In: 11th IEEE Symp. on Visual LanguagBarmstadt, 1995, pp. 318-325.

Heterogeneous/isual Languages
— Integrating Visual and Textual Programming —

Martin Erwig & Bernd Meyer
FernUniversitat Hagen
58084 Hagen, Germany
[martin.erwig | bernd.meyer]@fernuni-hagen.de

Abstract graphical user interfaces, only very few vispabgram-
) ming languages are employing domain specifisual
After moe than a decade ofeseach, visual lan- nota%ion : Thgi]s is not so F;uypri&iing, for mODMPLs are
guages have still not become ejday pogramming tools. gesigned to be general purpose languages and thus canno
On a shor term, an integration of visual languages with commit to any particular application domain. Neverthe-
well-established (textual) pgramming languages may be |ess, with a design philosophy like this the integration of
more likely to meet the actuabquirements of pratical yjisyal expression is neglected exactly where it might be
softwae development than the highly ambitious goal of most useful. On the other handPL designers are trying
creating puely visual languages. In such an integration to find visualizations for all kinds of abstract programming

each paradigm can supptahe other whe it is superiar concepts like data structures, control structures, abstrac-
Particularly attractive is the use of visual ergsions for tion, functions, variables, et@Vhile in some cases there
the description of domain-specifilata stuctures in com- are easily comprehensible and usable visual counterparts
bination with textual notations for abstract casitstruc- (e.g., data-fw graphs [3]), it is very hard, if not impossi-

tures. In addition to a basic framework for hegeneous ble, to fnd adequate visual equivalents for several other
languages, we outline the design of a development systenmconcepts. Interestingly enough, exactly those concepts for
that allows rapid pototyping of implementations of bed- which convincing visualizations are fidult to find may
geneous languages. Examples will besginted im the conveniently be described by textis is, e.g., the situa-
domains of logical, functional, andgmedural languages. tion with complex control structures and recursibnere
seems to be evidence that more concrete concepts (e.g.,

1. Obstacles to avL breakthrough data structures or simple control structures like iteration

_) over a number of elements) can in many cases best be

In the last decade a lot of visual programming lan- gescribed visuallywhile highly complex and abstract con-

guages (VPLs) have been designed and implemented, butceps (like recursion and functional abstraction) can often
in practice, visual programming still is the exception to the petter be described and explained textually [4]. In general,

rule.Why is there so little acceptance ¥dPLs in general? no programming language can do entirely without using
There is at least one reason independent from the advanygyts?

tages and disadvantages of visual programming: Software opserving this, it seems a reasonable goal to integrate
design has a strong tendency to keep to well-established,;js,a| and textual languages such that both modes can be
programming paradigms, even if improved languages are \;sed in parallel, each where it is supelitle are propos-
available. F_’artly this is due to invest_ments made ?n the ing a schema for heterogeneous visual programming lan-
older paradigm, and partly the reason is to be found in per g,ages (HVPLs) that combines the convenience of visual
sonal reservations of software developers who are afraid of ,otations with the abstraction power of textual languages.
the eforts required to master a new paradiginis is why In our framework domain-spedifivisual notations can
languages like Fortran and Cobol are still used in so many easily be integrated with conventiortaxtual program-
plgces, and it could well be a reason for visual program- ming languages, and thus standard programming lan-
ming not to become a standard in the near future. _ guages can readily be specialized as application-specifi
Some reasons resulting from design problems of vis- Hyp| s The design of a HVPIdoes neither enforce nor

ual programming languages are evident, as well. Experi- yestrict the usage of textual or visual expressions in an

ence with graphical user interfaces affll.s has shown 4ciyal program. Both types can be arbitrarily mixed and
that visual notations are mosfieient when taken directly

from an application domain, especially if the user is 1.Among these exceptions are, e.g., Law/[1] and MPL[2], a lan-
already familiar with them instead of having to learn an 9uage that could be characterized as being heterogeneous in our sense.

: : : : 2. In this context it is interesting to observe that almost every visual
entirely '_‘e"" Vlsua_l notation dewse-_d from scratch by the language is using textual labels to indicate non-local connections
VPL designerYet, in contrast t@pecial purpos&/Ls and between dierent parts of visual programs.

can even operate on the same structdries.programmer task is a logic language like Proldm obtain an HVPIfor
is entirely free to choose whatevesfbest and torfd his this domain we extend Prolog by a visual sub-language of
personal balance between both modéds textual basis state diagrams to be used as replacements of complex Pro-
for a HVPL is usually some standard programming lan- log structures, see Figure Ih such a language a program
guage (C, Lisp, Prolog, ML, etc.). In combination with the
programmes freedom to control the amount of visual
expression actually employed, this guarantees a smooth
migration from textual to heterogeneous languages with an automaton(
extremely low learning threshold.

The remainder of the paper is structured as follows: In
Section 2 the general notion of an HVIRLintroduced,
and Section 3 outlines the structure of a prototyping sys-

tem for HVPLs. In Section 4 we will give a semi-formal acceptW) - automaton(D),

framework for the integrat_ion of vis_ual sub-languages in member(start -@,D),

textual languages. In particulave will demonstrate the accept(D.X W)

compilation of picture expressions and their integration e

W?th textl_JaI source cpde. Some reasonat_)ly sized examplesaccept(D,X,[) - member(,D).

will be given in Section 5, andnfally, Section 6 presents

conclusions and shows directions for future work. accept(D,X,[W|Ws]) - member(@_W@,D),
accept(D,Y,Ws).

2. Heterogeneous pograms

W
How does an HVPlintegrate visual and textual ex— 2CceptDXWWs]) - member(®D D),
pression@he basic idea is that a programmer often wants

. . - . accept(D,X,Ws).
to use his favorite standard programming language, while
at the same time he would like to be able to use graphical Fig. 1: A Heterogeneous prolog program
notations from the problem domain in his codéese handling state diagrams

graphical notations should not only serve as illustrations, 1 test whether a stringyis accepted by a given automaton
but should rather be real program code, in the sense of angg pe \written without having to textually code the autom-
exact description of some part of an algorithm or a data 4o or any access to its structdee HVPLenvironment
structure Therefore, the concept of HVPLs allows to inte- compiles each picture into a corresponding Prolog struc-

grate a visual sub-languageinto a textual language ture, which then replaces the picture in the resulting code.
such that-expressions can be used as substitutes for cer 1yq third rule obceept , e.g., is translated to

tain L-constructsThe HVPLenvironment translates the]
expressions used in a program into their textual equiva- iﬁg‘?ﬁég&énl\s’\(@l(ws])\,’(,) D), accept(D, Y, Ws)
lents and reintegrates these translations with the textual R T
parts of the original source program according to an In'th|s case we are only extracting data structures
extended grammar far. As the taget language for picture from visual expressions, and each picture is locally
translation is as well, the compilation output for a heter ~ '€Placed by a textual data structure. More complex exam-
ogeneous program written Lo+V is anL-program.This, ples are possible in which picture translatllons' are embed-
of course, can be processed by any standard interpreter od€d non-locally or where control information is extracted
compiler forL. A side advantage of this scheme is that we I acjdmon to data structure$his will be discussed in
can even modify and revise existing programs written in ~ S€ction 4. o , _
using visual expressions frothThe resulting heterogene- The only customizations needed to implement this
ous programs can then be reprocessed and can again b&'VPL on the basis of Prolog are a gramitike rule fie
translated by the original compiler forThus, we achieve that spemﬁ:s the translanpn of state diagrams plusf a trivial
a way of maintaining and extending programs in a hetero- extensm_n of Pr_olog’ attrlbute_ grammar to describe the
geneous visual language which have originally been writ- embedding of picture trans_latlons into texf[ual Pro_log code.
ten in a textual language. Hence, there is no need toFull examples together with these speaifions will be
discontinue the maintenance of existing software when 91Ven in Section 5.
migrating to a visual environment. . . .

To give an impression of programming in HVPLs, let 3- Design of the ppgramming environment
us give a fist (toy) exampleAssume we need to work
with finite state diagram#s finite automata can be deter
ministic or non-deterministic, a suitable choice for such a

The prototyping environment provides a framework
for editing and compiling heterogeneous programs and can

be customized for diérent heterogeneous languages with implementor must dafe a production rule set as the spec-
minimal efort. In our approach processing an HVpio- ifi cation of picture translation.

ceeds in three phases. First, ¥Ad¢. program is split into a Both, the PG extractor and the PG parsaust indi-
purely textual part replacing all the pictures by unique vidually be confjured for a new visual sub-language. If
identifiers.Additionally, a database of pictures indexed by the host language or the mode of embedding changes, the
these identirs is created’he second phase is the transla- textual parser must be adapted by specifying an attribute
tion of each picture into its textual equivalent. In the last grammar for the new host language. For local embeddings
phase the converted textual source code is parsed accorda standard grammar can be used almost without roadifi

ing to an attribute grammar fdr+pictures and is then tions. (An embedding is local if for every picture only a
recombined with the picturesextual equivalents by single block of text is generated which is replaced into the

means of syntax directed translatidimne resulting_ pro- very position that the picture occupied before).
gram is processed by a compiler fofFigure 2). Most of the work of tailoring the system for a particu-
lar HVPL is spent on the HVPEditor The base system
Hybrid Editor provides a MacDraw-like graphics editor and aehaten-
* eous editor that can handle pictures and texts in the same
Heterogeneous flow. For most visual sub-languages and diagram types it
v Program (Py.() will be reasonable to extend or to replace the graphics edi-
Split/Filter tor, so that_ the system can support special _mteractlon
modes required for convenient editingéxpressions. If,
e.g., we are working with circuit diagrams, we will need
v ! v only little functionality of a general purpose graphics edi-
Fictures ‘ Text-File ‘ tor, but at least some functionality of a circuit CAD tool
\F;‘gtcgmay _, — will be required insteadThe graphics editor is the only
! part of the system that has to be customized by real pro-
Picture Graphs gramming. Garnet [5] is used as a powerful graphics tool-
Transation PG Parcer] kit so that _extens_ions of the e_ditor are _easily implemented.
Rules The graphics editpof course, is totally indepdent from
Picture I changes in the textual host language.
Trandlations
|
Attibue _>< 4. A framework for HVPLs
As we have pointed out, pictures are separated from
* the textual part of the program in asfistep, then trans-

- ‘ Textual lated into a textual equivalent, anchdily reassembled
Program () with the textual programiVhile the separation of textual
and visual structure is a task of the standard environment

and does not need to be maglififor diferent HVPLSs, the
parsers used in the second and the third phase must be cus
The translation of pictures consists of twofetiént tomized by a visual and a textual gramjmespectively
steps. First, a picture graph (PG) representing its structural
and geometrical properties is extracted from each picture. 4.1 Translation of pictures into picture graphs
In a second step, a production system works on these PGs As a fist step, each picture is translated into its corre-
to generate the textual translatioddl these steps are sponding picture graph (PG)he PG that belongs to a vis-
treated in depth in the next sectidimere are four tailora- ual expression depends on the picture Vocabu|ary|eﬂgfi
ble modules in the system (shown shaded in FigufBh8). for this particular visual sub-languagfe picture vocabu-
first part to be customized is the PG extractor that gener |ary consists of a set of atomic object types (e§.,=
ates the PG databages we understand pictures as sets of {Circ|e, rectang|e pgintI |abe|}) and a set of Spatia| rela-
spatially embedded objects (e.grircles rectangles tion types (e.g.RT = {touchesintersectsinsidg). A PG
points lines) with certain spatial relations (likenside is a bipartite graph containing two types of nodes: Object
intersect}, the implementor must specify the object set nodes and relation nodes. IRebe a picture consisting of a
and the relation set and must provide methods to test theset of object®. The corresponding picture graph FB(
spatial relationsThese methods are deéd as Lisp/CLOS contains exactly one object node for each elemef.in

functions. The second part to be customized is the PG The set of relation nodésand the set of edg&are built
parser which generates textual translations from Pls. in the following way: For each-tuple ©;, ..., o) of

Fig. 2: Design and customizability of the
prototype environment

objects inO and eacm-ary relationr in RT testr(oq, ...,

oy). If it holds, insert a new relation nodeinto R and
insert (undirected) edges between eagtandv into E
labeling each edge by the correspondirgyiarent position

i. Then PGP) = (OOR, E). Edges that are incident to
nodes representing symmetric relations are not labeled.

The termvar.attr, which can be used in guards and assign-
ments, references the attribute nana¢ of the object
labeled byvar. An example of a rule to translate inner
nodes of binary tree pictureszis:

O left-of(y, 2) | [x.code:=branch(y.code z.cod§]

This guarantees that semantically equivalent pictures haveYd Z

isomorphic PGsAIll the nodes in a PG are typed by either
a relation type or an object type. Furthermore, each node
has a list of named attributes which is used during picture
translation and is initially set to contain the geomegso(

for graphical objects and, in addition, the displayed text
(val) for objects of typéabel. Figure 3 shows a picture and
its corresponding PG for the picture vocabulaiy= {cir-

cle, arrow, label} and RT = {inside attached connects 1

X® W
cl a ®CZ
1

inside

1

inside

circle cl circle c2

Fig. 3: A picture and its PG

4.2 Translation of PGs into textual structures

The translation of PGs into text is performed by a pro-
duction system that computes the attributes of PG objects.
A translation may consist of several distinct text frag-
ments, each stored in a separate attribithese attributes
finally serve as an interface to the textual panséich
recombines the original textual structure with the trans-
lated picture code. Each rule has the form

GO d4,e--,Om | [Xq.attry :=1q, ..., Xpattr, = 1]

whereG is a PGaattr; is an attribute name aridis a
formula that calculates the value for this attribuiibe
symbol “|" separates the attribute structure from the
optional guard conditiong; that are evaluated before a
production is appliedA production is applicable if its left-
hand sideG matches (i.e., is isomorphic to) a subgraph of
the PG being transformed and if all the guard conditions
are true in the context of the bindings induced by the cur
rent matchG may either be a PG or (as a syntactic short-
hand) its corresponding pictur& can be extended by
labeling individual picture objects (nodes) with variable
names to be used in the formulas on the right-hand side.

1. We use Courier font to distinguish labels from object idemsfi

and one of the rules used for translating the PG of the
introductory example is

@L—@ O [w.code:=trans(X.val, Y.val, W.val)]

Note that the translated code is actually collected in
the arc labels and not in the arcs themselves to allow for
multiply labeled arcs in state diagrams.

On every evaluation cycle the applicable rule with the
highest priority is executedThe priority is implicitly
given by ordering productions in the ruliefilf a pattern
graph matches more than one subgraph, the actual match is
selected arbitrarilyOf course, the attribute list and the
guard conditions on the right-hand side can only be evalu-
ated if all the attributes used therein have already been
bound, either by an earlier rule applicationfor geoand
val, during PG extraction. If some guard formula cannot be
evaluated because of unbound values, it yields false, and
another match of the same rule is tried. If no match satis-
fies the guard, a rule with lower priority is selected instead.
If an attribute formuld; cannot be evaluated for the same
reason, it is delayed, i.e., the rule§i, but it cannot set the
attributeattr; immediately Thus, the assignmenrgtattr; :=
fi is frozen and woken up again as soon as some other rule
application has set the missing value($)is roughly cor
responds to establishing a uni-directional constraint.

Every attribute will be assigned only ontee., a rule
that would set some attribute which is already bound will
no more be applicable. Evaluation stops when no more
rules can be applied or when a rule containing the optional
STOP command is executedfter the evaluation hasrfi
ished, the attributes of all nodes in the PG are collected
and grouped by their names according to the order in
which they were sefThe resulting attribute collections
become the attributes of the picture and serve as the inter
face structure to the textual parser

4.3 Merging pictur e translations into program
text

The frst step in the compilation of a heterogeneous
program is to replace the pictures in the original program
by unique textual token$he resulting text is analyzed by

2. We are using th&imes font for expressions of the rule language
and Courier for expressions that are handled as strings, i.e.,
branch() will actually appear in the attribute code, whjleode
andz.codewill be replaced by the corresponding attribute values.

3.An attribute with a frozen assignment is regarded as set.

an ordinary attribute grammar parséach time the non- tions adapted from real application domains here because
terminal picture> is encountered, the parser reads a picture such structures are usually very rich and thus are complex
token from the input and looks up the picture translation to translate and describe. Instead we focus on well-known
for the appropriate P@he attributes computed during its examples of data structure manipulation.

translation become the attributes of this occurrence of Our first example is the maintenance AfL trees.
<picture>. Thus, by using standard syntax-oriented transla- Below, the code for insertion into a&/L tree is given in

tion techniques it is simple to assemble tmalfiransla- two different language paradigms: Logic programming
tion. Let us have a short look at two exampl€ke (Prolog) and functional programming (ML). Both, logic
attribute grammar for our introductory example is an languages and functional languages, make intense use of
extension of Prolog’ standard grammar that allows to matching (uniftation) to analyze and to construct data
replace term structures by pictur€he following rules are structures using terms of the respective languages as pat-
used, given that the attributeode contains the texts terns to be matchedhis principle is exploited in embed-
derived from a picturé: ding the visual sub-language. Every visualization of a tree
structure is translated into a textual term, and the picture is
locally replaced by this ternThus, a picture can be put
anywhere a term is used.

The visual sub-language of trees defl here can be
used in both host languages without any change. It has an
amazingly simple ddiition. Its basic object types are
roundtanglestriangles lines andlabels The only rules

The translated code obtained from a picture can as required to defie and to translate it are:
well be distributed among several places. If, e.g., some
additional code has to be added at the end of the rule in
which the picture occurs, the picture translation may store m
this code in an additional attributigailer, say This I
attribute would be used in K

<term - <atom
<termv.code:= @tom.code
<term - <picture
<termv.code:= concaf«picture>.codg
derm — <atom (<ermlist)
<termv.code:= @tom.codel] (O <termlisb.codel)

O left-ofl, r), left-of(i , b) | [x.out:=
branch(i.val, b.val, l.out r.out]

derm - <picture O [x.out:= v.val]

<termv.code:= concaf«picture>.codg

<term.trailer := concaf«picture».trailer) X _
O left-of{l, r), left-ofi , b) | [x.code:=
I r

and would be passed from production to production branch(i.val, b.val, l.out r.ou]STOP

until finally used in: . .

. The ordering of the rules insures that the root of a tree
dody - «goallisp. , _ picture is matched last. Not only can we use the same vis-
<body.code:= «goallisb.codel] «goallisb.trailer [. ual language for Mland Prolog, but also the extension of

In future, diferent types of non-terminals for integrat- both languagegjrammars is almost identical. In Prolog it
ing multiple picture sub-languages will be usable. Each of IS:
these non-terminals will be speeifi by an individual pic- «compound-term - <icture>
ture vocabulary and a transformation rule set applicable «compound-termcode:= the(<picture>.codd
only to this particular picture type.

An important detail is that there is no restriction For ML, we need two rules (for patterns and ex-
imposed on pictures to only represent data structargs. ~ Pressions) obtained by simply exchangirgrpound-
code, including control information, can be derived from a €M by pab and exp, respectivelyTo keep the ex-
picture. Examples and applications of this will be shown in @MPles short, we present only the code for insertion into

Section 5.3. the left sub-tree her&he fu_II program, of course, contains
analogous code for the insertion into the right sub-tree.
5. Examples The logic of the program is simple. If a new element is to

be inserted into a trek either a new tree is createdTifs
We will now present some examples of reasonable empty) or it is recursively inserted into the left (right) sub-
size. For the sake of brevity we will not use visual nota- tree ofT if it is smaller (greater) than the key s root.
Once it has been insertedmust possibly be rebalanced
1. Note that every picture attribute likgisture>.codeis a collection by rotation or by double-rotation if the depth of the modi-
of valuesTherefore a function is applied to transform the collection into fied subtree has increasdthe latter information is passed
a linear text structure. Hewdncatis used to transform a collection of around as a boolean paramefdre most dificult parts to

strings into a single string\nother function ighe to extract the single . .
elemgem fromacguecﬁon.@‘ g understand in aAVL program are the rotation and the

double-rotation of a tree out of balance. In textbooks these
parts of the program are usually explained by graphical ex-
amples, see, e.g., [6]. Using an HVRE can now directly
program with these illustrations, and thus the function of a
rotation becomes evident at once.

5.1 Logic programming

The heterogeneous Prolog code forAWé insertion
is given in Figure 4According to the above translation
rules, the fist rotation, e.g., is mapped into the following
standard Prolog code:
rebalancel (true,

branch(K, -1, branch(A, -1, X, Y), R),
branch(A, 0, X, branch(K, 0, Y, R)), false).

As can be observed in the visual program, the pro-
grammer is entirely free to choose visual or textual ex-
pressions to handle tree structur@$ws, simple code
fragments can be written very dense using textual terms
while difficult passages can be programmed with the aid of
visual structures.

5.2 Functional languages

Since MLis a strongly-typed language wesfineed
the following type defiition:

insert(X, empty, branch(X, 0, empty, empty), true).
insert(X, branch(K, B, L, R), Tree, Changed) :-

X<K, insert(X, L, L1, H), rebalanceL(H, branch(K, B, L1, R),

rebalancel (false, Tree, Tree, false).

K1y (KoY

rebalancel (true,

A

P

rebalancelL (true,

rebalancel (true,

rebalancelL (true,

f-1,0). f0,0). f(1-1). g(-11). g(0,0). g(LO).

Fig. 4: Heterogeneous Prolog

datatype T =branch of real *int*T*T
| empty

This defnes a term constructempty of typeT and a
constructotbranch taking four aguments of the types as
defined above and returning a tree object. (Actyatlis
not difficult to imagine type defitions also given by pic-
tures.) Now ML functions for inserting and rebalancing
look almost the same as the Prolog program from above.
We give a slightly dierent implementation which com-
bines rebalancing and insertion in a single function. Pic-
tures are used only in displaying complex patterns so that
the two rotations can easily be idemtifi see Figure 5.
(Note that expressions likeas <pab defneT as a short-
hand for the complex patterpab.)

The textual MLprogram corresponding to the hetero-
geneous one is simply obtained by substituting the tree
pictures by terms as it was already shown in the Prolog
example.

5.3 Imperative programming

In imperative languages programs containing a lot of
pointer manipulations are certainly the mosfidifit to
read.We show how pictures can be used instead of textual
pointer redirections to enhance understanding such pro-
grams.We consider a C-program for inserting elements

Tree, Changed).

, false).

false) :- f(C,C1), g(C,C2).

code for AVL tree insertion

fun t(x) = it x=1 then ~1 else 0
fun g(x) = if x=~1 then 1 else 0

fun insert (x, empty) = branch (x, 0, empty, empty)
| insert (x, branch (K, b, L, R)) =
if x < K then let
val (Li, h) = insert (x, L)

val T as /R =branch (K,b, Li, R} in
if hthen
case b of

1=> (branch (K, 0, Li, R), false)
| 0=>(branch (K,~1, Li, R), true)

| ~1=>if bL = ~1 then

else let

val

end
else ... (* analogous case for x > K *)

, false)

Fig. 5: Heterogeneous ML program for inserting into an AVL tree

into a doubly-linked list. Given the following list data
structure:
typedef struct dlist {

int key;

struct dlist *prev, *next;
} ELEM, *DLIST;

the heterogeneous C-program shown in Figure 6 in-
serts a new elemeright after the element pointed to py
insert(p,i)

DLIST p;
inti;

DLIST q;
if (p->next '= NULL) {

else ...

}

Fig. 6: Heterogeneous C program
for list insertion

Thin arrows are interpreted as displaying the current situa-
tion in the pointer structure at the tirmeert is called
while bold arrows denote the intended pointer redirections.

The production system of Figuredéfnes the transla-
tion of pointer pictures into sequences of C assignments.
There are actually three rules for setting teelirect
attribute: This is to insure that those pointer assignments
are generated rfit that use cell addresses which are
changed by other redirections. Note that only “local”
pointer redirections can be properly handled by this rule
system.The dificulty is to generate consistent sequences
of assignments in general.

Finally, the integration into C is obtained by simply
adding the following rules to the C-grammar:

<compound-statement. «picture>
<compound-statementode:= concaf«picture>.new) (I
concaf«picture>.upd 0 concaf«pictures.redirec)

6. Conclusions and futher work

We have shown how a smooth integration of visual
languages and textual languages can be achieved, and we

0 adisplay# bold |

framework and a platform for heterogeneous program-

p?[)([lg [x.addr:= p.val, y.addr = p.val, ming languages along the lines of grammar theory and
x.used= p.val, y.used:= p.vall compiler technology
. Some problems not yet solved remdiihe foremost
™ 0 a.display# bold | difficulty concerns debuggingVhen programming with
Xy [x.addr:= a.addr, y.addr:= a.addr, visual structures we would certainly like to use them dur
x.used=a.addr y.used:= a.addf ing debugging, tooThis is currently not possible since
[T1}g= O leftofixy) | heterogeneous programs are compiled without any-infor
Xy [a.addr:= x.addF>next] mation about the visual structures remaining. Seconay
cannot yet handle multi-level embeddings of pictures and
ﬂ O left-of(x, y) | text (i.e., texts that embed pictures which in turn embed

[a.addr:=x.addr>prev]

0 a.display=bold, x.display=bold |
[x.addr:=p.val, y.addr:=p.val,
a.redirect:="",

X.new:= p.val = (DLIST)
calloc(1,sizeof(ELEM));]

0 adisplay# bold, b.display= bold,
c.display=bold, y.used=a.addr|

texts which embed pictures that ...). In future we will be
working on such extensions of our basic framework.

In some cases the approach of Section 4.2 leads to
very complicated rule systems. It is planned to replace the
picture translation modules by a more powerful parsing
mechanism in futuréle regard a combination of picture
logic [8] with constraint handling methods like those pre-
sented in [9] as a promising candidatéth such a parser
the picture translation rules would themselves be a hetero-

X [c.redirect:= c.addr= x.addr,] .
geneous languag&hus, one reason to use a simpler and
]x U adisplay# bold, b.display=bold, easily implementable translation mechanismst fis to
b g\ cdisplay=bold, x.used= a.addr]| bootstrap the parser implementation.
[c.redirect:= c.addr=x.addr,] The prototype system presented here is currently being
—] O c.display=bold | implemented with Lisp/CLOS and the Garnet greph
X [c.redirect:= c.addr= x.addr,] toolkit for _Xll vv_orkstanons and_ Ma_lcmtosh platforms_,.
o Next we will look into diverse application domains to gain
;[D 0 i .display=bold | a deeper understanding of their requiremems.believe

[x.upd:=x.adde>key= i .val;]

Fig. 7: Rule system for pointer manipulations

HVPLs to be a great improvement over purely textual lan-
guages while at the same time avoiding the problems that
come along with a migration to purely visual languages.

have outlined the design of a prototyping environment for
working with heterogeneousllanguages. Looking back at 7 References
the experiences gathered with purely textual and purely . .
visual languages, making heterogeneous languages avail{1] J. KodoskyJ. MacCrisken, ?nd GyRar l\(/lﬁual Progran?-
able seems to be a reasonable path to improved usability o Léggugsg'fg&ucﬁgffn %%tasz_%\gzligg\{\br shop on léual
visual notationsThe main benefiof HVPLs is the free- [2] R.Yeung. MPL-AGraphical Programming Environment for
dom to choose and work with domain-specifisual nota- Matrix Processing Based on Logic and ConstraifiEE Work-
tions without having to design and implement entirely new [SISOPI' Cén \éual Langg?@SSPKlt_tSbUgh/gA, ppl- t137—143,f1\;9i88- |

; : _ H .b. brown andl.D. imura. ompleteness 0O sua
languages _each time the visual su_b language is ChangedComputation Model. Iisoftwae Concepts andobls 15 (1994):
Both, the visual part and the non-visual part of an HVPL, 34-48.
can be reused when the respective other part is changed[4] J. Barwise. Heterogeneous ReasonMgrking Papers on
Therefore, adaptions to new domains can be accomplishedPiagrams and LogicG. Allwein and J. Barwise (Eds.), Indiana

. . . . University, Bloomington, pp. 1-13, 1993.
with minimal efort. Another important advantage is that 5] BA. Myers, DA. Giuse, R.B. Dannengeet al. Garnet:

the overall prOQVam”_‘ing paradigm may be chose.n.inde- Comprehensive Support for Graphical, Highly-Interactive User
pendently from the visual sub-languad&us only mini- Interfaces. INEEE Computer23, No. 1 (1990):71-85.
mal learning is required to employ visual programming in [6] J. Nievegelt and K.H. HinrichsAlgorithms & Data Stnc-

; ; _ tures Prentice-Hall, Englewood CI8/NJ, 1993.
practice.The balance between textual and visual expres [7] W.J. HansenAndrew as a Multiparadigm Environment for

sion is not fked by the language, but is rather left to the vsjgyal LanguageSEEE Symp. on isual LanguagesBemgen/
programmerAs heterogeneous programs directly translate Norway, pp. 256-260, 1993.

into code of the corresponding textual host language, there E] Eél'l' Me)lsef WSU#hLOQiC_LanguageS Ef Spatial |Uf9rfﬂati0n

is no runtime performance penalty imposed. 1&;14 ing DoctoralThesis (in German). FernUniversitat Hagen,
A related approach is pursued in fedrew project [9] R. Helm and K. MarriottA Declaratice Specifation and

[7]. Andrew is mainly a toolkit for programming multipar ~ Semantics foVisual Languageslournal of Vsual Languages

adigm environments, whereas we focus on developing a and Computing (1991):31-331.

