
QUERY-BY-TRACE:
VISUAL PREDICATE SPECIFICATION IN
SPATIO-TEMPORAL DATABASES

Martin Erwig and Markus Schneider
FernUniversität Hagen, Praktische Informatik IV
58084 Hagen, Germany
{erwig, markus.schneider}@fernuni-hagen.de

Abstract In this paper we propose a visual interface for the specification of predicates to
be used in queries on spatio-temporal databases. The approach is based on a
visual specification method for temporally changing spatial situations. This
extends existing concepts for visual spatial query languages, which are only
capable of querying static spatial situations. We outline a preliminary user inter-
face that supports the specification on an intuitive and easily manageable level,
and we describe the design of the underlying visual language. The visual nota-
tion can be used directly as a visual query interface to spatio-temporal data-
bases, or it can provide predicate specifications that can be integrated into
textual query languages leading to heterogeneous languages.

Key Words Spatio-Temporal Queries, Visual Predicate Specification, Visual Database
Interface

1. INTRODUCTION

Spatio-temporal databases deal with spatial objects that change over time (for
example, they move or they grow): cars, planes, people, animals, ..., storms,
lakes, forests, etc. Hence, database systems, in particular, spatial and temporal
database systems, and geographical information systems (GIS) need to be
extended to handle this kind of information. Of particular interest is, of
course, the development of simple but powerful query languages that allow
one to ask for changes in spatial relationships, for instance: “Has a tornado
ever crossed Iowa?” or “Which planes were able to avoid a certain blizzard?”.
A formal foundation for these kinds of queries is given byspatio-temporal
predicates (Erwig et al., 1999e). Whereas it is possible to identify a relatively
small set of spatial predicates (Egenhofer et al., 1991), it is almost impossible
to do so in the spatio-temporal case, simply because there are too many of
them. Thus, there is a very strong need for a simple way of specifying spatio-
temporal situations, and a visual notation can be extremely helpful here.

We will propose a visual language for spatio-temporal predicates. The
main idea is to represent a spatio-temporal object (such as a car or a storm) in
a two-dimensional way by its trace. The intersections of such a trace with
another object’s trace is interpreted and translated into a sequence of predi-
cates, calleddevelopment, that can then be used, for example, to query spatio-
temporal databases. This interpretation is described in (Erwig et al., 1999d).

The described visual notation can be employed in several ways. One appli-
cation is, as already mentioned, to realize a visual query interface to spatio-
temporal databases. But we can also use pictures of this language as specifica-
tions for (complex) spatio-temporal predicates, which can then be used in
arbitrary query languages. One interesting possibility is to use a well-accepted
textual query language like SQL, extend it by spatio-temporal objects and
predicates (Erwig et al., 1999b), and use pictures to represent predicates in
WHERE clauses. This leads then to a heterogeneous visual language (Erwig
et al., 1995).

The paper is structured as follows: after commenting on related work in
the next section, we demonstrate in Section 3 as an application of visual
development specifications a visual query interface to a spatio-temporal data-
base. In Section 4 we describe how spatio-temporal data can be modeled. In
particular, we explain the notions of spatio-temporal objects, predicates, and
developments. In Section 5 we then explain and motivate the design of our
visual notation for developments. Finally, conclusions are given in Section 6.

2. RELATED WORK

The similarity of spatial and temporal phenomena has been recognized for a
long time in the literature. Both phenomena deal with “spaces” or “dimen-
sions” of some kind and are thus closely related. Recently, research efforts
have led both in spatial and in temporal data modeling to an increased interest
in integrating both directions into a common research branch calledspatio-
temporal data modeling and in constructingspatio-temporal data bases.
Their underlying basic entities are calledspatio-temporal objects and are
ubiquitous in everyday life. Consider the flight of an airplane, the migration of
whales, the raging of a storm, or the spreading of a fire region. Characteristic
features of all these objects are that they arespatial entities changing over
time and that these changes arecontinuous. Changes refer, for example, to
motion, shrinking, growing, shape transformation, splitting, merging, disap-
pearing, or reappearing of spatio-temporal objects. In particular, the capabil-
ity of incorporating continuous change of spatial objects over time belongs to
the most challenging requirements of spatio-temporal data models.

In the meanwhile, some data models for spatio-temporal databases have
already been proposed. In (Worboys, 1994) a spatial data model has been gen-
eralized to become spatio-temporal: spatio-temporal objects are defined as so-

called spatio-bitemporal complexes whose spatial features are described by
simplicial complexes and whose temporal features are given by bitemporal
elements attached to all components of simplicial complexes. On the other
hand, temporal data models have been generalized to become spatio-temporal
and include variants of Gadia’s temporal model (Gadia et al., 1993) which are
described in (Cheng et al., 1994, Böhlen et al., 1998). The main drawback of
all these approaches is that ultimately they are incapable of modeling contin-
uous changes of spatial objects over time.

Our approach to dealing with spatio-temporal data takes a more integrated
view of space and time and includes the treatment ofcontinuous spatial
changes. It introduces the concept ofspatio-temporal data types (Erwig et al.,
1998a, 1999a). These data types are designed asabstract data types whose
values can be integrated as complex entities into databases (Stonebraker,
1986) and whose definition and integration into databases is independent of a
particular DBMS data model.

The definition of a temporal object (Erwig et al., 1998b) in general is moti-
vated by the observation that anything that changes over time can be
expressed as a function over time. A temporal version of an object of typeα is
then given by a function fromtime to α. Spatio-temporal objects are regarded
as special instances of temporal objects whereα is a spatial data type like
point or region. A point (representing an airplane, for instance) that changes
its location in the Euclidean plane over time is called amoving point. Simi-
larly, a temporally changing region (representing a fire area, for instance) is a
region that can move and/or grow/shrink and whose components can split or
merge. We call such an object anevolving region.

Similar to our approach, in (Yeh et al., 1993, 1995) based on the work in
(Segev et al., 1993) so-calledbehavioral time sequences are introduced. Each
element of such a sequence contains a geometric value, a date, and abehav-
ioral function, the latter describing the evolution between two consecutive
elements of the sequence. Whereas this approach mainly focuses on represen-
tational issues and advocates the three-dimensional object view of spatio-tem-
poral objects, we are particularly interested in an algebraic model of general
spatio-temporal data types including a comprehensive collection of spatio-
temporal operations. Nevertheless, behavioral time sequences could be used
as representations for our temporal objects.

Temporal changes of spatial objects induce modifications of their mutual
topological relationships over time. For example, at one time two spatio-tem-
poral objects might be disjoint whereas some time later they might intersect.
These modifications usually proceed continuously over time but can, of
course, also have a discrete property. We already have devised and formally
defined a concept for suchspatio-temporal relationships which are described
by so-calledspatio-temporal predicates (Erwig et al., 1999e). We call a
sequence of spatial and spatio-temporal predicates adevelopment.

Since we are dealing with predicates, it is not surprising that logic-based
approaches are related to our work. Allen (Allen, 1984) defines a predicate
Holds(p,i) which asserts that a propertyp is true during a time interval i. Gal-
ton (Galton, 1995) has extended Allen’s approach to the treatment of tempo-
rally changing two-dimensional topological relationships. Topological predi-
cates are taken from the RCC model (Cui et al., 1993) which comes to similar
results as Egenhofer’s 9-intersection model which is briefly discussed below.
In contrast to these approaches, we have pursued a hybrid approach taking
into account elements from temporal logic and elements from point set theory
and point set topology. The main reason for not taking a purely logic approach
is the intended integration of spatio-temporal objects and predicates into spa-
tio-temporal databases and query languages. These require concrete represen-
tations for spatio-temporal objects and besides predicates the possibility of
constructing new objects through spatio-temporal operations. Hence, effi-
ciency, in particular, for the evaluation of spatio-temporal queries, is indis-
pensable.

Our work on spatio-temporal predicates is based on Egenhofer’s 9-inter-
section model (Egenhofer et al., 1991) for topological predicates between
spatial objects in two-dimensional space. The goal of this model is to provide
a canonical collection of topological relationships for each combination of
spatial types. The model rests on the nine possible intersections of boundary,
interior, and exterior of a spatial object with the corresponding parts of
another object. Each intersection is then tested with regard to the topologi-
cally invariant criteria of emptiness and non-emptiness. From the total num-
ber of possible topological constellations only a certain subset makes sense
depending on the combination of spatial objects just considered. For two
regions, eight meaningful constellations have been identified which lead to
the eight predicates calledequal, disjoint, coveredBy, covers, intersect, meet,
inside, andcontains. For a point and a region we obtain the three predicates
disjoint, meet, andinside. For two points we get the two predicatesdisjoint
andmeet (which corresponds to equality). For each group all predicates are
mutually exclusive. They are also complete in the sense that they cover all
possible topological constellations under the assumptions of the 9-intersec-
tion model.

There exist several approaches to visual query languages for spatial data-
bases, for example, (Aufaure-Portier, 1995, Calcinelli et al., 1994, Egenhofer,
1996, Lee et al., 1995). Common to all these approaches is that they allow to
query only static spatial situations, that is, they can express queries like
“Retrieve all airports in Ohio”. A characteristic of the involved objects “air-
port” and “Ohio” is that these objects rarely change their location and/or
extent. There are also a few approaches to querying image sequences (Arndt
et al., 1989, Del Bimbo et al., 1995, Walter et al., 1992). However, the goal of
these proposals is mainly to facilitate queries on video databases and not the
querying of spatial (or spatio-temporal) databases. Since video data is largely

unstructured (just a sequence of images), all these approaches have to be con-
cerned with additional symbolic representations for the stored images to
enable queries. Our visual notation is translated into sequences of predicates
that can be directly checked for the database representation of the spatio-tem-
poral objects. A short, preliminary proposal for the visualization idea that is
developed in this paper has been presented in (Erwig et al., 1999c).

3. QUERY-BY-TRACE

The following scenario illustrates how our visual notation can be employed
for querying developments in spatio-temporal databases. We give a rough out-
line of the interaction a user may perform when visually specifying queries.
Our goal is to interactively and graphically produce a sketch from which a
spatio-temporal predicate can be derived.

The user interfaceQuery-By-Trace (QBT) allows a comfortable specifica-
tion of developments. It incorporates an editor component to draw specifica-
tions. The horizontal dimension is thex-axis; the vertical dimension describes
time. The top of the editor provides two menus, one for moving points and
one for evolving regions. Assuming a relational setting, both menus show the
available attributes related to spatio-temporal objects in the database together
with the corresponding relation names in brackets. In our example we use an
environmental database containing weather and flight information. Assume
that a user asks for all flights crossing hurricanes. The user selects from the

Figure 1 Selecting First Object

menuEvolvingRegions the attribute extent of the relationhurricanes (see
Figure 1) andclicks at a desired position on the canvas of the editor. The
result of this action is a circle labeled with the name of the selected relation
(see Figure 2).

Two things are striking. First, we can observe that the circle and the verti-
cal line, respectively, arestatic. Since we are going to investigate the topolog-
ical relationships between two moving objects, it is not decisive whether both
objects or only one object moves due to the independence of metric and dis-
tance properties. It is only necessary that one object moves to be able to
describe and visualize the process of the temporal evolution of the spatial
relationships between the objects. Second, we do not need to model the real
extent, shape, and location of an evolving region and the exact location of a
moving point over time. We can abstract from these aspects since we are only
interested in specifying topological relationships, which is a task for which
we do not need any metric information.

Depending on the next selection, the kind of query is determined: if
another region is chosen, a development between two regions is being speci-
fied; otherwise a point/region development is going to be sketched. If instead
of a moving region a moving point were selected at the beginning, the user is
only allowed to select another point, and a development between two moving
points would be specified.

In our example the user now selects from the menuMovingPoints the
attribute route of the relationflights. This indicates that the user is interested
in specifying the development between an evolving region and a moving

hurricanes

Figure 2 Selecting Second Object

point. The second selection always creates a point or a circle that can be
moved over the canvas. The user next draws a crossing situation which
requires the following interactions: a click at a desired position outside the
circle produces the starting point. The system determines the initial relation-
ship of this point with respect to the evolving region and displays the spatial
predicatedisjoint in the two message lines at the bottom of the editor. Now the
user drags the mouse from bottom to top from the starting point towards the
circle. Note that during the specification process it is not possible to drag the
mouse cursor below the current position since a spatial object cannot move
backward in time. As soon as the mouse cursor leaves the starting point, the
name of the spatio-temporal predicateDisjoint is added to the message lines.
The fact that a spatial predicate is constant for a certain period is registered in
the message lines by a spatio-temporal predicate indicated by an initial capital
letter (for example,Disjoint, Meet).

We distinguish between theraw mode and thenormalized mode of a
development specification. The raw mode corresponds to the original defini-
tion of a development as an alternating sequence of spatial and spatio-tempo-
ral predicates. The normalized mode introduces simplifications to make the
specification more readable for the user. One of these simplifications is that a
spatial predicate (likedisjoint) followed or preceded by its corresponding spa-
tio-temporal predicate (like Disjoint) can be abbreviated to the spatio-tempo-
ral predicate. Hence, in the second message line we only see theDisjoint
predicate so far, see Figure 3.

hurricanes

flights

Figure 3 Raw and Normalized Modes

While moving the mouse, the system draws the trace of the point and steadily
watches for possible changes in the topological relationship. Each change is
recorded in the message lines. The user now continues to move the cursor
towards the circle and then traverses it. So far the user has specified anEnter
situation, that is, the moving point at some time has met the circle and has
been inside the circle since then, see Figure 4. Afterwards the user drags the

mouse to an end point outside the circle and releases the mouse button. The
final picture is shown in Figure 5.

If the second selection of a moving object is also an evolving region, the
development between two evolving regions shall be specified. The user can in
this case move a second circle which is smaller than the first one. The trace
consists of two disjoint curves spanning a corridor which the moved circle
traverses while being dragged from a start position to its end position. The
two predicatesmeet andcoveredBy (describing the situations when the circles
touch externally, respectively, internally) are calledinstant predicates since
only they can be valid at an instant. They can, of course, also be valid for
some period (Meet, CoveredBy). To distinguish these two cases interactively,
the drawing of Meet andCoveredBy is supported by holding down the shift-
key during dragging. The movement of the mouse is then restricted to go
along the border of the constant object until the shift-key is released again. At
the end of a dragging transaction, both the visual specification and the spatio-
temporal predicate sequence are immediately available.

hurricanes

flights

Figure 4 Dragging Sample Objects

An example for two moving points is given in (Erwig et al., 1999d). We
believe that this user interface is intuitive and easy to use because the user acts
(via the mouse) as a moving object that behaves exactly in the way as the
drawn spatio-temporal predicate demands it. In other words, the user action
precisely conforms to, or satisfies, the specification that is drawn.

4. SPATIO-TEMPORAL OBJECTS, PREDICATES,
AND DEVELOPMENTS

In this section we will review some of the formal foundations and sketch our
definition of spatio-temporal objects (Section 4.1), our concept of spatio-tem-
poral predicates (Section 4.2), and our specification mechanism for spatio-
temporal developments (Section 4.3).

4.1. SPATIO-TEMPORAL OBJECTS

One of our design goals is to define a spatio-temporal data model that is inde-
pendent of a specific DBMS data model. This is achieved by encapsulating
spatio-temporal data types into abstract data types which comprise a compre-
hensive collection of operations and predicates. Assuming a relational setting,
for instance, we can then embed spatio-temporal data types in the same way

hurricanes

flights

Figure 5 Final QBT-Specification of theCross Predicate

like types for integers, reals, booleans, or strings as attribute types in a rela-
tion, that is, the relation has only a container function to store attribute data in
tuples.

The design of our model for spatio-temporal data is as follows: for com-
patibility with smoothly changing spatio-temporal objects we choose a con-
tinuous model of time, that is,time = IR. The temporal version of a value of
typeα that changes over time can be modeled as atemporal function of type

τ(α) = time → α

We have used temporal functions as the basis of an algebraic data model for
spatio-temporal data types (Erwig et al., 1998a, 1999a) whereα is assigned a
spatial data type like point or region. For example, a point that changes its
location over time is an element of typeτ(point) and is called amoving point.
Similarly, an element of typeτ(region) is a region that can move and/or grow/
shrink. It is called anevolving region. Currently, we do not consider a tempo-
ral version of lines, mainly because there seem to be not many applications of
moving lines. A reason might be that lines are themselves abstractions or pro-
jections of movements and thus not the primary entities whose movements
should be considered. In any case, however, it is principally possible to inte-
grate moving lines in much the same way as moving points if needed. In addi-
tion, we also have changing numbers and booleans, which are essential when
defining operations on temporal objects. For instance, we could be interested
in computing the (time-dependent) distance of an airplane and a storm. This
could be achieved by an operation:

Distance : τ(point) × τ(region) → τ(real)

The example demonstrates the concept oftemporal lifting avoiding an infla-
tion of operation names and definitions: we can, in principle, take almost any
non-temporal operation (like distance : point × region → real) and “lift” it so
that it works on temporal objects returning also a temporal object as a result.
More precisely, for each functionf : α1 × ... × αn → β its corresponding lifted
version

↑f : τ(α1) × ... × τ(αn) → τ(β)

is defined by:

↑f(S1, ...,Sn) := {(t, f(S1(t), ...,Sn(t))) | t ∈ time}

Hence, we can derive temporal operations rather automatically. For example,
we obtainDistance = ↑distance.

4.2. SPATIO-TEMPORAL PREDICATES

Temporal lifting is, of course, also applicable to spatial predicates. Consider
the spatial predicate

inside : point × region → bool

The lifted version of this predicate has the type

↑inside : τ(point) × τ(region) → τ(bool)

with the meaning that it yieldstrue for each time at which the point is inside
the region,undefined whenever the point or the region is undefined, andfalse
in all other cases. We see that the lifted version is not a predicate since it
yields a temporal boolean and not a (flat) boolean what we would expect from
a predicate.

Our understanding of spatio-temporal predicates is the following: a spatio-
temporal predicate is essentially a function that aggregates the values of a spa-
tial predicate as it evolves over time. Thus, a spatio-temporal predicate is a
function of typeτ(α) × τ(β) → boolfor α, β ∈ { point, region}.

If we consider the definition of↑inside, we can define two spatio-temporal
predicatessometimes-inside andalways-inside that yield true if↑inside yields
true at some time, respectively, at all times. Whereas the definition forsome-
times-inside is certainly reasonable, the definition foralways-inside is ques-
tionable since it yields false whenever the point or the region is undefined.
This is not what we would expect. For example, when the moving point has a
shorter lifetime than the evolving region and is always inside the region, we
would expectalways-inside to yield true. Actually, we can distinguish differ-
ent kinds of “forall” quantifications that result from different time intervals
over which aggregation can be defined to range. In the case ofinside the
expected behavior is obtained if the aggregation ranges over the lifetime of
the first argument, the moving point. This is not true for all spatial predicates.
In fact, it depends on the nature and use of each individual predicate. For
example, two spatio-temporal objects are considered as beingalways-equal
only if they are equal on both objects’ lifetimes, that is, the objects must have
the same lifespans and must be always equal during these.

In order to be able to concisely build spatio-temporal predicates, we use
the following general syntax:Qop.p whereQ ∈ {∀, ∃}, op∈ {∩, ∪, π1, π2} is
a function mapping two sets into a new set (πi simply takes theith argument
set), andp is a spatial predicate. Such an expression then denotes the spatio-
temporal predicate:

λ(S1, S2).Q t ∈ op(dom(S1), dom(S2)).p(S1(t), S2(t))

This means that, for example,∀π1
.inside denotes the spatio-temporal predi-

cate

λ(S1, S2).∀ t ∈ dom(S1).inside(S1(t), S2(t))

In general,λ(x1, x2, …).e denotes a function that takes argumentsx1, x2, …
and returns a value determined by the expressione. So the above expression
denotes a function that takes two argumentsS1 andS2 and yields the boolean
value denoted by the∀-expression.

With this notation we can give the definitions for the spatio-temporal ver-
sions of the eight basic spatial predicates (for two regions):

Disjoint := ∀∩.disjoint
Meet := ∀∪.meet
Overlap := ∀∪.overlap
Equal := ∀∪.equal
Covers := ∀π2

.covers
Contains := ∀π2

.contains
CoveredBy := ∀π1

.coveredBy
Inside := ∀π1

.inside

For a moving point and a moving region we have just the three basic predi-
catesDisjoint, Meet, andInside, which are defined as above. For two moving
points we have the basic predicatesDisjoint andMeet, which are also defined
as above. The chosen aggregations are motivated and discussed in detail in
(Erwig et al., 1999e).

4.3. DEVELOPMENTS

Now that we have basic spatio-temporal predicates, the question is how to
combine them in order to capture the change of spatial situations. That is, the
issue is how to specifydevelopments. In order to temporally compose differ-
ent spatio-temporal predicates, we need a way to restrict the temporal scope
of basic spatio-temporal predicates to specific intervals. This can be obtained
by predicate constrictions (note thatS|I denotes the partial function that yields
S(t) for all t ∈ I and is undefined otherwise): letI be a (half-) open or closed
interval. Then

PI := λ(S1, S2).P(S1|I, S2|I).

Now we can define thecomposition of predicates as follows:

P until p then Q :=
λ(S1, S2).∃ t : p(S1(t), S2(t)) ∧ P|]-∞,t[(S1, S2) ∧ Q|]t,∞[(S1, S2)

When we now consider how spatial situations can change over time, we
observe that certain relationships can be valid only for a period of time and
not for only a single time point (given that the participating objects do exist
for a period of time) while other relationships can hold at instants as well as
on time intervals. Predicates that can hold at time points and intervals are:
equal, meet, covers, coveredBy; these are calledinstant predicates. For exam-
ple, an airplane and a hurricane can meet at a certain instant or for a whole
period. Predicates that can only hold on intervals are:disjoint, overlap, inside,
contains; these are calledperiod predicates. For example, it is not possible for
an airplane to be disjoint from a hurricane only at one point in time; they have
the inherent property to be disjoint for a period.

It is now interesting to see that in satisfiable developments instant and
period predicates always occur in alternating sequence. For example, it is not
possible that two continuously changing spatio-temporal objects satisfy
Inside immediately followed byDisjoint. In contrast,Inside first followed by
meet (or Meet) and then followed byDisjoint can be satisfied. Hence, devel-
opments are represented by alternating sequences of spatio-temporal predi-
cates and spatial predicates and are written down by juxtaposition (in this
paper). A more formal treatment of compound spatio-temporal predicates and
developments is given in (Erwig et al., 1999e). Our example of a flight run-
ning into a hurricane can now be formulated as the composition:

Disjoint until meet then Inside

Since predicate composition is associative, we can abbreviate nested compo-
sitions by writing down simply a sequence of the spatio-temporal and spatial
predicates, that is, we can simply writeDisjoint meet Inside for the above
example. We introduce the nameEnter for it to reuse it later. A flight running
out of a hurricane can be characterized byLeave := Inside meet Disjoint. A
flight that traverses a hurricane can be described byDisjoint meet Inside meet
Disjoint using basic spatio-temporal predicates or shorter asEnter Leave
using derived predicates; we introduce the nameCross for it. Note that spatial
predicates and their corresponding spatio-temporal predicates (like meet and
Meet) that occur next to each other in a development can be merged to the
respective spatio-temporal predicate. We list a few further examples for two
evolving regions:

Enter := Disjoint meet Overlap coveredBy Inside
Leave := Inside coveredBy Overlap meet Disjoint
Cross := Enter Leave
Touch := Disjoint meet Disjoint
Bypass := Disjoint Meet Disjoint
Graze := Disjoint meet Overlap meet Disjoint

In order to assess the expressiveness of our visual notation we can ask which
developments are possible at all and which developments can be specified by
our visual language. Possible topological changes or transitions of spatio-
temporal objects over time can be visualized in so-calleddevelopment graphs
whose vertices are labeled either with a spatial, that is, an instant, predicate or
with a basic spatio-temporal predicate. Hence, each vertex models a time
point or a time interval in which the corresponding predicate is valid. An edge
(p, q) represents the transition from a predicatep to a predicateq and stands
for p q. A path (p1, p2, ...,pn) within the graph describes a possible temporal
developmentp1 p2 ... pn of topological relationships between two spatial
objects. For the point/point and for the point/region case we obtain the follow-
ing two development graphs:

Starting, for example, withInside in the point/region case, we obtain seven
possible development paths not properly containing cycles1:

Since the development graph is symmetric in this case (each of the four verti-
ces can be selected as the start vertex of a path), we obtain a total of 28 paths.
This means, there are 28 distinct temporal evolutions of topological changes
between a moving point and an evolving region without repetitions. For each
alternative we could define an own spatio-temporal predicate. In the point/
point case we get 13 possible development paths. The development graph for
the region/region case yields not less than 2198 paths and thus possible pred-
icates (Erwig et al., 1999e). It is shown in Figure 6.

1. More precisely, quasi-cycles, see (Erwig et al., 1999e).

Meetmeet

Disjoint

Inside

Meetmeet

Disjoint

Inside

Meetmeet

Disjoint Disjoint

Inside

Inside

There are some constraints imposed by our visual notation which restrict
the possible development paths that can be expressed by a visual specifica-
tion; consequently, they lead to a restriction of the development graph. These
constraints are: (i) the sizes of the static circle and the moved circle are fixed,
(ii) the static circle is larger than the moved circle, and (iii) our visual notation
contains an implicit ordering of both circles, that is, the smaller moved circle
symbolizes always the first argument of a predicate and the larger constant
circle stands always for its second argument. These constraints lead to the fol-
lowing restrictions of the development graph.

First, from the three pairscoveredBy/covers, CoveredBy/Covers, and
Inside/Contains only one relationship per pair, namelycoveredBy, CoveredBy,
and Inside, can be represented in our visual development specifications.
Hence, we can remove the verticescovers, Covers, andContains and their
incident edges2.

Second, four transitions in the graph, namely fromCoveredBy and from
Inside to equal and Equal, respectively, solely result from a growing or
shrinking of one object. Since we cannot alter the proportions neither of the
static circle nor of the moved smaller circle, the verticesequal andEqual can-
not be reached byCoveredBy andInside so that we can take away the corre-
sponding four edge.

Third, the transitions betweenOverlap andequal and betweenOverlap
andEqual do not require growing or shrinking. But the prerequisite for this
transition is that the static circle and the moved circle have the same size, and
just this is excluded by our visual notation. From anOverlap situation we can
never come to anequal or anEqual situation so that the two corresponding
edges must be removed. Because the verticesequal andEqual are isolated

2. Note that this restriction could be dropped if we would allow that the moved circle can be made larger
than the constant circle.

Overlap

Meetmeet

Disjoint

ContainsInside

equal

CoverscoveredBy CoveredBy covers

Equal

Figure 6 Region/Region Development Graph

now, we can remove them, too. We obtain the following final development
graph shown in Figure 7. In this restricted graph, only 87 different paths not
containing quasi-cycles are possible.

All finite paths that can be obtained by this development graph can be
specified with our visual language for the region/region case.

5. VISUAL SPECIFICATIONS OF DEVELOPMENTS

In this section we give a collection of design decisions that eventually lead to
a simple and intuitive, yet powerful, two-dimensional visual language.

The first design decision is essential to obtain an integrated notation for
spatial and temporal aspects:

(1) Represent the temporal dimension geometrically. This leads in a first
step to a three-dimensional model of spatio-temporal objects.

Now we could stop here and use 3D pictures to specify developments, but
there are two main reasons for not doing so: first, drawing three-dimensional
pictures is much more difficult than drawing 2D pictures. In particular, with-
out specialized user input devices, it can become quite tedious to generate 3D
drawings with mouse and keyboard. Such a drawing interface is also very
hard to implement; it must offer many options to the user and is thus again
more difficult to learn and to apply than a two-dimensional language. Second,
three-dimensional illustrations of developments are overdetermined in the
sense that they display (i) growing/shrinking and movement of regions and
(ii) relative positions of the beginnings and endings of objects’ lifetimes. (The
first point will be discussed in more detail below.) Such overspecifications are
generally undesirable since they complicate the understanding of visual nota-
tions because the user has to sort out much visual information that has no
meaning for her specification.

Figure 7 Simplified Development Graphs

Overlap

Meetmeet

Disjoint

Inside

coveredBy CoveredBy

The second design decision is essentially a step to reduce overdetermina-
tion:

(2) Abstract from exact positions/extents, and reduce two-dimensional
geometric objects to one-dimensional ones. Use they-axis to represent
the temporal dimension.

This essentially means to “forget” about they-axis with regard to spatial
information, and to represent a point as a point on thex-axis and a region as an
x-interval. Thus, they-axis can capture the temporal aspect of spatio-temporal
objects so that a moving point is represented by a line and an evolving region
is represented by a region as shown below:

This picture describes a moving point that enters a region, then leaves the
region and finally stops on the region’s border. It is striking that the sketched
movement/shrinking/growing of the interval representing the evolving region
does not contribute anything to this specification, that is, it would be as well
possible to use a plain rectangle representing a stationary/constant region. The
reason is that we are only specifying topological relationships, and thus we
need only information about the relative positions of objects with respect to
each other. In particular, we need not be concerned about the exact position or
size information of objects.3

This leads to the third design decision:

(3) Represent the evolving region in the definition of a point/region predi-
cate (respectively, one evolving region in the definition of a region/re-
gion predicate) simply as a circle. Likewise, represent one of the two
moving points in a point/point spatio-temporal predicate as a vertical
line.

This leads to an easy to understand notation. For instance, the point/region
predicateBypass can be specified as shown in Figure 8.

It remains to be explained how the second evolving region in the specifica-
tion of a region/region predicate is represented. We do that analogous to the
representation of moving points: display two objects (showing the moving
object’s first and last position) connected by a trace specifying the object’s

3. Actually, this is not the whole truth: for some spatio-temporal developments, growing and shrinking
is essential, but these cases are rare, and the complexity of an extension of the visual notation would not be
justified by the relatively small gain in expressiveness, see Section 4.

t

x

movement. The initial and the final object are given by two circles (that are
smaller than the constant circle). The trace is depicted for a moving point by a
dotted line, and for a moving region we use two dotted lines. For example the
predicateGraze is drawn as follows:

The first and the last shown position of the evolving region are disjoint from
the constant region, and thus they both represent the predicatedisjoint. The
trace represents the sequenceDisjoint meet Overlap meet Disjoint. This is
because the left trace border intersects the constant region in exactly two
points and the right trace border does not intersect the constant region at all.
Hence, altogether this picture denotes the predicateGraze. Some variations
are shown below.

Note that the exact interpretation can always be inferred from the intersec-
tions of the trace borders with the static circle. This is explained in (Erwig et
al., 1999d).

Figure 8 Visual Specification of Bypass

Graze

Cross

Touch

Bypass

Figure 9 More Spatio-Temporal Predicates

6. CONCLUSIONS

We have demonstrated how a simple two-dimensional visual language can be
used to express predicates on spatio-temporal objects. This language can be
well used as a query interface to spatio-temporal databases. Having a precise
semantics, the visual notation can also serve as a formal language to commu-
nicate and reason about spatio-temporal situations in general.

REFERENCES

Allen, J.F. (1984) Towards a General Theory of Action and Time, Artificial Intelligence 23,
123-154.

Arndt, T. and Chang, S.K. (1989) Image Sequence Compression by Iconic Indexing, IEEE
Workshop on Visual Languages, 177-182.

Aufaure-Portier, M.A. (1995) A High Level Interface Language for GIS,Journal of Visual Lan-
guages and Computing 6, 167-182.

Böhlen, M.H., Jensen, C.S. and Skjellaug, B. (1998) Spatio-Temporal Database Support for
Legacy Applications,ACM Symp. on Applied Computing, 226-234.

Calcinelli, D. and Mainguenaud, M. (1994) Cigales, a Visual Query Language for a Geograph-
ical Information System: the User Interface,Journal of Visual Languages and Computing 5,
113-132.

Cheng, T.S. and Gadia, S.K. (1994) A Pattern Matching Language for Spatio-Temporal Data-
bases,ACM Conf. on Information and Knowledge Management, 288-295.

Cui, Z. Cohn, A.G. and Randell, D.A. (1993) Qualitative and Topological Relationships in Spa-
tial Databases,Int. Symp. on Advances in Spatial Databases, LNCS 692, 296-315.

Del Bimbo, A., Vicario, E. and Zingoni, D. (1995) Symbolic Description and Visual Querying
of Image Sequences Using Spatio-Temporal Logic,IEEE Transactions on Knowledge and
Data Engineering 7(4), 609-621.

Egenhofer, M.J. (1996) Spatial-Query-By-Sketch,IEEE Symp. on Visual Languages, 60-67.
Egenhofer, M.J. and Franzosa, R.D. (1991) Point-Set Topological Spatial Relations,Int. Jour-

nal of Geographical Information Systems, 161-174.
Erwig, M. and Meyer, B. (1995) Heterogeneous Visual Languages – Integrating Visual and

Textual Programming,IEEE Symp. on Visual Languages, 318-325.
Erwig, M., Güting, R.H., Schneider, M. and Vazirgiannis, M. (1998a) Abstract and Discrete

Modeling of Spatio-Temporal Data Types,6th ACM Symp. on Geographic Information Sys-
tems, 131-136.

Erwig, M., Schneider, M. and Güting, R.H. (1998b) Temporal Objects for Spatio-Temporal
Data Models and a Comparison of Their Representations,Int. Workshop on Advances in
Database Technologies, LNCS 1552, 454-465.

Erwig, M., Güting, R.H., Schneider, M. and Vazirgiannis, M. (1999a) Spatio-Temporal Data
Types: An Approach to Modeling and Querying Moving Objects in Databases,GeoInfor-
matica 3(3), 269-296.

Erwig, M. and Schneider, M. (1999b) Developments in Spatio-Temporal Query Languages,
IEEE Int. Workshop on Spatio-Temporal Data Models and Languages, 441-449.

Erwig, M. and Schneider, M. (1999c) Visual Specifications of Spatio-Temporal Developments,
IEEE Symp. on Visual Languages, 187-188.

Erwig, M. and Schneider, M. (1999d) Visual Specifications of Spatio-Temporal Developments,
Technical Report 259, FernUniversität Hagen.

Erwig, M. and Schneider, M. (1999e) Spatio-Temporal Predicates, Technical Report 262, Fern-
Universität Hagen.

Gadia, S.K. and Nair, S.S. (1993) Temporal Databases: A Prelude to Parametric Data,Temporal
Databases: Theory, Design, and Implementation (eds. A.U. Tansel et al.), 28-66.

Galton, A. (1995) Towards a Qualitative Theory of Movement,Int. Conf. on Spatial Informa-
tion Theory, LNCS 988, 377-396.

Lee, Y.C. and Chin, F.L. (1995) An Iconic Query Language for Topological Relationships in
GIS,Journal of Visual Languages and Computing 9, 25-46.

Segev, A. and Shoshani, A. (1993) A Temporal Data Model Based on Time Sequences,Tempo-
ral Databases: Theory, Design, and Implementation (eds. A.U. Tansel et al.), 248-270.

Stonebraker, M. (1986) Inclusion of New Types in Relational Database Systems, Int. Conf. on
Data Engineering, 262-269.

Walter, I.M., Sturm, R. and Lockemann, P.C. (1992) A Semantic Network Based Deductive
Database System for Image Sequence Evaluation,2nd IFIP Working Conf. on Visual Data-
base Systems, 251-276.

Worboys, M.F. (1994) A Unified Model for Spatial and Temporal Information,The Computer
Journal 37(1), 25-34.

Yeh, T.S. and de Cambray, B. (1993) Time as a Geometric Dimension for Modeling the Evolu-
tion of Entities: A 3D Approach,Int. Conf. on Integrating GIS and Environmental Model-
ing.

Yeh, T.S. and de Cambray, B. (1995) Modeling Highly Variable Spatio-Temporal Data,6th
AustraliAsian Database Conference, 221-230.

BIOGRAPHIES

Martin Erwig received the Diploma degree in computer science from the University of Dort-
mund, Germany, in 1989. After that he joined the University of Hagen, Germany, where he
received his Ph.D. degree (Dr. rer. nat.) in 1994 and his Habilitation in 1999. He is currently on
his move to Oregon State University where he is taking an associate professorship. His research
interests are in functional programming, visual languages, and spatial databases. Currently, his
work in functional programming is focused on abstract data types, in particular, graphs, and his
research in spatial databases is guided by a functional modeling approach to spatial and spatio-
temporal data types.

Markus Schneider received the Diploma degree in computer science from the University of
Dortmund, Germany, in 1990, and the Ph.D. degree (Dr. rer. nat.) in computer science from the
University of Hagen, Germany, in 1995. He is currently a research assistant (lecturer) at that
university. His research interests were first related to the design and implementation of graphi-
cal user interfaces for spatial database systems. Since then, he has worked on the design and
implementation of spatial data types (geo-relational algebra, ROSE algebra, realms). Currently,
he is interested in research on data modeling for vague or fuzzy spatial objects, on spatio-tem-
poral data modeling, and on partitions in spatial database systems. Moreover, he deals with the
design and implementation of data structures and geometric algorithms for these topics.

