of single tables.

The tables in a spreadsheet often change over time. However, at any given time
only a subset of all possible changes to a table are reasonable. The decision whether
a particular update should be allowed or prohibited depends on the roles of the
affected cells in the table. From the point of view of a spreadsheet application,
the cells of a table can be distinguished into label, data, and computation cells.
Moreover, some rows or columns of a table are fixed, like header and footer rows
and columns, while other rows and columns are duplicated if new data is to be
added.

The template specification language that is part of our Gencel system reflects this
view and offers constructs to define a template as a horizontal sequence of fixed and
extendable columns where a column is constructed as a vertical sequence of fixed
and extendable blocks, which are rectangular collections of cells containing values

3

and formulas. Note that the alternative view as a sequence of rows is also possible.
However, allowing this alternative representation would not add any functionality.
Therefore, we have fixed the representation to simplify the formal model.

In the following we will illustrate the idea of table generation through several ex-
amples. The templates will be given in a visual notation called Vitsl (an acronym
for Visual Template Specification Language). A corresponding textual representa-
tion will be presented in Section 3 where we introduce the table evolution calculus.

Our first example is the specification of a plain column of numbers with a header
at the top and a summation formula at the bottom. This template can be specified
by the following Vitsl expression.

Values

0
...

Σ(u)

The template consists of three elements: the header containing the label, the footer
containing the summation formula, and a vertically expandable group (also called
vex group for short) that consists of a single cell containing the value 0. The argu-
ment of the summation formula, u, is a relative reference to the vex group above
it. (Note that u means “up” and is simply a name for (0,−1).)

The template describes a class of tables that all consist of one column with
the shown header and footer and that have one or more number cells in between.
This template can be compiled into an initial Excel spreadsheet together with
customized definitions for all spreadsheet update operations that ensure that only
tables matching the template will be created.

Vitsl offers the following visual elements for templates:

• Cells, represented by rectangles and containing formulas.
• References, represented by (names for) relative grid offsets.
• Vex groups, represented by vertical dots that indicate the possible expansion

of one or more cells in the vertical direction.
• Hex groups, represented by horizontal dots that indicate the possible expan-

sion of one or more columns in the horizontal direction.

An example of a horizontally expandable group (hex group) is given in the following
template for a summation table.

Values · · · Total

0 Σ(`)
...

...

Σ(u) Σ(u)

Here the summation column from the previous example is horizontally expandable
and is horizontally joined by a column that also contains a header and a summa-
tion footer, but whose vex group contains a summation formula whose argument

4

references the number cell of the hex group.
The hex group in the last example illustrates that expandable groups may consist

of groups of cells and not just single cells. Moreover, one column can also contain
multiple vex groups. Similarly, a template can contain multiple hex groups. How-
ever, vex groups and hex groups cannot be arbitrarily nested. The only possible
nesting is indicated by the example: Hex groups may contain vex groups. There
are two aspects of this restriction. First, it prevents nested expansion groups in
one dimension, which is important to keep the spreadsheet user interface simple,
because to be able to work with nested expansion groups in one dimension a more
sophisticated notion of “position” would be needed: Just knowing, for example,
the current row number is not enough to tell whether to insert a new row in the
innermost expansion group or a new group in the enclosing one. The second as-
pect is the restriction that vex groups cannot contain hex groups, which is just for
technical reasons to keep the formalism simple. Since columns have to be vertically
aligned, templates in which hex groups are nested in vex groups would not add to
the expressiveness of the language and could be transformed into a corresponding
template in which vex groups are nested in hex groups.

In addition, several structural constraints are needed to ensure that a reasonable
definition for the spreadsheet update operations exists. For example, all columns
in a template have to align vertically. To explain the idea of alignment, consider
a column as a sequence of non-vex and vex groups, say c = [b1, . . . , bk]. Now c

matches another column c′ = [b′1, . . . , b
′
k] only if (a) bi has the same height as b′i

and (b) bi is an expandable group iff b′i is. These constraints ensure, in particular,
that vex groups are horizontally aligned and have the same height, which allows
the insert-row command to be defined to insert a number of rows according to the
common height of the vex groups. Similarly, we require that all blocks in a column
have the same width. For columns in hex groups, this constraint ensures that the
insert-column command can be defined to create a number of columns according
to the common width of the blocks of the hex group.

We can consider an example that violates these constraints to see why they are
required. Consider the case for the following template:

0 Σ(`)
...

In this template, we have the horizontal composition of two columns—the left
column repeats vertically whereas the right column is simply a reference. These
columns do not align and thus the above template is not legal. In the initial ta-
ble, we would have one value with a single reference to that value, which causes
no problems. However, if we consider the insertion of rows, we can observe that
additional values would be added. What would be the meaning of the reference
in that case? Would it refer merely to the topmost value or to all of the values?
In addition, the vertical and horizontal concatenation of blocks assumes that, at
all times, blocks, columns and tables will be rectangular. However, we can see a
non-rectangular shape emerging in this example. How does such a shape concate-

5

nate with other columns or tables? These uncertainties have led us to forbid such
templates.

An example for a template containing multiple vex groups is the accounting sheet
shown below.

Income

0
...

Σ(u)
Expenses

0
...

Σ(u)
Net Earnings

∆(u5, u2)

The gaps between cells indicate the scope of the vertical dots. For example, the
first vex group is the repeated 0 and not the block of the top two cells. Similarly,
the second vex group consists only of the one cell containing the 0, which is below
the cell labeled Expenses. The formula ∆(u5, u2) computes the difference between
the two summation cells. An exponent k attached to a relative reference means the
k-fold repetition of the reference. For example, u2 refers to two cells above. Since
the vertical (and horizontal) dots are not cells on their own, they are not counted
when determining relative references. Therefore, u5 refers to the upper vex group
and u2 to the lower one.

The relative references used in templates are very expressive: First, unlike ab-
solute addresses, relative references are compositional, that is, they need not be
adjusted when cells or blocks are composed with other blocks. Second, depending
on their origin and target, relative references can express single-cell addresses as
well as ranges. For example, the references from the summation formulas point into
a vex group and refer to all the cells that will be generated within that group, in
contrast to the references u5 and u2, which point to nonexpandable cells and refer
always to single values.

As a final example we present a template for a multi-year budgeting sheet that
contains a multi-column hex group.

2005 · · · Total

Category Qnty Cost Total Qnty Cost

0 0 Π(`2, `) Σ(`3) Σ(`2)
...

...
...

Total Σ(u) Σ(u)

The multi-column hex group illustrates another powerful feature of our model that

6

goes beyond Excel’s update capabilities—the possibility of automatically maintain-
ing non-consecutive ranges over insert and delete operations. Consider, for example,
the rightmost summation formula Σ(`2). The relative reference refers to the cell
containing the Π formula, which represents a product. The repeated application of
insert-column commands generates several non-adjacent instances of that cell. Nev-
ertheless, the update operations created by the Gencel system will properly update
the rightmost summation formula to always contain references to exactly all those
cells (see Figure 2). The same is true for the Qnty summation formula.

The initial spreadsheet generated from the budget-sheet specification is shown in
Figure 1.

Fig. 1. Generated Excel budget spreadsheet.

After one column and two row insertions and several changes to the stored values,
the spreadsheet might look as shown in Figure 2. Note, in particular, how the ranges
in the SUM formulas in rows H and I represent non-consecutive ranges.

The Gencel system offers additional buttons for inserting columns to the left
and right of the current position as well as for inserting rows above and below the
current row. Note that it is not possible to enter values of wrong types or to change
or delete existing formulas.

For illustration we show here the formula view of the generated spreadsheet. End
users will generally only see the computed values. The spreadsheet in Figure 2 is
created by precisely following the formal definitions of the table calculus. We can
optimize the generated formulas further by compressing ranges, which yields, for
example, SUM(D3:D5) in cell D6.

3 The Table Evolution Calculus

The table evolution calculus provides a formal foundation for the Gencel system.
In Section 3.1 we will define its syntax. In Section 3.2 we define the semantics,
which consists of the generation of tables from templates, the definition of table
update operations, which define the possible evolutions of tables, and the reduction

7

Fig. 2. Updated Excel budget spreadsheet.

of tables into tables containing just values.

3.1 Syntax

A template (t) is given by a horizontal composition (|) of fixed (c) or expandable
(c→) columns, where a column is given by a vertical composition (ˆ) of fixed (b) or
expandable (b↓) blocks. A block is given by a composition of formulas (f). Blocks
are also used to represent plain tables. Formulas consist of basic values (φ), refer-
ences (ρ), and expressions that are built by applying functions to a varying number
of arguments given by formulas (φ(f, . . . , f)). In this simple version of the table
calculus we only use functions that can be applied to an arbitrary number of argu-
ments of the same type, like addition (Σ) and multiplication (Π). This restriction
simplifies the semantics of formulas and the type system a bit, but is not essential.

References are given by pairs of integers and represent relative references in the
form of offsets, that is, a reference (v, h) means to go v cells to the right and h

cells up. We use the following abbreviations for cell offsets: ` = (−1, 0), r = (1, 0),
u = (0,−1), and d = (0, 1). We sometimes use sequences of abbreviated offsets to
represent larger offsets, for example, ` ` = `2 = (−2, 0).

The syntax of templates is summarized in Figure 3.

f ∈ Fml ::= φ | ρ | φ(f, . . . , f) (formulas)

b ∈ Block ::= f | b | b | bˆb (blocks, tables)

c ∈ Col ::= b | b↓ | cˆc (columns)

t ∈ Template ::= c | c→ | t | t (templates)

Fig. 3. Templates.

The constructs correspond directly to the visual notation. Whenever we want to
talk about an arbitrary repeating group, that is, either a vex or a hex group, we
also use the notation u+ where the metavariable u ranges over columns and blocks.
We also define that ˆ and | associate to the left.

As an example, consider the summation column, which was shown as the first

8

Vitsl example in Section 2. This column is represented by the following template.

Valuesˆ0↓ˆΣ(u)

We refer to this expression as SumCol in the following. The summation table is
represented by the following template, which we name SumTab.

(Valuesˆ0↓ˆΣ(u))→ |TotalˆΣ(`)↓ˆΣ(u)

We introduce as a structure to support the semantics definition a generalization of
the concept of template in which we represent the number of expansions for each vex
and hex group. This structure is called template instance; its syntax is identical to
the syntax of templates in Figure 3 except that b↓ and c→ are replaced by b|k and ck,
respectively. We use the metavariable t to range over template instances. Similar to
repeating groups in templates, we use the abbreviation uk to represent an arbitrary
vex or hex group in a template instance. A column c (from a template) of width
w that is expanded k times in a template instance corresponds in the generated
table to kw columns. This whole area in the table is called c’s expansion area, and
k is called c’s repetition. Likewise, a block b of height h that is expanded k times
corresponds in the generated table to a rectangular area of height hk (and width
of b). Again, this area is called b’s expansion area, and k is called b’s repetition.

We summarize all structures/concepts and their distinguishing characteristics
explicitly in Table 1 for easy future reference.

Table 1. Structures used in the semantics of Gencel

Structure/Concept contains ...

template (t) ˆ, |, b↓, c→, and u+

template instance (t) ˆ, |, b
|k, ck, and uk

table (= block) (b) ˆ and |

repetition (k) exponent in b
|k, ck, or uk

expansion area (b) subpart of a table

3.2 Semantics

The semantics of the table calculus consists of three parts: (1) the translation of
templates into initial tables (Sections 3.2.1 through 3.2.3), (2) the semantics of table
update operations relative to a template (Section 3.2.4), and (3) the evaluation of
tables (Section 3.2.5). In the following we will describe all these steps in some detail.

3.2.1 Generating Template Instances

The function I produces a template instance from a template by simply replacing
each “→” or “↓” exponent by a fixed exponent n. For the purpose of spreadsheet

9

generation, we need to use I only with the index 1, but in the definition of the
type system in Section 4 we will use it with a different exponent to identify cells in
repeating groups. We use the metavariables u and v to range over Template, Col,
and Block, which allows us to give some definitions more concisely. For example, in
the definition for I, we can combine the cases for horizontal and vertical repetition.

In(t | t′) = In(t) | In(t′)
In(cˆc′) = In(c)ˆIn(c′)
In(u+) = (In(u))n

In(b) = b

We employ the following auxiliary functions for computing the width and height of
templates.1 ←→

f = 1
←→
u | v = ←→u +←→v
←→
uˆv = max(←→u ,←→v)
←→
u+ = ←→u
←→
b|k =

←→
b

←→
ck = k←→c

lf = 1
lu | v = max(lu, lv)
luˆv = lu + lv
lu+ = lu
lb|k = klb
lck = lc

The following function locates cells in templates, template instances, and tables
based on absolute references.

f [1, 1] = f

(u | v)[x, y] =

{
u[x, y] if x ≤ ←→u
v[x−←→u , y] otherwise

(uˆv)[x, y] =

{
u[x, y] if y ≤ lu
v[x, y − lu] otherwise

u+[ρ] = u[ρ]

b|k[x, y] =

{
b[x, ((y − 1) mod lb) + 1] if y ≤ klb
⊥ otherwise

ck[x, y] =

{
c[((x− 1) mod←→c) + 1, y] if x ≤ k←→c
⊥ otherwise

The last two cases allow applications of the lookup function to work on template
instances. In Section 4 we will use the function also on template types.

Next we define the function G for generating a table from a template. In fact, we
define a slightly more general function that works on template instances and that
can be reused in the definition of the update operations. In the initial table all →

and ↓ exponents are replaced by ones. Then each application of an insert-column
command increases the exponent of one hex group by one, whereas each application
of an insert-row command increases the exponents of all vex groups in one row by

1 Since we will reuse these auxiliary functions in the definition of the type system, we define them
more generally for arbitrary templates and template instances.

10

one.
A template instance contains sufficient information to (re)generate all formulas

with all correct references for the corresponding table. This fact is exploited in the
definition of the update operations, which essentially create an updated template
instance and derive the changed formulas from the new instance. Template instances
do not contain the current values from the actual table, which is not problematic
since they are not needed for the definition of the update operations, because all
newly inserted values are taken from the template.

3.2.2 Translation of Relative References

We have to pay particular attention to the generation of absolute addresses from
relative references in formulas. In particular, when a relative reference points into
a vex or hex group, the reference might mean a range of cells that have been
expanded from the cell in the specification. However, this is only the case if the
relative reference points to a vex or hex group that is not in the same horizontal
or vertical expansion area, that is, an insert-row or insert-column command in that
vex/hex group does not cause a duplication of the cell containing the reference as
well, because in that case the reference would be just a reference to a “parallel”
developing expandable block. In other words, the generation of absolute references
has to distinguish whether or not the referenced cell b is expand-dependent on the
cell a that contains the reference. A cell b is expand-dependent on a cell a if b is
expanded only if a is also expanded. In particular, this is true whenever b is not
expandable at all.

We can convert a relative reference ρ = (i, j) contained in a cell a = (x, y) into an
absolute reference with four steps. First, we determine a single absolute address by
adding the relative reference to the cell address, giving b = (x+ i, y+j). Second, we
determine the range of cells for the expansion area of the target address b. Third, to
account for expansion dependency (that is, when the source and target cell expand
in an aligned way), we remove from the calculated range the set of cells whose x

or y coordinate falls within the expansion area of the source address a. The only
exception to this removal is the block containing a, since it is possible that b is
within this block. Finally, we ensure that the source cell a is not in the referenced
set, while the original target cell b is. In the following we formalize these four steps.

First, we define an auxiliary function H to compute for a template instance
the horizontal range of coordinates that is covered by the hex group containing
a particular address. Such a range is represented by a triple (x1, x2, w) where x1

and x2 describe the vertical range and w gives the width of the hex group. In the
following definitions we use ⊕ to add a value to the first two components of a range

11

triple, that is, i⊕ (x1, x2, w) = (i + x1, i + x2, w).

Hx(f) = (x, x, 1)

Hx(u | v) =

{←→u ⊕Hx−←→u (v) if x >←→u
Hx(u) otherwise

Hx(uˆv) = Hx(u)
Hx(b|k) = Hx(b)

Hx(ck) =

{
(1, k←→c ,←→c) if x ≤ k←→c
⊥ otherwise

Similarly, V computes the vertical range (y1, y2, h) of the vex group covering a cell
where h represents the height of the vex group.

Vy(f) = (y, y, 1)
Vy(u | v) = Vy(u)

Vy(uˆv) =

{
lu⊕ Vy−lu(v) if y > lu
Vy(u) otherwise

Vy(b|k) =

{
(1, klb, lb) if y ≤ klb
⊥ otherwise

Vy(ck) = Vy(c)

As an illustration of how the functions H and V work consider the following instance
of the template SumTab.

t = (Valuesˆ0|3ˆΣ(u))2 |TotalsˆΣ(`)|3ˆΣ(u)

Let us examine the cell at absolute address (3, 2) using the H and V functions.
Initially, we break up t into u = (Valuesˆ0|3ˆΣ(u))2 and v = TotalsˆΣ(`)|3ˆΣ(u),
and we apply the second rule of H, that is, H3(u | v) = 2 ⊕ H1(v). The region
of interest lies within v, the right-most horizontal position. Examining v, we see
that it is constructed from three vertically composed blocks: TotalsˆΣ(`)|3, repre-
sented by u′, and Σ(u), represented by v′. This structure matches the third rule of
H, that is, H1(u′ˆv′) = H1(u′). Because we are computing only horizontal data,
these vertically composed blocks are insignificant. However, u′ is still formed from
two vertically composed blocks, so we repeat this step once more, which leads to
H1(u′′ˆv′′) = H1(u′′). Now, since u′′ is merely the value Totals, the expression
matches the final rule of H, and we obtain H1(u′′) = (1, 1, 1). The final output of
the function H is thus H3(t) = 2⊕ (1, 1, 1) = (3, 3, 1). The first value indicates that
the region containing the cell at absolute address (3, 2) begins at the horizontal
coordinate 3. The second value indicates that the region also ends at the horizontal
coordinate 3—in other words, it consists of only a single column. The third value
denotes the width of the region, which, as we knew already from the previous data,
is merely 1.

Next we examine V2(u | v) to determine the vertical range. We obtain V2(u | v) =
V2(u), which indicates the insignificance of horizontal composition to the V func-
tion. We now have u = u′ˆv′, where u′ is Valuesˆ0|3 and v′ is Σ(u). We have

12

V2(u′ˆv′) = V2(u′). Since the height of u′ is 4, this step concludes that the ver-
tical region of interest is within u′. Now break up u′ further into u′′ = Values

and v′′ = 0|3. We obtain V2(u′′ˆv′′) = 1 ⊕ V1(v′′). Finally, we obtain V1(0
|3) =

(1, 3l0, l0) = (1, 3, 1). The final result is therefore V2(t) = 1 ⊕ (1, 3, 1) = (2, 4, 1).
The first value indicates that the vertical region begins at y coordinate 2 and ends
at y coordinate 4 (making it a total of 3 cells tall); the height of a single repeating
block is 1.

With the help of H and V we can define a function T that translates relative
offsets into absolute “target” addresses. If a is not a cell that has been expanded
from a repeating group or if a + ρ does not leave the repeating group containing a,
b is obtained by simply adding ρ to a. Otherwise, b is obtained by adding ρ to the
first generated cell from a. For example, in all instances of the following template
the reference `2 should refer to the cell (1, 1) that contains the 0.

0 | (9 | `2)→

For the initial template instance 0 | (9 | `2)1, (1, 1) is indeed obtained by simply
adding the relative reference, that is, (3, 1)+ `2 = (3, 1)+(−2, 0) = (1, 1). However,
this is not the case for the instance 0 | (9 | `2)2, in which `2 in the rightmost cell
simply points to (3, 1). In this case, adding `2 to the first of the generated cells,
which has the address (3, 1), works. On the other hand, the reference ` in the
template 0 | (9 | `)→ always refers to the cell directly left to it, which contains the 9.
The situation is analogous for vex groups.

This distinction is reflected in the definition of the function T as follows. First, the
first instance of (x, y) in the repeating group is computed by determining the offset
that x and y have from the start of the repeating block (given by (x − x1) modw

and (y−y1) modh) and adding this offset to the first cell of the whole range, which
is (x1, y1). Second, we determine a tentative “target cell” (xt, yt) by adding ρ to
the first instance. For (xt, yt) we then check for each dimension whether or not it
is contained in the corresponding range of (x, y), which is given by (x1, x2) and
(y1, y2), respectively. If this is the case, the final address is computed by using ρ

simply as an offset from (x, y), otherwise the xt and/or yt correctly addresses an
out-of-block address.

T x
y(t, i, j) = (ifx1 ≤ xt ≤ x2 thenx + i elsext, if y1 ≤ yt ≤ y2 then y + j else yt)

where (x1, x2, w) = Hx(t)
(y1, y2, h) = Vy(t)
(xt, yt) = (x1 + (x− x1) modw + i, y1 + (y − y1) modh + j)

The third step in computing references is to determine the range of cells for the
originating cell (x, y) to account for expansion dependency. This ignore range is
represented by four x and four y coordinates (since the block containing (x, y)
must be omitted from the ignore range) and is computed through the function I

by first determining the horizontal and vertical range for the referencing cell (x, y)

13

and then removing the actual block that contains (x, y).

Ix
y(t) = ((x0, x1, x2, x3), (y0, y1, y2, y3))

where (x0, x3, w) = Hx(t)
(y0, y3, h) = Vy(t)
(x1, x2) = (x− xmodw − 1, x− xmodw + w)
(y1, y2) = (y − y modh− 1, y − y modh + h)

Finally, with the functions T and I we can define the the function R to translate
an offset into (a range of) absolute address(es).

Rx
y(t, i, j) = {(k, l) ∈ X × Y | k modw = x′modw ∧ l modh = y′modh}

−{(x, y)} ∪ {(x′, y′)}
where ((x0, x1, x2, x3), (y0, y1, y2, y3)) = Ix

y(t)
(x′, y′) = T x

y(t, i, j)
(xa, xb, w) = Hx′(t)
(ya, yb, h) = Vy′(t)
X = {xa, . . . , xb} − ({x0, . . . , x1} ∪ {x2, . . . , x3})
Y = {ya, . . . , yb} − ({y0, . . . , y1} ∪ {y2, . . . , y3})

As an example, consider the template SumCol together with the instance t =
Valuesˆ0|3ˆΣ(u). Assume we want to find the range of the u parameter in the
bottom-most cell. In this case, we apply the function R1

5(t, 0,−1) since the u is
in the fifth row of this instance, and it references an offset of one up in the vertical
direction.

First, we compute (x′, y′) = T 1
5(t, 0,−1), which yields the horizontal and vertical

information for the current area, giving us x1 = x2 = 1 and y1 = y2 = 5. Since the
width and height are 1, xt and yt are simply given by x1 + i and y1 + j respectively,
that is, xt = 1 and yt = 4. For x, we find that x1 ≥ xt ≥ x2, so x + i = 1, is chosen
as the x coordinate. For y, we find that yt = 4 is outside of y1 and y2, which are
both 5. So in this case, we select yt = 4 as the y coordinate. The returned value is
thus (1, 4).

Next, the horizontal and vertical information of this target location is computed.
We compute H1(t) and V4(t). This concludes that the target range has width 1,
with xa = 1 and xb = 1. Vertically, the range is of height 3, with ya = 2 and yb = 4.

Next, we compute the ignore range, namely I1
5(t). This is also based on the

horizontal and vertical information for (1, 5). It computes x0 and x3 to be both 1,
and y0 and y3 to be both 5. This is because the block is not repeating and is only
1 × 1 in size. (x1, x2) is found to be (0, 2) and (y1, y2) is found to be (4, 6). Thus
the complete result is ((1, 0, 2, 1), (5, 4, 6, 5)).

Now we can compute X and Y . X is the range from xa to xb excluding the ignore
ranges x0 to x1, x2 to x3, and Y is the range from ya to yb excluding y0 to y1 and y2

to y3. Those four ranges are 1..0, 2..1, 5..4, and 6..5, respectively. All of these ranges
are empty. Therefore, X and Y are simply the ranges X = {1} and Y = {2, 3, 4}.

Finally, we compute all pairs from X and Y such that they align within the block
(which is trivial in this case since the width and height are 1), excepting the origin

14

(to avoid circular references) and including the original destination. This gives us
the set {(1, 2), (1, 3), (1, 4)}.

As another example that illustrates how non-continuous ranges are constructed,
consider the following template

(A |B)ˆ((0 | 0)ˆ(0 | 0))↓ˆ(Sum A | Sum B)ˆ(Σ(u2) |Σ(u2))

together with the following template instance.

t = (A |B)ˆ((0 | 0)ˆ(0 | 0))|2ˆ(Sum A | Sum B)ˆ(Σ(u2) |Σ(u2))

In this example we repeat vertically a square 2×2 block of numbers. At the bottom
of this column, we have two sum fields, each one summing the lower halves of the
2×2 blocks in their column. Assume we want to find the range of the u2 parameter
in the leftmost sum. We apply R1

7(t, 0,−2).
In order to determine the range, the target location is determined by computing

T 1
7(t, 0,−2). This tells us the horizontal and vertical information for the current

area, giving us x1 = x2 = 1 and y1 = y2 = 7. Since the width and height are 1, xt

and yt are simply x1 + i and y1 + j, respectively. Thus, xt = 1 and yt = 5. For x,
we find that x1 ≥ xt ≥ x2, so x + i = 1, is chosen as the x coordinate. For y, we
find that yt, being 5, is outside of y1 and y2, which are both 7. So in this case, we
select simply yt, which is 5. Therefore, T 1

7(t, 0,−2) is (1, 5).
Once the target location has been found, the horizontal and vertical information

is calculated. We compute H1(t) and V5(t). This tells us that the target range has
width 1, with xa = 1 and xb = 1. Vertically, the range is of height 2, with ya = 2
and yb = 5.

The horizontal and vertical information of the target location prepares us to con-
struct the range of the reference, but before that, we must determine the ignore
range, namely I1

7(t). In order to find this, we use the horizontal and vertical infor-
mation for the origin location (1, 7). The ignore range finds x0 and x3 to be both
1, and y0 and y3 to be both 7. This is because the block is not repeating and is
only 1× 1 in size. Next (x1, x2) is found to be (0, 2) whereas (y1, y2) is found to be
(6, 8). Thus the complete result is ((1, 0, 2, 1), (7, 6, 8, 7)).

At this point we are ready to determine the basic reference coordinate sets, X

and Y . X is the range from xa = 1 to xb = 1 excluding the ignore ranges x0 to
x1, x2 to x3, and Y is the range from ya = 2 to yb = 5 excluding y0 to y1 and
y2 to y3. Those four ranges are 1..0, 2..1, 7..6, and 8..7, respectively, which are all
empty. Therefore, X and Y are simply the ranges specified, namely X = {1} and
Y = {2, 3, 4, 5}.

In this case, the modulo in the final computation comes into play. Since the height
is 2, only y values with the same modulo 2 as the target 5 will be accepted. In other
words, only odd values of y. This excludes from the set the pairs {(1, 2), (1, 4)},
leaving us with the final range {(1, 3), (1, 5)}.

As a final example that demonstrates how references across aligned repeating
blocks do not create ranges but single references, consider the template 0↓ |Σ(`)↓

and a corresponding template instance 0|3 |Σ(`)|3. In this example, we have two
columns, each consisting of a vertical repeating block, concatenated horizontally.

15

This is the interesting case of referencing from one repeating block to another which
is aligned with the first. We will ask what the range of the first ` is, in cell (2, 1).
Therefore, we compute R2

1(t,−1, 0).
The target location, (x′, y′), is determined first by applying T 2

1(t,−1, 0). In the
process, this finds the horizontal and vertical information of the origin area, giving
us x1 = x2 = 2 and y1 = 1 and y2 = 3, since there is a vertical repetition. Since the
width and height are 1, xt and yt are simply x1 + i and y1 + j respectively, that
is, xt = 1 and yt = 1. For x, we find that xt is outside the range of x1 to x2, so
we select xt, which is 1, for our x coordinate. For y, we find that yt is within the
range of y1 to y2, so we accept y + j, which is 1. Therefore, the target location is
determined to be (1, 1).

The horizontal and vertical information of this target location reveals the possible
extent of the reference. We use H1(t) and V1(t) to find it. These functions determine
that the target range has width 1, with xa = 1 and xb = 1. Vertically, the range is
of height 3, with ya = 1 and yb = 3.

We exclude from the possible extent of the reference anything indicated by the
ignore range, I2

1(t). Using the horizontal and vertical information for (2, 1) (the
origin), it computes x0 and x3 to be both 2, and y0 = 1 and y3 = 3. This is because
the block is vertically repeating. (x1, x2) is found to be (1, 3) and (y1, y2) is found
to be (0, 2). The ignore range is ((2, 1, 3, 2), (3, 0, 2, 3)).

Using these results, we can find X and Y . X is the range from xa to xb excluding
the ignore ranges x0 to x1, x2 to x3, and Y is the range from ya to yb excluding y0

to y1 and y2 to y3. Notice that one of the ranges, 2..3, is not empty, but contains
{2, 3}. These values must be excluded from the range of Y . This gives us the sets
X = {1} and Y = {1, 2, 3} − {2, 3}, with the final set for Y = {1}. Note that the
values 2 and 3 have been excluded because the two columns align.

Since the block height and width is 1, the modulo does not come into the play,
and the final reference set is simply {(1, 1)}.

3.2.3 Table Generation

The translation function G to create tables from template instances defined in
Figure 4 takes as input the complete template instance (t) together with the position
of the top-left corner of the part currently being translated (x, y), which is needed for
the proper translation of references (third line). The last argument is the part of the
template instance that is seen at the current location. The notation dSe extracts the
elements out of a set, that is, d{x1, . . . , xn}e = x1, . . . , xn. This technical adjustment
is needed in the third line to inject the set of references computed by R as a single
reference or sequence of references into a formula as required by the syntax of
blocks.

Applying the function G to I1(t) yields the initial table, that is, a block that
contains a copy of all the values and formulas from the template.

The function G generates a complete table consisting of only horizontal and
vertically composed individual blocks from a template instance. A primary feature
of this function is converting repeating groups into a sequence of individual blocks.

16

Gx
y(t, φ) = φ

Gx
y(t, φ(f1, . . . , fn)) = φ(Gx

y(t, f1), . . . ,Gx
y(t, fn))

Gx
y(t, (i, j)) = dRx

y(t, i, j)e
Gx

y(t, u | v) = Gx
y(t, u) |Gx+←→u

y (t, v)

Gx
y(t, uˆv) = Gx

y(t, u)ˆGx
y+lu(t, v)

Gx
y(t, ck) = Gx

y(t, c) |Gx+←→c
y (t, c) | . . . |Gx+(k−1)←→c

y (t, c)

Gx
y(t, b

|k) = Gx
y(t, b)ˆGx

y+lb(t, b)ˆ . . . ˆGx
y+(k−1)lb(t, b)

Fig. 4. Table generation.

It does so by breaking the table up piece by piece. In the case of a repeating group,
either horizontal or vertical, G unrolls the group to actually be repeated that many
times. It then uses the functionR to determine the appropriate references to replace
the relative offsets.

As an example, assume we want to construct the table for the instance t =
Valuesˆ0|3ˆΣ(u). In this case, G first starts with G1

1(t, (Valuesˆ0|3)ˆΣ(u)). G breaks
the template instance into the upper and lower segment, determines the height
of the upper segment, and recursively calls G1

1(t, Valuesˆ0|3) and G1
5(t,Σ(u)). The

latter parameter coordinate is generated by inspecting the height of the top piece,
which consists of a single unit label and a three unit expansion block. The sum is
calculated, 1+(3∗1) and the total value, 4, is added to the original offset of 1 to get
a final offset of 5. The upper section is broken again, so that the repeating block is
addressed with G1

2(t, 0
|3), which leads to G1

2(t, 0)ˆG1
3(t, 0)ˆG1

4(t, 0). Each of these ap-
plications of G reduces to the argument value 0. The lower portion is handled by the
case of function application, which turns G1

5(t,Σ(u)) into Σ(G1
5(t, u)), which results

in Σ((1, 2), (1, 3), (1, 4)), as shown through the example for illustrating the working
of R. Therefore, the generated table will be Valuesˆ0ˆ0ˆ0ˆΣ((1, 2), (1, 3), (1, 4)).

3.2.4 Update Operations

Two kinds of update operations are allowed on generated tables: (1) changing values
to other values of the same type2 and (2) inserting and deleting rows and columns.
The first kind of update is realized in the following way. Before a new value φ can
be entered into a cell at address (x, y), it is ensured that the cell in the template
that corresponds to (x, y) does not contain a formula and the type of the cell
is the same as the type of φ. We write chgφ

(x,y)(t, b) for the update of the cell
located at (x, y) in table b to the new value φ. The argument t gives the template
instance that corresponds to b. Formally, chgφ

(x,y) returns a pair (t, b′) where t is
the unchanged template instance and b′ is the changed table. The effect of the
row/column-insertion commands depends on the current position in the table. For
example, the insert-column command will insert k new Excel columns if the current
position is within a hex group that has the width k. The formulas and values to

2 In fact, we allow arbitrary type-correct formulas that do not contain references.

17

be inserted into the new cells are taken from the hex group of the template. For a
position outside of a hex group the insert-column command has no effect. Similarly,
the insert-row command works only when the current position is in a cell from a
vex group, in which case k new rows will be inserted where k is the height of all
the aligned vex groups covering the current vertical position. Again, formulas and
values are copied from corresponding vex groups of the template.

In general, the insertion of columns and rows requires also the adjustment of
absolute references in existing cells. We can accomplish the generation of absolute
references in newly inserted formulas and the reference adjustments by employing
the G function in the following way. First, we update the template instance by
increasing the exponent of a hex group (or a collection of vex groups). Then we
can simply apply G to the new template instance and obtain correct formulas with
correct absolute addresses for the whole table. Finally, we copy into this new table
the values from the old table.

The functions for updating template instances are defined as follows. The func-
tions Cx and Ry update a template instance on an insert-column or insert-row
command, respectively. In these cases, both functions take a template instance and
a current offset (x for column insert, y for row insert) to determine what, if any-
thing, should be added. The functions find the location of the current position, and
if it is within a vex or hex group, they increase the expansion of that group by one.

Cx(t | t′) =

{
Cx(t) | t′ if x ≤ ←→t
t |Cx−←→t (t′) otherwise

Cx(ck) =
{

ck+1 if x ≤ k←→c
ck otherwise

Cx(c) = c

Ry(t | t′) = Ry(t) |Ry(t′)
Ry(ck) = (Ry(c))k

Ry(cˆc′) =
{

Ry(c)ˆc′ if y ≤ lc
cˆRy−lc(c′) otherwise

Ry(b|k) =
{

b|k+1 if y ≤ klb
b|k otherwise

Ry(b) = b

Consider again the template instance t = Valuesˆ0|3ˆΣ(u). Assume that
an insert-row command is executed on row 2. In this case, we start with
R2((Valuesˆ0|3)ˆΣ(u)). The height of the first block is 4, which is greater than
the value for y (which is 2), so the function applies recursively to the first block,
that is, we obtain R2(Valuesˆ0|3)ˆΣ(u). The height of the first block is only 1, so
the second case is executed, modifying the y parameter of Ry by the height of the
top block. Therefore, the recursive call R1(0

|3) results. We find that y is within the
height of this block, so we increase its repetition, returning 0|4 as a subexpression,
which leads to the final new template instance Valuesˆ0|4ˆΣ(u).

Merging the actual values from the old table with the new table obtained by G is
achieved by two functions that copy all values outside of the column (or row) range

18

for the newly inserted column (row). These “ignore ranges” can be computed with
the help of V and H because, after an insert column command, the x coordinate
of the current position must be between x1 + kw and x1 + (k + 1)w for some k

where Hx(t) = (x1, x2, w). Similarly, the y coordinate must be between y1 + lh and
y1 + (l + 1)h for some l where Vy(t) = (y1, y2, h). The functions H and V can be
defined as follows. They traverse the newly generated table and copy values from
the old table within the old areas. H and V accept four parameters: an x and y

coordinate, which both start at 1, along with a newly generated table and the old
table (b) before the row or column insertion. The position of insertion is held as
x̂ and ŷ where x̂ = x1 + kw and ŷ = y1 + lh, so that we have x̂ ≤ x < x̂ + w or
ŷ ≤ y < ŷ + h for the current position (x, y).

Hx
y(b1 | b2, b) = Hx

y(b1, b) |Hx+
←→
b1

y (b2, b)
Hx

y(b1ˆb2, b) = Hx
y(b1, b)ˆHx

y+lb1(b2, b)
Hx

y(f, b) = f (for f 6= φ)

Hx
y(φ, b) =

φ if x̂ ≤ x < x̂ + w

b[x, y] if x < x̂

b[x− w, y] if x ≥ x̂ + w

Vx
y (b1 | b2, b) = Vx

y (b1, b) |Vx+
←→
b1

y (b2, b)
Vx

y (b1ˆb2, b) = Vx
y (b1, b)ˆVx

y+lb1(b2, b)
Vx

y (f, b) = f (for f 6= φ)

Vx
y (φ, b) =

φ if ŷ ≤ y < ŷ + h

b[x, y] if y < ŷ

b[x, y − h] if y ≥ ŷ + h

Consider the template instance t = Valuesˆ0|3ˆΣ(u) and a corresponding actual
table b = Valuesˆ1ˆ2ˆ3ˆΣ((1, 2), (1, 3), (1, 4)).

In this case, assume a row insert is made at position (1, 3), that is, x̂ = 1 and
ŷ = 3. The application of R3 yields the new template instance Valuesˆ0|4ˆΣ(u) to
which G is applied and produces the table

b′ = Valuesˆ0ˆ0ˆ0ˆ0ˆΣ((1, 2), (1, 3), (1, 4), (1, 5))

as demonstrated previously. The function application V1
1 (b′, b) unfolds into the

two function calls V1
1 (Valuesˆ0ˆ0ˆ0ˆ0, b) and V1

6 (Σ((1, 2), . . . , (1, 5)), b), which is un-
changed since it is a formula (third rule of V). The y parameter of 6 comes from the
sum of the original 1 plus the calculated height of the first vertical block, which is 5.
The block of the first function call is again broken vertically into V1

1 (Valuesˆ0ˆ0ˆ0, b)
and V1

5 (0, b). The latter, whose parameter of 5 is computed the same way as above,
is simply a value. Now the definition tries to find where in the original table the
value should come from. In this case, the current y value of 5 is greater than the
original ŷ value of 3 plus the height of the inserted row, which is 1. Therefore, we
access the location (1, 5− 1) (third case of the last rule for V), which gives us the
value 3 from the original table, which replaces the placeholder 0. The top block is
broken again into V1

1 (Valuesˆ0ˆ0, b) and V1
4 (0, b). In this case, we find out that the

value of y, being 4, is equal to the ŷ plus the height of the row, which also totals to

19

4. In this case, we still apply the same rule as before, looking up (1, 4 − 1) in the
table, which gives us the value 2. The top block is broken again into V1

1 (Valuesˆ0, b)
and V1

3 (0, b). In this case, the value of y, which is 3, is less than the value of ŷ plus
the height of the row. However, this is still equal to ŷ, so we take the placeholder
value without looking one up in the original table b. This is where the “new” value
appears.

The top block is broken again into V1
1 (Values, b) and V1

2 (0, b). The latter case has
a y which is less than ŷ, so simply the value of the (1, 2) is looked up in the original
table. The top value is analyzed likewise. Thus, the newly constructed table is

Valuesˆ1ˆ0ˆ2ˆ3ˆΣ((1, 2), (1, 3), (1, 4), (1, 5)).

Finally, the semantics of the insert-column and insert-row operation is defined as
follows. In the given definitions, the t argument represents the current template
instance, whereas the b argument represents the actual table. In addition to the
new table, the functions also return the new template instance t′.

insC
(x,y)(t, b) = (t′,H1

1(G1
1(t
′, t′), b)) where t′ = Cx(t)

insR
(x,y)(t, b) = (t′,V1

1 (G1
1(t
′, t′), b)) where t′ = Ry(t)

Note that in the implemented Gencel system we do not keep a copy of the whole
actual spreadsheet. Instead we send to Excel only cell definitions that need to
be changed. The concept of template instances allows us to describe the update
operations in the formal model as well as to implement a space efficient system.

Deleting rows and columns works in a similar way. First, we need two functions
R̄ and C̄ for decreasing exponents, which are defined exactly as R and C, except
for the exponent, which has to be k − 1 instead of k + 1 and is only decreased if
k > 1. Moreover, we need two functions H̄ and V̄ that are defined like H and V
except for the following cases.

H̄x
y(φ, b) =

{
b[x, y] if x < x̂

b[x + w, y] otherwise

V̄x
y (φ, b) =

{
b[x, y] if y < ŷ

b[x, y + h] otherwise
For delete row and delete column we get the following definitions.

delC(x,y)(t, b) = (t′, H̄1
1(G1

1(t
′, t′), b)) where t′ = C̄x(t)

delR(x,y)(t, b) = (t′, V̄1
1 (G1

1(t
′, t′), b)) where t′ = R̄y(t)

3.2.5 Table Evaluation

The evaluation of a table essentially means to evaluate all cells by applying basic
functions and looking up references. The evaluation of cells requires the whole table
as an additional parameter to facilitate the evaluation of references, which are given
by absolute addresses. The metavariable x used in the rules Sum and Prod ranges
over numeric values.

20

Val→→
φ→→b φ

Sum→→
fk→→b xk 1 ≤ k ≤ n

Σ(f1, . . . , fn)→→b x1 + . . . + xn

Prod→→
fk→→b xk 1 ≤ k ≤ n

Π(f1, . . . , fn)→→b x1 ∗ . . . ∗ xn

Ref→→
b[ρ] = f f→→b φ

ρ→→b φ

Hor→→
b1→→b b3 b2→→b b4

b1 | b2→→b b3 | b4

Ver→→
b1→→b b3 b2→→b b4

b1ˆb2→→b b3ˆb4

Tab→→
b→→b b′

b→→b′

Fig. 5. Evaluation of tables (blocks).

As an example, consider the following table.

b = Valuesˆ1ˆ2ˆ3ˆΣ((1, 2), (1, 3), (1, 4))

The goal is to derive the table b′ such that b→→b′, which can be achieved through
the Tab→→ rule.

Since b is a vertical composition of cells, we have to repeatedly apply the Ver→→
rule, which causes the table to be broken into multiple individual chunks, namely
the label Values, the numbers 1, 2 and 3, and the summation formula. These are all
reduced individually, and then vertically concatenated. The label and the numbers
are reduced immediately using the Val→→ rule. This rule returns them unchanged.

To reduce the summation the premises of the Sum→→ rule must be established.
These preconditions require that all references from the Sum→→ rule must already
be reduced before the sum can be evaluated. In this case, the references refer to the
three numbers, all of which have been reduced using the Val→→ rule. The function
application of the Σ function can then be reduced to 1+2+3, which is 6. Therefore,
the resulting table is Valuesˆ1ˆ2ˆ3ˆ6.

4 Type System

In this section we define a type system for templates to guarantee a meaningful
generation of tables and their update operations.

We distinguish between two sets of types. First, the types of formulas (ϕ) in-
clude base types (α), for example, Num and String, and (first-order) function types
for functions with an arbitrary number of arguments. It is easy to add, for exam-
ple, unary and binary operations and corresponding function types and additional
function-application typing rules. Second, template types (τ) have the same struc-
ture as templates except that horizontal and vertical repetition are identified, see
Figure 6.

ϕ ::= α | α+ → α (formula types)
σ, τ ::= α | τ | τ | τˆτ | τ+ (templates types)

Fig. 6. Formula and template types.

The type system is defined through several judgments. First, we give typing

21

rules for formulas. Since the type of a formula f depends, in general, on the types
of formulas that are contained in cells referenced by f , we formalize the typing of
formulas by a judgment σx

y . f : ϕ that expresses that f , found at position (x, y) in
the template, has type ϕ in the context of the template type σ. The typing rules
for formulas are shown in Figure 7. We have two rules for typing references that
are used to distinguish between references to single cells and ranges. We can reuse
the functions defined in Section 3.2.2 to determine the nature of a reference ρ. First
of all, we determine whether or not a referenced cell b = (x′, y′) is in a hex or vex
group, because only then it can mean a range. To this end, we can check the range
computed by H or V for a template instance in which each repeating group has
been expanded at least twice (which can be obtained by I2(t)): If the spanned cell
range is larger than the width of the block, the cell is located in a repeating group.
Second, the referenced cell denotes a range if and only if its repeating group is
independent of the referencing cell, which is the case only if its range is different.
Therefore, we can define the “is-range” predicate Θ as follows.

Θx
y(t, (i, j)) = (x′2 − x′1 > w ∧ (x′1, x

′
2) 6= (x1, x2)) ∨ (y′2 − y′1 > h ∧ (y′1, y

′
2) 6= (y1, y2))

where t = I2(t)
(x′, y′) = T x

y(t, i, j)
(x′1, x

′
2, w) = Hx′(t)

(y′1, y
′
2, h) = Vy′(t)

(x1, x2,) = Hx(t)
(y1, y2,) = Vy(t)

In rule App we use the notation α[+] to represent α or α+, which allows single
references as well as range references to be used as function arguments. However,
range references are otherwise prohibited in cells. This restriction is expressed ef-
fectively through the Fml rule in Figure 9, which requires α and prohibits α+ for
f .

Val
φ has type ϕ

σx
y . φ : ϕ

App
σx

y . φ : α+ → α′ σx
y . fi : α[+]

σx
y . φ(f1, . . . , fn) : α′

Ref
σ[(x, y) + ρ] = τ ¬Θx

y(σ, ρ)

σx
y . ρ : τ

Ref+ σ[(x, y) + ρ] = τ Θx
y(σ, ρ)

σx
y . ρ : τ+

Fig. 7. Formula typing rules.

We do not allow the arbitrary alignment of blocks and columns. Some constraints
are already expressed by the abstract syntax. In addition, we allow the vertical
composition only for blocks of equal width, see the rules Ver and Col in Figure
9. Finally, we restrict the horizontal composition to columns that have the same
vertical pattern. This constraint is expressed through the alignment predicate t o t,
which is formalized in Figure 8 and which is used in rule Template in Figure 9.

The first three rules in Figure 8 define that vertical alignment is an equivalence
relation. The next rule expresses that vertical alignment holds for horizontally com-

22

t o t
t o t′

t′ o t
t1 o t2 t2 o t3

t1 o t3
t1 o t t2 o t

t1 | t2 o t
c o t

c→ o t
c1 o c3 c2 o c4

c1ˆc2 o c3ˆc4

c1 o c4 c2 o c5 c3 o c6

c1ˆ(c2ˆc3) o (c4ˆc5)ˆc6

b1 o b2

b↓1 o b
↓
2

lb1 = lb2

b1 o b2

Fig. 8. Column alignment.

posed templates if it holds for both templates individually. The fifth rule states that
vertical alignment is invariant under horizontal repetition. The sixth rule defines
vertical alignment as a congruence relation with respect to vertical composition
while the seventh rule expresses that vertical composition is associative with re-
spect to the equivalence defined by vertical alignment. The eighth rule defines that
vertical alignment hold for vex groups if it holds for the argument blocks, and the
last rule establishes the base case that says that blocks align vertically if the have
the same height.

The typing rules for templates shown in Figure 9 define judgments of the form
σx

y ` t : τ . We overload the judgment notation for blocks, columns, and tables.

Fml
σx

y . f : α

σx
y ` f : α

Hor
σx

y ` b : τ σx+
←→
b

y ` b′ : τ ′ lb = lb′

σx
y ` b | b′ : τ | τ ′

Ver
σx

y ` b1 : τ σx
y+lb1 ` b2 : τ ′

←→
b1 =

←→
b2

σx
y ` b1ˆb2 : τˆτ ′

Block+ σx
y ` b : τ

σx
y ` b↓ : τ↓

Col
σx

y ` c1 : τ σx
y+lc1 ` c2 : τ ′ ←→c1 =←→c2

σx
y ` c1ˆc2 : τˆτ ′

Col+ σx
y ` c : τ

σx
y ` c→ : τ→

Template
σx

y ` t : τ σx+
←→
t

y ` t′ : τ ′ t o t′

σx
y ` t | t′ : τ | τ ′

Fig. 9. Table typing rules.

To illustrate the typing rules, we give a couple of examples. Using rule Val (from
Figure 7) and Block+ (from Figure 9), we can derive that 0↓ has type Num↓. Since
Values has type String and is also of width 1, rule Ver can be employed to show
that Valuesˆ0↓ has type StringˆNum↓. To type the reference in the formula Σ(u) we
need a template-type context. With a context σ = StringˆNum↓ˆNum we can first
derive by rule Ref+ σ1

3 . u : Num↓ (the row number 3 results from the adjustment
in the second premise of the Ver rule). Since according to rule Val, Σ has the
type Num+ → Num in any template-type context σx

y , we can apply the App rule
to obtain the type Num for the summation cell, which finally yields the type σ for
the whole summation column.

For the type of the summation template shown at the end of Section 3.1 we first
determine the type for the hex group, which according to rule Col+ is σ→ (where
σ is the type of the summation column). For typing the formula Σ(`) in the total

23

column, we again need a context, which we select as τ = σ→ |σ.
The type system allows the typing of cyclic references by assuming a fixed, ar-

bitrary type for all cells on the cycle in σx
y . Cycles represent nonterminating com-

putations and correspond to nonterminating function definitions whose value is
undefined. In contrast to a Turing-complete functional language, we can easily de-
tect nonterminating computations by identifying cycles in templates. Therefore, we
consider a template to be type correct only if it does not contain any cycles. Al-
though we could encode the cycle detection (or better, prevention) into the type
system, it seems to be easier to add an explicit definition. We can determine all
references that are contained in a formula by the following function.

<(φ) = ∅
<(ρ) = {ρ}
<(φ(f1, . . . , fn)) = ∪1≤i≤n<(fi)

A template t contains a cycle [(x1, y1), . . . , (xn, yn)] iff

∀1 ≤ i < n.(xi+1, yi+1) ∈ <(t[xi, yi]) ∧ (xn, yn) ∈ <(t[x1, y1])

Next we define the notion of well typing for templates (and tables).

Definition 1
t is well typed with template type τ if τ1

1 ` t : τ and t does not contain a cycle.

5 Evolution Safety

The main result for the presented table calculus is that a type-correct template
allows only the generation of tables that can be always safely evaluated and never
result in a computational error, such as a type error or reference error. To express
this result formally we define the set of tables T (t), that is, the set of (template
instance, table) pairs, that can be obtained from a template t through update
operations as follows. T (t) is the smallest set satisfying:

(1) (I1(t),G1
1(I1(t), I1(t))) ∈ T (t)

(2) (t, b) ∈ T (t) =⇒ u(x,y)(t, b) ∈ T (t)
for 1 ≤ x ≤

←→
b , 1 ≤ y ≤ lb and

u ∈ {insR, insC , delR, delC , chgφ}

We use the judgment ⇓b, which is defined in Figure 10, to express that the table b is
fully evaluated, that is, b contains only values and does not contain any unevaluated
formulas or unresolved references.

⇓φ
⇓b ⇓b′

⇓(bˆb′)

⇓b ⇓b′

⇓(b | b′)

Fig. 10. Table normal form.

The safety result can now be expressed as follows.

Theorem 1

24

If t is well typed and (t, b) ∈ T (t), then ∃b′.b→→b′ ∧ ⇓b′.

Proof (Sketch). The proof is by induction over the construction history for ele-
ments of T (t), that is, first we show that the theorem is true for bt = G1

1(I1(t), I1(t)).
Then we show that each application of an update operation preserves the property.
The theorem follows then by induction over the number of applied updates.

(1) It is obvious from the definition of G that bt differs from t only in the following
way: For any subexpression u+ in t, the corresponding subexpression in bt is just
u, because the exponent is translated by I into 1, which is simply ignored by G.
The evaluation of bt works by recursively descending to formulas (rules Hor→→ and
Ver→→ in Figure 5). Values can always be evaluated to themselves (rule Val→→). The
rules for function application (rules Sum→→ and Prod→→) require that all arguments
can be evaluated to values of the appropriate type. This precondition is ensured by
the typing rule App that is shown in Figure 7. The evaluation of a reference requires
that the referenced cell exists and that the contained formula can be evaluated (rule
Ref→→ in Figure 5). The existence of references is guaranteed by the typing rules
Ref and Ref+ in Figure 7. The fact that the referenced formula can be evaluated
follows by induction because the well typing of t implies the absence of cycles.

(2) Next we consider an arbitrary element (t, b) ∈ T (t). Let (t′, b′) = insC
(x,y)(t, b).

First, Cx increases the index of the hex group that covers the x coordinate by one.
Then G regenerates the formulas for the whole new table. The adjustment of the
x coordinate by ←→c ensures that the generator keeps track of the correct position
for the generation of all instances of the column, in particular, the newly inserted
one and the ones that are moved to the right. This fact guarantees (through the
definition of Rx

y) that all references for newly generated cells and for moved cells
will be translated into absolute addresses that refer to cells of the same type as the
relative references in the template. Since the definition of H takes into account the
position and width of the newly inserted column, the process of copying the values
from the old table into the generated table does not change any reference. Therefore,
the same line of reasoning as under (1) applies to the evaluation of references and
arguments of operations, only on a larger set of cells.

An initial spreadsheet is known to be free of circular references. For each vex or
hex group, it may reference some aligned and some unaligned blocks. If a row or
column is added, a reference to an aligned block will be of the same form, thus not
introducing a new circular reference. A reference to an unaligned block will remain
constant. That unaligned block cannot reference the newly inserted cell, because it
may only reference the entire vex/hex group or none of it. If it did reference the
group, then there would have already been a circular reference in the initial sheet.
If it does not, then no new circular reference will be introduced by the inserted cell
referencing it.

Therefore, the theorem is true for the insC operation. Similar considerations
apply to the other structure-changing operations. Since the chgφ operation changes
a value to another value of the same type, the theorem is true also for this operation.
�

In analogy to Milner’s slogan that “well-typed programs cannot go wrong”, the

25

above result can be paraphrased as “well-typed templates cannot evolve wrong”.

6 Implementation of the Gencel System

The components of the Gencel system are shown in Figure 11. The generator and
type checker are implemented in Haskell (Peyton Jones, 2003). These components
are connected through a VBA module to Excel, which serves mainly as the user
interface. We have already successfully employed a similar Haskell-backend strategy
in the recent implementation of a header and unit inference system (Abraham &
Erwig, 2004) and a debugger (Abraham & Erwig, 2005) for Excel. The information
from the Excel sheet being manipulated by the end user is captured by a VBA
program and sent to the backend server. The VBA system is shipped as an Excel
add-in. The Haskell modules are compiled with GHC (GHC, 2004) to a Windows
executable that runs as the backend server.

Spreadsheet
Message
Dispatcher

Value
Checker

Type
Checker

Message
Dispatcher

Generator

Structure
Updates

Value
Updates

Frontend Backend

Templates

HaskellExcel VBA

Fig. 11. Gencel system architecture.

The Gencel toolbar has four buttons for row and column insertions, two buttons
for row and columns deletions, and one button to bring up the interface for loading
the specifications. This interface (shown in Figure 12) shows the user a listing of the
available templates. When the user clicks on any file name from the list on the left
she is shown a preview and a description of the specification, which can be added
manually as a comment to templates.

Depending on which button has been clicked, the VBA program sends the corre-
sponding message, with information about the current cell selection, to the backend
server. The server performs the update to yield the new template instance. It then
generates the messages for the updates to be performed to the Excel spreadsheet
and sends them to the VBA program (these messages simply paint the new tem-
plate instance in the Excel spreadsheet). Through Excel events, the VBA program
also keeps track of value updates to the Excel spreadsheet.

26

Fig. 12. Interface for loading Gencel specifications.

The backend server contains a “Message Dispatcher” that receives messages from
the VBA program. In case of structural updates like row/column insert/delete
operations, the dispatcher interacts with the “Generator” module to come up with
the new template instance and the messages to reflect the update in the Excel
frontend. In case the user changes a value in the Excel spreadsheet, the dispatcher
forwards the message to the “Value Checker” module that checks the updated value
against the specification to ensure that the new value is type correct. The other
components of the backend server include the “Type Checker” module that checks
the template loaded into the system by the user to ensure that it is type correct.
The template, after type checking, is translated into the initial template instance
and table by the generator.

The frontend VBA program keeps a copy of the Vitsl representation of the
most recent template instance. Each time the user issues the save-file command in
Excel, Excel saves the workbook and the corresponding Vitsl template instance.
Whenever the Gencel add-in has been enabled in Excel, every time the user loads a
workbook in Excel, the events trigger the backend server to load the corresponding
template instance. This allows us to keep both files synchronized.

Moreover, we have implemented an interface that allows users to edit Vitsl

specifications. The interface is shown in Figure 13 with the template for the budget
sheet.

Vitsl is targeted at domain experts who are familiar with Excel. Therefore,
to maintain the closeness of mapping, we have adopted a structure and behavior
similar to Excel. Along the lines of the Gencel system, the Vitsl interface also
allows insertion of rows (or columns) above or below (left or right) of the current cell.
We have additional buttons for the creation of vertically or horizontally repeating
groups. The interface differs from the visual notation used in Section 2 in how
it represents repeating groups. In the interface, the light gray shading marks the
expansion areas of repeating groups, and the three vertical and horizontal dots (for
vertically/horizontally repeating groups) appear only on the borders. Moreover, the
absence of separators between the cells in the headers expresses that those rows or
columns are part of the same repeating group. For example, in Figure 13, columns

27

Fig. 13. Vitsl interface.

B, C, and D belong to the same repeating group.
The design of the Vitsl editor and an evaluation of the design using the Cog-

nitive Dimension framework (Green & Petre, 1996) is described in more detail in
(Abraham et al., 2005).

7 Related Work

The pervasiveness of errors in spreadsheets has motivated some research into spread-
sheet design (Isakowitz et al., 1995; Yoder & Cohn, 1994; Ronen et al., 1989), testing
(Rothermel et al., 2001), consistency checking (Erwig & Burnett, 2002; Burnett &
Erwig, 2002; Burnett et al., 2003; Ahmad et al., 2003; Antoniu et al., 2004; Abra-
ham & Erwig, 2004), fault localization (Ruthruff et al., 2003; Prabhakarao et al.,
2003), and debugging (Abraham & Erwig, 2005).

However, little research has been performed on creating new, safer spreadsheet
systems. The spreadsheet language Forms/3 (Burnett et al., 2001) extends the
spreadsheet paradigm by a number of features found in other programming lan-
guages. The language contains many experimental features, such as a time dimen-
sion, generalizations, gestures, and a model of sequence I/O. The application is
itself not so much an end-user application, but a platform to study potential end-
user applications. Since Forms/3 allows the free positioning and resizing of cells,
it deviates from the traditional interaction model of spreadsheets, which makes it
difficult to implement it as an extension of, for example, Excel as we did. Our ap-
proach is also strongly concerned with typing and safety, whereas this was not the
primary concern in the design of the Forms/3 system.

On the other hand, the Forms/3 group has explored different approaches for au-
diting spreadsheets. Rothermel et al. have come up with the “What You See Is
What You Test” methodology for testing spreadsheets (Rothermel et al., 2001).
This methodology uses data flow adequacy criteria and coverage monitoring to give
users incremental feedback (using cell coloring and a “testedness” progress bar) on
the percentage of cells that have been tested. Fisher et al. have developed a sys-
tem that automatically generates test cases for end users to test their spreadsheets

28

(Fisher II et al., 2002). Fault localization techniques to help end users debug spread-
sheets have also been incorporated into the Forms/3 language (Ruthruff et al., 2003;
Prabhakarao et al., 2003).

The formulae, formats, relations (FFR) model presented in (Sajaniemi, 2000)
abstracts the structure of spreadsheets. It also helps to analyze visualization mech-
anisms for spreadsheets. In this approach, errors in spreadsheet formulas show up
as anomalies in the visualizations. A similar approach of identifying recurring struc-
ture (regions) in spreadsheets and then presenting anomalies as potential problem
areas to the user is followed by the system described in (Mittermeir & Clermont,
2002). Both systems are designed to provide insights into the structure of existing
spreadsheets; they are not intended to prevent errors in spreadsheets.

Lisper, et al.’s Haxcel system (Lisper & Malmström, 2002) is an attempt to bring
the advantages of spreadsheets together with the type-safe, functional language
Haskell. They define a system where Haskell programs are defined in a graphical
list, and specialized arrays of data are displayed as tables. Any changes to the
Haskell program will be immediately visible in the results of computation. This
creates a tight “definition-eval-display loop” as spreadsheets have. Our approach
is to begin at spreadsheets and move them toward a type-safe, structured system.
Haxcel uses the opposite approach: to begin with a type-safe, structured language
(Haskell) and make it more like a spreadsheet. They do this by separating the
Haskell code from the data it is to process and placing the data in a table. In both
cases, the goal of providing users with a clean and safe environment is present.
However, very few users are familiar with Haskell compared to the number familiar
with spreadsheets and this discrepancy is a potential barrier to the adoption of the
Haxcel system. On the other hand, our system allows users to use functions and
formulas that they are comfortable with in a familiar environment.

The FunSheet system (de Hoon et al., 1995) is another work which combines
spreadsheets and general functional programming. The FunSheet system uses a
regular row and column spreadsheet, but replaces the traditional formulas with
more expressive functional syntax. The cells are lazily evaluated and may contain
lists and other composite values. Cells are referenced by the use of column functions,
that is, each column (A, B, etc.) is a function which takes an integer parameter
and returns a cell value. Cell formulas can include functions like map and fold. The
system also allows partial reductions of cell formulas and unbound variables. Fun-
Sheet is implemented in Clean and is used as an experiment in functional graphics
and I/O as well as spreadsheets. FunSheet and our approach are similar on the
surface: both start with a row and column spreadsheet model and move toward a
safer system. FunSheet retains the unstructured model of spreadsheets and instead
allows highly expressive functional programming in the cells. Our system retains
many of the familiar abilities of spreadsheet formulas, but enforces a structured
layer on the sheet itself. This is quite different from the FunSheet approach. One
reason for this difference is a difference in goals: FunSheet seeks to explore and
extend the computational capabilities of spreadsheets while our system seeks to
increase safety and usability of spreadsheets.

The approach of Peyton Jones and others (Peyton Jones et al., 2003) to extend

29

Excel by user-defined functions has a strong basis in end-user usability. The authors’
primary goal is to design a method for end users to easily create new functions in
their spreadsheets. They use a familiar spreadsheet model and attempt to minimize
the impact (learning curve) on users while maximizing the user’s productivity. The
authors note that traditional spreadsheets often compute very complex models, but
do not include any user-defined functions, which makes the spreadsheets needlessly
complicated and difficult to maintain. The authors introduce a system that allows
users to define functions within the existing spreadsheet model. The user creates
a function sheet, which appears the same as any ordinary sheet, and defines the
function from input cell(s) to an output cell. They may then use the function like
any other built-in function. The authors have implemented a minimal prototype
using VBA macros in Excel. They have also devised several mock-ups to demon-
strate the concept of user-defined functions in Excel. The approach of the authors
differs strongly from our approach. First, the authors focus heavily on the cogni-
tive dimensions approach (Green & Petre, 1996). The authors also use as much of
the existing paradigm as possible—they purposefully do not attempt to add a new
representation for functions or new structure to the spreadsheets. The authors’
approach does not increase the safety of a spreadsheet, except perhaps in cases
where functions decrease the complexity of a sheet and allow the user to notice er-
rors. However, the approaches are not entirely different. Both the authors’ and our
approach start with a familiar spreadsheet model. Both seek to improve end-user
experience specifically. Both are more concerned with usability than adding new
features to the spreadsheet system.

8 Conclusion and Future Work

We have designed a specification language for describing spreadsheet tables and
their possible evolutions. The language is based on a table evolution calculus that
defines semantics of generating tables from templates and the evaluation of tables.
We have developed a type system for this calculus that ensures that any table
obtained from a template can be safely evaluated without causing any errors.

We have implemented a prototype, called Gencel, as an extension to Excel that
allows users to work safely with tables based on templates. The current system
works well for many examples and can even conveniently deal with some computa-
tions that are difficult to perform in Excel.

In particular, Gencel exterminates the following kinds of errors from spreadsheets.

• Range errors (for example, omitted cells in aggregations)
• Reference errors
• Type errors

The impact of these errors has been extensively documented. For example, an omis-
sion error has caused a Florida construction company to underbid a project by a
quarter of a million dollars (Ditlea, 1987; Hayen & Peters, 1989; Gilman & Bulkeley,
1986). An example of a type error is the illegal interpretation of a date as a numeric
value, which caused an operating fund of the Colorado Student Loan Program to be

30

understated by $36,131 (U.S. Department of Education, 2003). Finally, a reference
error caused a hospital’s records to overstate its Medicaid/Medicare crossover log
by $38,240 (U.S. Department of Health and Human Services, 2003). The use of
Gencel would have prevented all these errors.

The presented formalism and implementation indicate a new direction for func-
tional programming research that is targeted at end users. Due to the widespread
use of spreadsheets, the impact of work in this area can be enormous.

We have identified several topics for future research, both relating to the for-
mal system and the tool implementation. We first discuss extensions to the formal
system.

Each value φ in a cell of an expandable group potentially denotes a sequence
of values, because the insert row/column operations can duplicate the cell. In the
current model, this sequence of values is fixed to be [φ, φ, φ, φ, . . .]. A simple and
useful generalization is to allow the specification of value generators in cells of
expandable groups.

Currently, references all relate from one cell to another within the same table.
If spreadsheets were allowed to contain multiple tables, it should be possible for
references to refer to other tables in the same spreadsheet. There are several possible
approaches to construct multiple-table spreadsheets. Perhaps the simplest approach
would be to name tables and use names plus relative references.

Another limitation of references in expandable groups is that they either refer
to another cell in the current repeating group or a fixed cell or range outside of
the current group. No mechanism exists to allow a recursive reference to a different
expansion of the same group. To solve this problem, the system needs a new kind
of relative references, which reference a different generated block within the same
expansion area. Such an extension affects syntax and semantics of the table calculus.
Moreover, the rules of the type system become more complex since the references
may be constructed to float over a wide variety of cells as expansion occurs.

Future work also extends into improvements of Gencel and associated tools. To
support a wide-spread use of the Gencel system and to enable a smooth transition,
we have to offer tools that can load existing Excel spreadsheets into the Gencel
system. Since those spreadsheets are only given in Excel format, we have to distill
a template of which they can be an instance. We call this process of identifying tem-
plates from plain spreadsheets template parsing. Template parsing is indispensable
for the work with legacy spreadsheets.

It might not be possible to completely automate this process because of ambi-
guities. Techniques employed in probabilistic grammars (Charniak, 1996) might be
useful to generate a ranked list of possible parsed templates. Alternatively, we could
adapt spatial analysis techniques to identify semantic structures in spreadsheets
that we developed to support the automatic header and unit inference (Abraham
& Erwig, 2004).

Another feature that seems to be valuable in practice is the ability to encode
formatting information with a spreadsheet template. This does not pose any theo-
retical difficulties.

31

Acknowledgments

The authors would like to thank the anonymous reviewers for their help in improv-
ing the presentation of this paper.

References

Abraham, R., & Erwig, M. (2004). Header and Unit Inference for Spreadsheets Through
Spatial Analyses. Pages 165–172 of: IEEE Int. Symp. on Visual Languages and Human-
Centric Computing.

Abraham, R., & Erwig, M. (2005). Goal-Directed Debugging of Spreadsheets. IEEE Int.
Symp. on Visual Languages and Human-Centric Computing. To appear.

Abraham, R., Erwig, M., Kollmansberger, S., & Seifert, E. (2005). Visual Specifications
of Correct Spreadsheets. IEEE Int. Symp. on Visual Languages and Human-Centric
Computing. To appear.

Ahmad, Y., Antoniu, T., Goldwater, S., & Krishnamurthi, S. (2003). A Type System for
Statically Detecting Spreadsheet Errors. Pages 174–183 of: 18th IEEE Int. Conf. on
Automated Software Engineering.

Antoniu, T., Steckler, P. A., Krishnamurthi, S., Neuwirth, E., & Felleisen, M. (2004).
Validating the Unit Correctness of Spreadsheet Programs. Pages 439–448 of: 26th
IEEE Int. Conf. on Software Engineering.

Brown, P. S., & Gould, J. D. (1987). An Experimental Study of People Creating Spread-
sheets. ACM Transactions on Office Information Systems, 5(3), 258–272.

Burnett, M. M., & Erwig, M. (2002). Visually Customizing Inference Rules About Apples
and Oranges. Pages 140–148 of: 2nd IEEE Int. Symp. on Human-Centric Computing
Languages and Environments.

Burnett, M. M., Atwood, J., Djang, R., Gottfried, H., Reichwein, J., & Yang, S. (2001).
Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet
Paradigm. Journal of Functional Programming, 11(2), 155–206.

Burnett, M. M., Cook, C., Summet, J., Rothermel, G., & Wallace, C. (2003). End-
User Software Engineering with Assertions. Pages 93–103 of: 25th IEEE Int. Conf. on
Software Engineering.

Charniak, E. (1996). Statistical Language Learning. MIT Press.

de Hoon, W. A. C. A. J., Rutten, L. M. W. J., & van Eekelen, M. C. J. D. (1995).
Implementing a Functional Spreadsheet in Clean. Journal of Functional Programming,
5(3), 383–414.

Ditlea, S. (1987). Spreadsheets Can be Hazardous to Your Health. Personal Computing,
11(1), 60–69.

Erwig, M., & Burnett, M. M. (2002). Adding Apples and Oranges. Pages 173–191 of: 4th
Int. Symp. on Practical Aspects of Declarative Languages. LNCS 2257.

Erwig, M., Abraham, R., Cooperstein, I., & Kollmansberger, S. (2005). Automatic Gen-
eration and Maintenance of Correct Spreadsheets. Pages 136–145 of: 27th IEEE Int.
Conf. on Software Engineering.

Fisher II, M., Cao, M., Rothermel, G., Cook, C., & Burnett, M. M. (2002). Automated
Test Case Generation for Spreadsheets. Pages 141–151 of: 24th IEEE Int. Conf. on
Software Engineering.

GHC. (2004). The Glasgow Haskell Compiler. http://haskell.org/ghc.

Gilman, H., & Bulkeley, W. (1986). Can Software Firms be Held Responsible When a
Program Makes a Costly Error? Wall Street Journal, CCVII(24), 17.

32

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Programming En-
vironments: A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages and
Computing, 7(2), 131–174.

Hayen, R. L., & Peters, R. M. (1989). How to Ensure Spreadsheet Integrity. Management
Accounting, 60(9), 30–33.

Hendry, D. G., & Green, T. R. G. (1994). Creating, Comprehending and Explaining
Spreadsheets: A Cognitive Interpretation of What Discretionary Users Think of the
Spreadsheet Model. International Journal of Human-Computer Studies , 40, 1033–
1065.

Isakowitz, T., Schocken, S., & Lucas, Jr., H. C. (1995). Toward a Logical/Physical Theory
of Spreadsheet Modelling. ACM Transactions on Information Systems, 13(1), 1–37.

Kay, A. (1984). Computer Software. Scientific American, 251(3), 41–47.

Lerch, J. F., Mantei, M. M., & Olson, J. R. (1989). Skilled Financial Planning: The Cost
of Translating Ideas Into Action. ACM Conf. on Human Factors in Computing Systems,
121–126.

Lewis, C., & Olson, G. M. (1987). Can Principles of Cognition Lower the Barriers to
Programming? Pages 248–263 of: 2nd Workshop on Empirical Studies of Programmers.

Lisper, B., & Malmström, J. (2002). Haxcel: A Spreadsheet Interface to Haskell. Pages
206–222 of: 14th Int. Workshop on the Implementation of Functional Languages.

Mittermeir, R., & Clermont, M. (2002). Finding High-Level Structures in Spreadsheet
Programs. Pages 221–232 of: 9th Working Conference on Reverse Engineering.

Norman, D. A. (1986). Cognitive Engineering. Pages 31–61 of: Norman, D. A., & Draper,
S. W. (eds), User-Centered System Design. Hillsale, NJ: Lawrence Erlbaum.

Panko, R. R. (2000). Spreadsheet Errors: What We Know. What We Think We Can Do.
Symp. of the European Spreadsheet Risks Interest Group (EuSpRIG).

Peyton Jones, S. L. (2003). Haskell 98 Language and Libraries: The Revised Report.
Cambridge, UK: Cambridge University Press.

Peyton Jones, S. L., Blackwell, A., & Burnett, M. M. (2003). A User-Centered Approach
to Functions in Excel. Pages 165–176 of: ACM Int. Conf. on Functional Programming.

Prabhakarao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M., & Bur-
nett, M. (2003). Strategies and Behaviors of End-User Programmers with Interactive
Fault Localization. Pages 203–210 of: IEEE Int. Symp. on Human-Centric Computing
Languages and Environments.

Rajalingham, K., Chadwick, D. R., & Knight, B. (2001). Classification of Spreadsheet
Errors. Symp. of the European Spreadsheet Risks Interest Group (EuSpRIG).

Ronen, B., Palley, M. A., & Lucas, Jr., H. C. (1989). Spreadsheet Analysis and Design.
Communications of the ACM, 32(1), 84–93.

Rothermel, G., Burnett, M. M., Li, L., DuPuis, C., & Sheretov, A. (2001). A Methodology
for Testing Spreadsheets. ACM Transactions on Software Engineering and Methodology,
110–147.

Ruthruff, J., Creswick, E., Burnett, M. M., Cook, C., Prabhakararao, S., Fisher II, M.,
& Main, M. (2003). End-User Software Visualizations for Fault Localization. Pages
123–132 of: ACM Symp. on Software Visualization.

Sajaniemi, J. (2000). Modeling Spreadsheet Audit: A Rigorous Approach to Automatic
Visualization. Journal of Visual Languages and Computing, 11, 49–82.

U.S. Department of Education. 2003 (July). Audit of the Colorado Student Loan Program’s
Establishment and Use of Federal and Operating Funds for the Federal Family Education
Loan Program. Report ED-OIG/A07-C0009.

33

U.S. Department of Health and Human Services. 2003 (January). Review of Medicare Bad
Debts at Pitt County Memorial Hospital. Report A-04-02-02016.

Yoder, A. G., & Cohn, D. L. (1994). Real Spreadsheets for Real Programmers. Pages
20–30 of: Int. Conf. on Computer Languages.

34

