
Programs are Abstract Data Types

Martin Erwig
Oregon State University

erwig@cs.orst.edu

Abstract

We propose to view programs as abstract data types and
to perform program changes by applying well-defined op-
erations on programs. The ADT view of programs goes
beyond the approach of syntax-directed editors and proof-
editors since it is possible to combine basic update oper-
ations into larger update programs that can be stored and
reused. It is crucial for the design of update operations and
their composition to know which properties they can pre-
serve when they are applied to a program.

In this paper we argue in favor of the abstract data
type view of programs, and present a general framework in
which different programming languages, update languages,
and properties can be studied.

1 Introduction

The largest fraction of software development costs is
spent on software maintenance. One important part of soft-
ware maintenance is the process of updating programs in
response to changed requirements. The way in which these
updates are performed has a considerable influence on the
reliability, efficiency, and costs of this process.

Now a common scenario is the following: a programmer
has to perform a couple of changes to a program. She starts
her favorite text editor, changes the program, and saves the
file. Finally, she tries to recompile the program, but in many
cases the compiler will report syntax and type errors. Even
if the required program changes are minimal, inconsisten-
cies can be introduced by editing operations quite easily.
Even worse, logical errors can be introduced by program
updates that perform changes inconsistently. These logical
errors are especially dangerous because they might stay in
a program undetected for a long time.

The principal problem that causes this unfortunate situa-
tion is the low-level view of programs that is revealed by the
above “text editor” approach: a program is simply regarded
as a sequence of characters, and the operations on programs
are basically that of inserting and deleting characters. This

view does not at all reflect the structure of programs, and
adding or deleting single characters are simply the wrong
operations on programs.

Therefore, we propose to view a program as an abstract
data type and to perform program changes by well-defined
operations offered by this abstract data type. From this point
of view it is obvious that operations like

addChar : Program � Pos � Char � Program � Pos

are meaningless, or cannot be defined in a reasonable way.
Instead, we can well imagine having operations like:

addType : Program � Name � Type � Program
addFun : Program � Name � Expr � Program
dropFunPar : Program � Name � Var � Program
�����

Performing program updates in a more structured way is
actually not a new idea. There exist a couple of program
editors that can guarantee syntactic or even type correctness
and other properties of changed programs. Examples for
such systems are Centaur [2], the synthesizer generator [3],
or CYNTHIA [5]. The view underlying these tools are either
that of syntax trees or, in the case of CYNTHIA, proofs in a
logical system for type information.

Viewing programs as abstract data types takes the idea
of program editors one step further in two respects: first,
we are not constrained to one particular representation. In-
stead, we just have to define a suitable set of sorts, and this
offers more freedom and an interesting design space for the
definition of program update operators. Second, the defi-
nition of basic update operations can (and should) be com-
plemented by combinators to build more complex updates
from basic operations. The goal is to be able to write pro-
grams that update programs. It is this second aspect that
clearly goes beyond the idea of program editors that mainly
offer an online “one-operation-at-a-time” mode, and even
though some of these operations are of a very high-level
nature and actually combine several lower-level operations,
there is no way to arbitrarily combine editor operations and
save them and later reuse them. Related to our approach is
the work by Bjørner who has investigated a simple two-level

1



lambda calculus that offers constructs to generate and to in-
spect (by pattern matching) lambda calculus terms [1]. In
particular, he describes a type system for dependent types
for this language. However, in his approach it is difficult
(and in some cases impossible) to break down complex up-
dates into smaller parts.

Update programs are no end in themselves, and this
means that we have to restrict update programs to those
that guarantee a certain amount of correctness for the pro-
grams they produce. One purpose of this paper is to lay
out a research plan for this approach, which is to find up-
date languages that are powerful enough to describe rea-
sonably complex program updates and that are at the same
time safe enough to guarantee syntactic and type correct-
ness (and possibly other correctness criteria).

Thus, the goal of this paper is not to present one update
language for one particular programming language preserv-
ing one particular set of properties, but rather to explain the
general approach that has many different possible applica-
tions. In particular, we will address a step that even pre-
cedes the definition of ADT operations, namely we inves-
tigate conditions that assure that update operations are safe
with respect to certain language properties. These insights
can then be used in the design of ADT operations, in par-
ticular, to judge their safety with regard to these language
properties.

The rest of this paper is structured as follows: in Section
2 we describe a general model of program updates. In par-
ticular, we describe the abstract data type view of programs
and how programming languages and program update lan-
guages are related under this view. An important step is to
relate properties of update languages to properties of pro-
gramming languages, and this opens the view on many the-
orems that are still to be found and proved. In Section 3 we
then briefly sketch how an effectively computable property
of the update language can guarantee the type correctness
of programs. Conclusions given in Section 4 complete this
paper.

2 A Generic Model for Program Updates

A general scenario for program updates is given by the
following definitions. We consider a language P (called ob-
ject language) and use p to denote programs written in P.
A property on P is by a function π from P into a suitable
domain D. For example, a type system for P is given by a
function τ : P � T , where T is the set of types. Even the
semantics of P can be regarded as a property on a domain
of semantic values.

Each domain D contains two kinds of values: (i) well-
defined values (D

�
) and (ii) error values (Dε) so that D �

D
���

Dε. This means the fact π � p ��� Dε indicates a pro-
gram error with respect to the property π, and π � p ��� D

�

expresses that p is correct regarding property π. We abbre-
viate the latter by writing π

� � p � , that is,

π
� � p � : 	�
 π � p ��� D

�

In that case we say that p is π-correct or π-valid.
Updates are given by expressions of an update language

U . Updates transform programs, that is, the semantics of
updates is a function  �� � � : U ��� P � P � .

Since U is a language, we can identify properties for U
(as for P). We use µ and C to denote a property and its
domain on U .

Definition 1 (Safety of Updates) An update u is said to be
safe with respect to the language property π (or, u is π-safe,
for short) if and only if

π
� � p ����
 π

� ��  u � ��� p ���
Observation: any π-safe update u induces (or corre-

sponds) to a save transition function on the domain D: if
π � p ��� d and π ��  u � ��� p ����� d � , then the induced update on
D is given by uD � d � : � d � where d � d � � D

�
(see Figure 1).

In other words, π-correctness is a homomorphism on π-save
updates.

p d

p � d �

π

π

u uD

Figure 1. Relationship between updates and
properties.

Our goal is to find characterizations of safe updates, that
is, we want to find properties µ (and corresponding domains
C) such that µ-correctness implies π-safety. This means:
given P, π, D, and U , find µ and C such that:

µ
� � u ����
 u is π-save

or:
µ
� � u ����
�� π � � p ����
 π

� ��  u � ��� p �����
This generic schema for theorems is illustrated in Figure 2.

To pursue this goal we have to make assumptions about
the involved languages and domains. In the remainder of
this section we fix some notations that are summarized in
Figure 3 that serves as a reference table.

P is usually defined by a grammar, say G, and we will be
mainly concerned with P’s abstract syntax. On this abstract
syntax level a program can be viewed as a term over a sig-
nature, and regarding the term view, we consider the signa-
ture that is obtained by taking G’s nonterminals as sorts and

2



p

  u � � True

p �

π
�

µ
�

π
�

Figure 2. Safe Update Theorems.

having for each production an operation whose type is given
by the nonterminals in the production (we omit the formal
construction here for brevity). If Σ ��� S � F � is the signature
thus obtained, we write T � Σ � W � s to denote the set of terms
of sort s where W ��� s � S Vs is a set of sorted variables.
The ground terms of sort s are given by T � Σ � s : � T � Σ ��� � s,
and whenever the signature Σ is clear from the context, we
also write more succinctly T � W � s for T � Σ � W � s and Ts for
T � Σ ��� � s. An abstract syntax term f � t1 � ����� � tn � can also be
represented as a tree with node f having the abstract syntax
trees for t1 � ����� � tn as subtrees.

To relate U and properties on U to those on P, we em-
ploy an operational model in which U is a language of term
update operations. More specifically, term updates can be
expressed by rewrite rules. A rewrite rule for P essentially
consists of a pair of patterns (l and r) where a pattern is an
abstract syntax term possibly containing variables, that is,
l � r � T � Σ � W � s. Complex updates are given by collections
of update rules, that is, given the rewrite rules u1 � ����� � un, the
set � u1 � ����� � un 	 is a valid (complex) update.

A summary of the notation employed so far is given in
Figure 3.

P Object language

Σ Signature representing the abstract syntax of P

W Meta-variables for update rules

s Nonterminal of P and a sort of Σ
U Update language

l 
 r Update rule, l � r � T  Σ � W � s� �
u � �� p � Result of applying update u to program p

π : L � D Object language property on a domain D

µ : U � C Update language property on a domain C

Dε Error values of domain D

D � Well-defined values of domain D

π �� p � Well-definedness of program p with respect to π

Figure 3. General model of program updates.

The generic update model defines a framework to study
many different languages with many different properties
and how these are preserved (or not) under a variety of up-
date operations.

3 Type-Correct Updates

To illustrate the ideas of the previous section, we sketch
the development of a criterion for update programs that en-
sures the preservation of type correctness for updated pro-
grams. For simplicity we use the explicitly typed lambda
calculus (λ � ) as an object language.

A principal problem for type-consistent program updates
is caused by the fact that the typing information is not a
context-free property which means that a single basic up-
date cannot be, in general, type correct. In other words, an
update (that affects typing at one place) generally needs one
or more further updates at other, remote places to reinstate
type correctness.

The general assumption behind our approach is that a
complex program update consists of several basic updates
u1 � ����� � un that, when applied individually, might introduce
type errors (or inconsistencies), but as a whole can work to-
gether to preserve type correctness—a complex update is
like a transaction that guarantees consistency at the end.
The described idea can be formalized in a sequence of steps:
first, we define the notions of type change and changes in
type assumptions. Then we define what type changes are
induced by update rules, and we divide them into two cate-
gories: ( � ) changes in assumptions that are required to check
the types of a rule, and ( � ) changes in assumptions that are
generated or provided during typechecking. Then we can
define a “covering” criterion that essentially expresses that

� for any � -change there exists a � -change of which it is
an instance, and� for any � -change there exists an � -change that is an in-
stance of it.

Here, “instance” essentially means the instance relation-
ships of types, but this notion has to be suitably generalized
to type changes.

We typecheck both sides of an update rule u � l � r in-
dividually by a modified type inference algorithm A (which
can actually be considered an assumption inference algo-
rithm) that is more permissive with regard to identifiers for
which type assumptions are “missing”: whenever the al-
gorithm unsuccessfully tries to find a type for, say f in an
assumption Γ, this does not lead to reporting a type error;
instead, a most general assumption for f (that is, a type
variable a) is generated and added to Γ. We keep track
of all generated assumptions in a set Λ that is returned to-
gether with the inferred type. Each generated assumption
is marked with a tag � or � so that it is known whether a

3



particular assumption is provided or required.
The algorithm A is shown in Figure 4. We use the con-

vention that â denotes always a new type variable, and that
U � t � t � � denotes the most general unifier (mgu) θ for two
(type) terms t and t � .

The algorithm is very similar to ordinary type check-
ing/inference algorithms. The main difference is the gen-
erated assumptions in the rules VARA and ABSA . In VARA
the second rule captures the situation when the type of a
free variable v of a rule pattern is type checked: there is no
assumption for v in Γ, and this fact is recorded by generat-
ing the required assumption v �� � â. This indicates a poten-
tial source of errors, but as long as some other update rule
generates a “matching” provided assumption, no type error
will be eventually produced. In the rule ABSA the explicit
typing of the variable v provides a type information that is
recorded as v �� � t � in Λ. In the rule APPA no new informa-
tion is created, only the generated assumptions of e1 and
e2 are combined and possibly instantiated by a substitution
that results from the unification operation.

VARA
Γ � v ��� t

A � Γ � v ��� � � � t �
Γ � v ��� �

A � Γ � v ��� � � v �� � â 	 � â �

METAA
Γ � v ��� t

A � Γ � v ��� � � � t �
Γ � v ��� �

A � Γ � v ��� � � v �� � â 	 � â �

APPA

A � Γ � e1 ��� � Λ � t1 � A � Γ � e2 ��� � Λ � � t2 �
U � t1 � t2� â ��� θ

A � Γ � e1 e2 ��� � θ � Λ � Λ � � � θâ �

ABSA
A � Γ � � v �� t � 	 � e ��� � Λ � t �

A � Γ � λv:t � � e ��� � Λ � � v �� � t � 	 � t � � t �

Figure 4. Assumption inference algorithm.

With the help of A we can determine the type changes
that are introduced by update rules. Next we create a set of
“assumption differences” ∆ � l � r � by comparing the inferred
assumptions for both parts of a rule. Any such assumption
difference is basically given by a variable v and a pair of
types, t and t � , and means that the type assumption for v has
changed from t in l to t � in r. We write this as: v �� � t � t � (for
a provided assumption). Then the assumption differences
for a complex update are given by the union of differences
for each individual rule: ∆ � u ��� �

l � r � u∆ � l � r � . Based on
the assumption differences collected in ∆ we can finally de-
fine the above sketched covering property on (complex) up-
dates.

With these definitions we can basically show that updates
that satisfy the covering criterion preserve type correctness
of updated programs.

4 Conclusions and Future Work

We have demonstrated that it is possible to design lan-
guages for programming program updates that preserve
properties of object programs like syntactic and type cor-
rectness. Future work extends the initial proposal in several
directions:

1. Realistic Object Language. By extending λ � by type
inference, polymorphic types, and in particular, data
type constructors and pattern matching, we reach a re-
alistic model for languages like Haskell or ML. These
extensions are also necessary to be able to investigate
high-level operations on programs, such as extending a
data type by a new constructor and correspondingly ex-
tending pattern matching and constructor applications.

2. Complete Update Language. The update language has
to be extended by recursion operators and by “congru-
ence operators” [4] that allow to move updates along
specific paths of abstract syntax trees. The goal is to
provide precise control (on a high-level) of where to
apply which updates. Together with other standard ex-
tensions, such as conditional rewriting, we can then de-
fine high-level language-specific update operators and
wrap them into a user-friendly syntax.

3. Language Properties. For all extensions we have to
investigate what language properties can be preserved
under which conditions. Moreover, there are prop-
erties of U that deserve attention in their own right.
For example, the independence/interference of basic
updates, or conditions for updates being composable.
This is of particular importance for the development of
a library of reusable program updates.

References

[1] N. Bjørner. Type Checking Meta Programs. In Workshop on
Logical Frameworks and Meta-Languages, 1999.

[2] P. Borras, D. Clèment, T. Despereaux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. Centaur: The System. In 3rd
ACM SIGSOFT Symp. on Software Development Environ-
ments, pages 14–24, 1988.

[3] T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A
System for Constructing Language-Based Editors. Springer-
Verlag, New York, 1989.

[4] E. Visser, Z. Benaissa, and A. Tolmach. Building Program
Optimizers with Rewriting Strategies. In 3rd ACM Int. Conf.
on Functional Programming, pages 13–26, 1998.

[5] J. Whittle, A. Bundy, and H. Lowe. An Editor for Helping
Novices to Learn Standard ML. In 14th Int. Conf. on Auto-
mated Software Engineering, 1999.

4


