
Abstract and Discrete Modeling of
Spatio-Temporal Data Types*

Martin Erwig 1 Ralf Hartmut Güting 1 Markus Schneider 1 Michalis Vazirgiannis 2

1) Praktische Informatik IV
Fernuniversität Hagen

D-58084 Hagen
GERMANY

2) Dept of Informatics
Athens Univ. of Economics & Business

Patision 76, 10434, Athens
GREECE (Hellas)

Abstract

Spatio-temporal databases deal with geometries changing
over time. In general, geometries cannot only change in dis-
crete steps, but continuously, and we are talking about
moving objects. If only the position in space of an object is
relevant, then moving point is a basic abstraction; if also the
extent is of interest, then the moving region abstraction
captures moving as well as growing or shrinking regions. We
propose a new line of research where moving points and
moving regions are viewed as three-dimensional (2D space +
time) or higher-dimensional entities whose structure and
behavior is captured by modeling them as abstract data types.
Such types can be integrated as base (attribute) data types into
relational, object-oriented, or other DBMS data models; they
can be implemented as data blades, cartridges, etc. for ex-
tensible DBMSs. We expect these spatio-temporal data types
to play a similarly fundamental role for spatio-temporal data-
bases as spatial data types have played for spatial databases.
In this paper we consider the need for modeling spatio-
temporal data types on two different levels of abstraction.

1 Introduction

In the past, research in spatial and temporal data models and
database systems has mostly been done independently.
Spatial database research has focused on supporting modeling
and querying of geometries associated with objects in a
database [5]. Temporal databases have focused on extending
the knowledge kept in a database about the current state of the
real world to include the past, in the two senses of “the past of
the real world” (valid time) and “the past states of the
database” (transaction time) [14]. Nevertheless, many people
have felt that the two areas are closely related, since both deal
with “dimensions” or “spaces” of some kind, and that an
integration field of “spatio-temporal databases” should be
studied and would have important applications. The question
is, what the term spatio-temporal database really means.

Clearly, when we try an integration of space and time, we are
dealing with geometries changing over time. In spatial
databases, three fundamental abstractions of spatial objects
have been identified: a point describes an object whose
location, but not extent, is relevant, e.g. a city on a large
scale map. A line (meaning a curve in space, usually
represented as a polyline) describes facilities for moving
through space or connections in space (roads, rivers, power
lines, etc.). A region is the abstraction for an object whose
extent is relevant (e.g. a forest or a lake). These terms refer to
two-dimensional space, but the same abstractions are valid in
three or higher-dimensional spaces.

Now, considering points, the usual word for positions or
locations changing over time is move. Regions may change
their location (i.e. move) as well as their shape (grow or
shrink). Hence we conclude that spatio-temporal databases are
essentially databases about moving objects.

Since lines (curves) are themselves abstractions or projec-
tions of movements, it appears that they are not the primary
entities whose movements should be considered, and we
should focus first on moving points and moving regions. In
the approach described in this paper we will consider the
fundamental properties of moving points and moving (and
evolving) regions and try to support their treatment in data
modeling and querying, rather than be driven by particular
(existing) applications. On the other hand, if we succeed in
providing such basic support, then we may be able to initiate
applications that so far have never been thought of:

Migrations in the animal kingdom (e.g., whales, birds) can be
appropriately modeled by moving points. Interesting queries
ask for the trajectories of animal routes, the traversed
distance, their speed, and the number and locations of their
stops. Another example for moving points are transports
(e.g., cars, planes, ships, buses, trains). Interesting queries
inquire which taxi is closest to a passenger request position,
which two planes are heading towards each other (going to
crash), whether a plane crossed the air territory of some state
X, or whether any ship is heading towards shallow areas.

Applications of moving regions are temporal evolutions of
geographical entities (e.g., countries, lakes, forests, glaciers,
continents). Here possible queries ask for the largest extent
ever of the Roman empire, the occasions when two states
merged, the extent and the rate of the Amazone rain forest

* This research was partially supported by the CHOROCHRONOS

project, funded by the EU under the Training and Mobility of
Researchers Programme, Contract No. ERB FMRX-CT96-0056.

shrinking, the location of glacier X at time Y, or the history
of continental shift. Another example are climatic phenomena
(e.g., storms, high/low pressure areas, temperature zones,
cloud cover). Queries might ask for the direction of a tornado,
its arrival at a specific location, and the development of air
pressure areas.

Although we focus on the general case of geometries that may
change in a continuous manner (i.e. move), one should note
that there is a class of applications where geometries change
only in discrete steps. Examples are boundaries of states, or
cadastral applications, where e.g. changes of ownership of a
piece of land can only happen through specific legal actions.
Our proposed way of modeling is general and includes these
cases, but for them also more traditional strategies could be
used.

Also, if we consider transaction time (or bitemporal)
databases, it is clear that changes to geometries happen only
in discrete steps through updates to the database. Hence it is
clear that the description of moving objects refers first of all
to valid time. So we assume that complete descriptions of
moving objects are put into the database by the applications,
which means we are in the framework of historical databases
reflecting the current knowledge about the past of the real
world. Transaction time databases about moving objects may
be feasible, but will not be considered initially.

There is also an interesting class of applications that can be
characterized as artifacts involving space and time, such as
interactive multimedia documents, virtual reality scenarios,
animations, etc. The techniques developed here might be
useful to keep such documents in databases and ask queries
related to the space and time occurring in these documents.

The purpose of this paper is to describe and discuss an
approach to modeling moving and evolving spatial objects
based on the use of abstract data types. Essentially, we
introduce data types for moving points and moving regions
together with a set of operations on such entities. One needs
also a number of related auxiliary data types, such as purely
spatial or temporal types, time-dependent real numbers, and
so forth. This collection of types and operations can then be
integrated into any DBMS object algebra or query language to
obtain a complete data model and query language.

The goal of this first paper on the approach is not yet to offer
a specific design of such types and operations or a formal
definition of their semantics. This needs to be done in further
steps. Instead, here the goal is to give an outline of the work
that should be done, in particular, we demonstrate the need for
two related models on different abstraction levels. More
design decisions are discussed in a longer version of this
paper, which takes a broader point of view [4].

The paper is structured as follows: Section 2 explains the
basic idea of spatio-temporal data types in a bit more detail.
Section 3 and 4 contrast the continuous and discrete
approaches to data modeling, a short concluding statement
follows in Section 5. Section 6 discusses related work, and
Section 7 offers general conclusions and future work.

2 The Basic Idea

Let us assume that a database consists of a set of object classes
(of different types or schemas). Each object class has an
associated set of objects; each object has a number of
attributes with values drawn from certain domains or atomic
data types. Of course, there may be additional features, such as
object (or oid-) valued attributes, methods, object class

hierarchies, etc. But the essential features are the ones
mentioned above; these are common to all data models and
already given in the relational model.

We now consider extensions to the basic model to capture
time and space. As far as objects are concerned, an object may
be created at some time and destroyed at some later time. So we
can associate a validity interval with it. As a simplification,
and to be able to work with standard data models, we can even
omit this validity interval, and just rely on time-dependent
attribute values described next.

2.1 Spatio-Temporal Types and Operations

Besides objects, attributes describing geometries changing
over time are of particular interest. Hence we would like to
define collections of abstract data types, or in fact many-
sorted algebras containing several related types and their
operations, for spatial values changing over time. Two basic
types are mpoint and mregion . Let us assume that purely
spatial data types called point and region are given that
describe a point and a region in the 2D-plane1 (a region may
consist of several disjoint areas which may have holes) as
well as a type time that describes the valid time dimension.
Then we can view the types mpoint and mregion as mappings
from time into space, that is

 mpoint = time → point
 mregion = time → region

More generally, we can introduce a type constructor τ which
transforms any given atomic data type α into a type τ(α) with
semantics

τ(α) = time → α

and we can denote the types mpoint and mregion also as
τ(point) and τ(region), respectively.

A value of type mpoint describing a position as a function of
time can be represented as a curve in the three-dimensional
space (x, y, t) shown in Figure 1. We assume that space as well
as time dimensions are continuous, i.e., isomorphic to the
real numbers. (It should be possible to insert a point in time
between any two given times and ask, e.g., for a position at
that time.)

x

y

t

Figure 1: A moving point

A value of type mregion is a set of volumes in the 3D space (x,
y, t). Any intersection of that set of volumes with a plane t =
t0 yields a region value, describing the moving region at time
t0. Of course, it is possible that this intersection is empty,
and an empty region is also a proper region value.

1 We restrict attention to movements in 2D space, but the approach can,

of course, be used as well to describe time-dependent 3D space.

Generic operations for moving objects are, for example:

τ(α) × time → α a t
τ(α) → α minvalue, maxvalue
τ(α) → real duration

At gives the value of a moving object at a particular point in
time. Minvalue and maxvalue give the minimum and maximum
values of a moving object. Both functions are only defined for
types α on which a total order exists.

In particular, for moving spatial objects we may have an
operation, such as

 mpoint × mpoint → mreal mdistance

Mdistance computes the distance between the two moving
points at all times and hence returns a time changing real
number, a type that we call mreal (”moving real”; mreal =
τ(real)).

Operations may also involve purely spatial or purely temporal
types and other auxiliary types. For the following examples,
let line be a data type describing a curve in 2D space which
may consist of several disjoint pieces; it may also be self-
intersecting. Let us also have operations

 mpoint → line t ra jectory
 line → real l e n g t h

Here trajectory is the projection of a moving point onto the
plane, and length returns the total length of a line value.

2.2 Some Example Queries

The presented data types can now be embedded into any DBMS
data model as attribute data types, and the operations be used
in queries. For example, we can integrate them into the
relational model and have a relation

flights (id: string , from: string , to: string , route: mpoint)

We can then ask a query “Give me all flights from Düsseldorf
that are longer than 5000 kms”:

SELECT id
FROM flights
WHERE from = "DUS"
AND length (trajectory (flight)) > 5000

This query uses projection into space. Dually, we can also
formulate queries projecting into time. For example, “Which
destinations can be reached from San Francisco within 2
hours?”:

SELECT to
FROM flights
WHERE from = "SFO" AND duration (flight) <= 2.0

Beyond projections into space and time, there are also
genuine spatio-temporal questions that cannot be solved on
projections. For example, “Find all pairs of planes that during
their flight came closer to each other than 500 meters!”:

SELECT A.id, B.id
FROM flights A, flights B
WHERE A.id <> B.id
AND minvalue (mdistance (A.route, B.route)) < 0.5

This is in fact an instance of a spatio-temporal join. Many
more examples can be found in [4, 6].

3 Abstract Models Are Simple …

Abstract models allow us to make definitions in terms of
infinite sets, without worrying whether finite representations
of these sets exist. This allows us to view a moving point as a
continuous curve in the 3D space, as an arbitrary mapping
from an infinite time domain into an also infinite space
domain. All the types that we get by applying the type
constructor τ are functions over an infinite domain, hence
each value is an infinite set.

This abstract view is the conceptual model that we are interes-
ted in. The curve described by a plane flying over space is
continuous; for any point in time there exists a value, regard-
less of whether we are able to give a finite description for this
mapping (or relation). In Section 2 we have in fact described
the types mentioned under this view. In an abstract model, we
have no problem in using types like “moving real”, mreal ,
and operations like mdistance, since it is quite clear that at
any time some distance between the moving points exists
(when both are defined).

Defining formally an algebra for an abstract model looks as
follows. We need to define carrier sets for the types (sorts) and
functions for the operators. For a type t, we denote its carrier
set as At and for an operator op the function giving its
semantics as fop. We consider the following example
signature:

sorts point , time , mpoint , mreal
operators

 mpoint × time → point a t
 mpoint × mpoint → mreal mdistance

We first define the carrier sets:

A point := IR2 ∪ {⊥} A time := A real := IR ∪ {⊥}

So a point is an element of the plane over real numbers, or
undefined.2 For the “moving” types we can provide a single
generic definition based on the type constructor τ:

Aτ(α) := {f | f: A time → Aα is a function}

Functions are defined as follows. Let r, s be values of type
 mpoint and t a time . Furthermore, let d(p, q) denote the
Euclidean distance between two points in the plane.

fat (r, t) := r(t)

fmdistance (r, s) := g: A time → A real such that

 g(t) =
d r t s t r t s t((), ()) () () if

otherwise⊥
≠ ⊥ ∧ ≠ ⊥

So abstract models are conceptually simple and their
semantics can be defined relatively easily. Again, this
simplicity is due to the fact that we admit definitions in terms
of infinite sets and functions without worrying whether finite
representations exist.

2 We include the value ⊥ (undefined) into all domains to make the

functions associated with operators complete. This is more practical
than have the system return an error when evaluating a partial
function.

4 … But Only Discrete Models Can Be
Implemented

The only trouble with abstract models is that we cannot store
and manipulate them in computers. Only finite and in fact
reasonably small sets can be stored; data structures and
algorithms have to work with discrete (finite) representations
of the infinite point sets. From this point of view, abstract
models are entirely unrealistic; only discrete models are
usable.

This means we somehow need discrete models for moving
points and moving regions as well as for all other involved
types (mreal , region , …). We can view discrete models as
approximations, finite descriptions of the infinite shapes we
are interested in. In spatial databases there is the same
problem of giving discrete representations for in principle
continuous shapes; there almost always linear approxi-
mations have been used. Hence, a region is described in terms
of polygons and a curve in space (e.g. a river) by a polyline.
Linear approximations are attractive because they are easy to
handle mathematically; most algorithms in computational
geometry work on linear shapes such as rectangles,
polyhedra, etc. A linear approximation for a moving point is
a polyline in 3D space; a linear approximation for a moving
region is a set of polyhedra (see Figure 2). Note that a moving
point can be a partial function, hence it may disappear at
times, the same is true for the moving region.

x

y

t

 x

y

t

Figure 2: Discrete representations for moving
points and moving regions

Defining formally an algebra for a discrete model means the
same as for the continuous model: define carrier sets for the
sorts and functions for the operators. We consider a part of the
example above:

sorts point , time , mpoint
operators

 mpoint × time → point a t

Type mreal and operator mdistance have been omitted; for
good reason, as we will see. Carrier sets can be defined as
follows:

A point := D point ∪ {⊥} where D point = real × real
A time := D time ∪ {⊥} where D time = real
A real := real ∪ {⊥}

A mpoint := {<(p1, t1, b1, c1), …, (pm, tm, bm, cm)> | m ≥ 0,
(∀ i ∈ {1, ..., m}: pi ∈ D point , ti ∈ D time , bi,ci ∈ bool),
(∀ i, j ∈ {1, ..., m}: i < j ⇒ ti < tj) }

A few explanations are needed. Here by “real” and “bool” we
mean data types offered by a programming language. We have
introduced names for the defined part of a carrier set, e.g.
D point . A moving point is represented by a sequence of
quadruples. The sequence may be empty; this will mean that
the position is undefined at all times. Each quadruple contains

a position in space pi and a time ti. It also contains a flag bi
which tells whether the point is defined at times between ti and
ti+1 (bi = true). This allows for the representation of partial
functions (of the conceptual level). Finally, there is a flag ci
which states whether between ti and ti+1 a stepwise constant
interpretation is to be assumed, i.e., the point stayed in pi, did
not move (ci = true), or linear interpolation, i.e., a straight
line between pi and pi+1, is to be used (ci = false). This
representation has been chosen in order to support different
classes of applications for moving point, e.g. unique events,
stepwise constant locations, etc.

The intended meaning of the structure that we have just
described needs of course to be formalized. This is exactly the
semantics of the operator at:

Let r be a value of type mpoint and t a time value. Let r =
<(p1, t1, b1, c1), …, (pm, tm, bm, cm)> for some m ≥ 0.

fat (r, t) :=

⊥ = ∨ > ∧ < ∨ >
≥ ∧ ∃ ∈ =

≥ ∧ ∃ ∈ − < < ∧ ∧ ¬
≥ ∧ ∃

+ +
+

if

if

if

if

m m t t t t

p m i m t t

lin p t p t t
m i m t t t b c

p m

m

i i

i i i i

i i i i

i

0 0

1 1

2 1 1

2

1

1 1

1

(())

({ ,..., }:)

(, , , ,)
({ ,..., }: ())

(ii m t t t b c

m i m t t t b
i i i i

i i i

∈ − < < ∧ ∧
⊥ ≥ ∧ ∃ ∈ − < < ∧ ¬

+

+

{ ,..., }: ()

({ ,..., }: ()

1 1

2 1 1
1

1if

where lin p t p t t(, , , ,)1 1 2 2 is a function that performs
linear interpolation (puts a line through the two points
(p1, t1) and (p2, t2) in 3D space and returns the point p on
the line at time t).

One can observe that definitions for the discrete model are
considerably more complex than those for the abstract model.
On the other hand, they can be translated into data structures
and algorithms which is not the case for the abstract model.

Apart from complexity, there are other difficulties with
discrete modeling. Suppose we wish to define the type mreal
and the operation mdistance. What is a discrete representation
of the type mreal ? Since we like linear approximations for the
reasons mentioned above, the obvious answer would be to use
a sequence of pairs (value, time) and use linear interpolation
between the given values, similarly as for the moving point.

If we now try to define the mdistance operator, we have to
determine the time-dependent distance between two moving
points represented as polylines. To see what that means,
imagine that through each vertex of each of the two polylines
we put a plane t = ti parallel to the xy-plane. Within each
plane t = ti we can easily compute the distance; this will result
in one of the vertices for the resulting mreal value. Between
two adjacent planes we have to consider the distance between
two line segments in 3D space. However, this is not a linear
but a quadratic function (moving along the time axis, the
distance may decrease and then increase again).

This is annoying, especially since the minimal distance
between two moving points can be much smaller than the
distance measured in any of the planes t = ti. Hence using just
these measurements as vertices for the moving real and then
use linear interpolation would lead to quite wrong results.
What can be done? One can either stick with linear
interpolation and then add as vertices the focal points of the
parabolas describing the time-dependent distance between two
planes. In this way at least the minimal distance would not be
missed. However, then the discrete model would already be
inconsistent in itself, as the behavior of the distance between
the two polylines is not correctly represented. An alternative

would be to define the discrete model for the moving real in
such a way, that it contains parameters for quadratic functions
between two vertices. But this immediately raises other
questions. Why just quadratic functions motivated by the
mdistance operation, perhaps other operations need other
functions? Should we allow parameters for polynomials? Up
to what degree? Storing these parameters is expensive. And all
kinds of operations that we need on moving reals must then be
able to deal with these functions.

This example demonstrates what kind of nasty problems arise
in discrete modeling that we simply do not see in abstract
modeling.

5 Both Levels of Modeling Are Needed

We conclude that both levels of modeling are indispensable.
For the discrete model this is clear anyway, as only discrete
models can be implemented. However, if we restrict attention
directly to discrete models, there is a danger that a con-
ceptually simple, elegant design of query operations is
missed. This is because the representational problems might
lead us to prematurely discard some options for modeling.

For example, from the discussion above one might conclude
that moving reals are a problem and no such type should be
introduced. But then, instead of operations minvalue,
maxvalue, etc. on moving reals one has to introduce corres-
ponding operations for each time-dependent numeric property
of a moving object. Suppose we are interested in distance
between two moving points, speed of a moving point, and
size and perimeter of a moving region. Then we need operators
mindistance, maxdistance, minspeed, maxspeed, and so forth.
Clearly, this leads to a proliferation of operators and to a bad
design of a query language. So the better strategy is to start
with a design at the abstract level, and then to aim for that
target when designing discrete models.

6 Related Work

For several years researchers both in the spatial and in the
temporal community have recognized the need of a simul-
taneous treatment and integration of data with spatial and
temporal features in databases. A comprehensive biblio-
graphy on spatio-temporal databases until 1994 is given in
[1]. Many of its articles document the interaction of space and
time through application examples. But nevertheless, up to
now research on models for spatio-temporal databases is still
in its infancy.

Most of the research on this topic has focused on the
extension of specialized spatial or temporal models to
incorporate the other dimension. Most modeling approaches
adopt the snapshot view, i.e., represent space-time data as a
series of snapshots. Gadia et al. [7] propose time- and space-
stamping of thematic attributes as a method to capture their
time- and space-varying values. The time dimension describes
when an attribute value is valid, and the spatial dimension
expresses where it is valid. While each value has always a
temporal evolution, it is doubtful whether it always has a
spatial aspect. Worboys [15] defines spatio-temporal objects
as so-called spatio-bitemporal complexes. Their spatial
features are given by simplicial complexes; their temporal
features are described by bitemporal elements attached to all
components of simplicial complexes. In [3] and [12] event-
based approaches for ST databases are proposed. Events
indicate changes of the locations and shapes of spatial objects
and trigger the creation of new versions in the database. All
these approaches are only capable of modeling discrete or

stepwise constant but not continuous temporal evolutions of
spatial data.

Yeh and Cambray [16, 17] emphasize some aspects also
mentioned in our paper. Since spatial data over time can be
highly variable, they consider a continuous view of these data
as indispensable and a snapshot view as inappropriate. So-
called behavioral time sequences are introduced. Each element
of such a sequence contains a geometric value, a date, and a
behavioral function, the latter describing the evolution up to
the next element of the sequence. Examples of such user or
predefined functions are punctual functions, step functions,
linear functions, and interpolation functions. A 2D object
evolving in the course of time is described by a 3D object.
While there are some similar ideas, they have no notion of
abstract spatio-temporal data types with operations.

An interesting proposal that directly addresses moving
objects is given in [13]. Here a moving object, e.g. a car or
plane, is described by a so-called dynamic attribute. A
dynamic attribute contains a motion vector and can describe
the current status of a moving object (e.g. heading in a certain
direction at a certain speed). An update to the database can
change this motion vector (e.g. when a plane takes a turn). In
this model a query will return different results when posed at
different times; queries about the expected future are also
possible. This model is geared towards vehicle tracking
applications; in contrast to our proposal attributes do not
contain the whole history of a moving object.

First attempts have been made to employ the constraint
database approach [11] on spatio-temporal data. Work in
constraint databases generally applies to spatio-temporal
settings as arbitrary shapes in multidimensional spaces can be
described. Two papers that explicitly deal with spatio-
temporal examples and models are [9, 2].

7 Conclusions and Future Work

We have proposed a new approach to the modeling and
implementation of spatio-temporal database systems based on
spatio-temporal data types. This approach allows an entirely
general treatment of time-changing geometries, whether they
change in discrete steps, or continuously. Hence in contrast to
most other work it also supports the modeling and querying of
moving objects. Spatio-temporal data types can be used to
extend any DBMS data model, and they offer a clear
implementation strategy as extension packages to extensible
DBMSs.

We feel that the paper opens up a new direction of research. As
a first step, it is of crucial importance to clarify the underlying
assumptions and to understand the available design options.

The next steps in this approach are the design of an abstract
model, then a discrete model based on it, investigation of
efficient data structures and algorithms for the discrete model,
and implementation. We are currently completing the
systematic design and formal definition of a system of data
types and operations at the abstract level [6]. We plan to
define a part of this design as a discrete model. Our own choice
is to use linear descriptions for the mpoint and mregion types
as well as for the spatial types (line , region) but to use (square
roots of) quadratic functions for the representation of moving
reals. In this way we can use the standard computational
geometry algorithms for linear shapes, but have represen-
tations of time-dependent distances as well as perimeters and
sizes of regions, that are consistent with the linear shapes on
which they are based. As far as the design of data structures and
algorithms and implementation are concerned, similar work

has been done earlier for spatial databases in the ROSE algebra
[10, 8].

Acknowledgments

We are grateful to our partners in the CHOROCHRONOS
project for asking many of the questions addressed in this
paper. Thanks for many clarifying discussions especially to
Mike Böhlen, Christian Jensen, Nikos Lorentzos, and Timos
Sellis.

References

[1] Al-Taha, K., R.T. Snodgrass, and M.D. Soo,
Bibliography on Spatio-Temporal Databases. ACM
SIGMOD Record, vol. 22, 59-67, 1994.

[2] Chomicki, J., and P.Z. Revesz, Constraint-Based
Interoperability of Spatiotemporal Databases. 5th Int.
Symp. on Large Spatial Databases, 142-161, 1997.

[3] Claramunt, C., and M. Thériault, Managing Time in
GIS: An Event-Oriented Approach. Recent Advances in
Temporal Databases, Springer-Verlag, 23-42, 1995.

[4] Erwig, M., R.H. Güting, M. Schneider, and M.
Vazirgiannis, Spatio-Temporal Data Types: An
Approach to Modeling and Querying Moving Objects in
Databases. Technical Report 224, FernUniversität
Hagen, Dec. 1997.

[5] Güting, R.H., An Introduction to Spatial Database
Systems. VLDB Journal 4, 357-399, 1994.

[6] Güting, R.H., M.H. Böhlen, M. Erwig, C.S. Jensen, N.
Lorentzos, M. Schneider, and M. Vazirgiannis, A
Foundation for Representing and Querying Spatio-
Temporal Data. Manuscript in preparation, 1998.

[7] Gadia, S.K., V. Chopra, and U.S. Tim, An SQL-Like
Seamless Query of Spatio-Temporal Data. Int.
Workshop on an Infrastructure for Temporal Databases,
Q-1 - Q-20, 1993.

[8] Güting, R.H., Th. de Ridder, and M. Schneider,
Implementation of the ROSE Algebra: Efficient
Algorithms for Realm-Based Spatial Data Types. 4th
Int. Symp. on Large Spatial Databases, 216-239, 1995.

[9] Grumbach, S., P. Rigaux, and L. Segoufin, The DEDALE
System for Complex Spatial Queries. SIGMOD 98,
1998, to appear.

[10] Güting, R.H., and M. Schneider, Realm-Based Spatial
Data Types: The ROSE Algebra. VLDB Journal 4, 100-
143, 1995.

[11] Kanellakis, P.C., G.M. Kuper, and P.Z. Revesz,
Constraint Query Languages. Journal of Computer and
System Sciences 51, 25-52, 1995.

[12] Peuquet, D.J., and N. Duan, An Event-Based
Spatiotemporal Data Model (ESTDM) for Temporal
Analysis of Geographical Data. Int. Journal of Geogra-
phical Information Systems, vol. 9, no. 1, 7-24, 1995.

[13] Sistla, A.P., O. Wolfson, S. Chamberlain, and S. Dao,
Modeling and Querying Moving Objects. IEEE Int.
Conf. on Data Engineering, 422-432, 1997.

[14] Tansel, A.U., J. Clifford, S. Gadia, S. Jajodia, A. Segev,
and R. Snodgrass (eds.), Temporal Databases: Theory,
Design, and Implementation. Benjamin/ Cummings
Publishing Company, 1993.

[15] Worboys, M.F., A Unified Model for Spatial and
Temporal Information. The Computer Journal, vol. 37,
no. 1, 27-34, 1994.

[16] Yeh, T.S., and B. de Cambray, Time as a Geometric
Dimension for Modeling the Evolution of Entities: A
3D Approach. 2nd Int. Conf. on Integrating GIS and
Environmental Modeling, 1993.

[17] Yeh, T.S., and B. de Cambray, Modeling Highly
Variable Spatio-Temporal Data. 6th AustraliAsian
Database Conf., 221-230, 1995.

