
Surveyor: A DSEL for Representing
and Analyzing Strongly Typed Surveys

Wyatt Allen Martin Erwig
School of EECS

Oregon State University
allenwy@onid.orst.edu erwig@eecs.oregonstate.edu

Abstract
Polls and surveys are increasingly employed to gather information
about attitudes and experiences of all kinds of populations and user
groups. The ultimate purpose of a survey is to identify trends and
relationships that can inform decision makers. To this end, the data
gathered by a survey must be appropriately analyzed.

Most of the currently existing tools focus on the user interface
aspect of the data collection task, but pay little attention to the struc-
ture and type of the collected data, which are usually represented
as potentially tag-annotated, but otherwise unstructured, plain text.
This makes the task of writing data analysis programs often dif-
ficult and error-prone, whereas a typed data representation could
support the writing of type-directed data analysis tools that would
enjoy the many benefits of static typing.

In this paper we present Surveyor, a DSEL that allows the com-
positional construction of typed surveys, where the types describe
the structure of the data to be collected. A survey can be run to
gather typed data, which can then be subjected to analysis tools that
are built using Surveyor’s typed combinators. Altogether the Sur-
veyor DSEL realizes a strongly typed and type-directed approach
to data gathering and analysis.

The implementation of our DSEL is based on GADTs to allow
a flexible, yet strongly typed representation of surveys. Moreover,
the implementation employs the Scrap-Your-Boilerplate library to
facilitate the type-dependent traversal, extraction, and combination
of data gathered from surveys.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; G.3.0 [Mathe-
matics of Computing]: Probability and Statistics—Contingency ta-
ble analysis

General Terms Domain-Specific Languages, Generic Program-
ming

Keywords DSEL, GADTs, SYB, Typed data analysis

1. Introduction
Data gathered by polls and surveys provide an important basis for
all kinds of decisions in areas such as policy planning, economics,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’12, September 13, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1574-6/12/09. . . $10.00

and marketing strategies. The prospect of quickly collecting huge
amounts of data from a potentially large number of participants
through the Internet has led to a dramatic increase in the use of
polls and surveys in recent years.

The specification of a survey is a description of what kind
of data is to be collected and also how it is collected. Surveys
are composed of individual questions that are often grouped into
different sections. This observation indicates that surveys are in
principle highly compositional, which makes their construction a
nice target for DSLs. It is therefore not surprising to find that
quite a few languages and systems have been developed for the
specification of surveys. A detailed account of existing approaches
will be given in Section 6. Here we just want to point out the general
structure and some essential components of any surveying system.
This will help us with explaining the contributions of this paper.

• A description language S for surveys that defines the questions
asked, the kind of responses collected, and potential relation-
ships among questions and answers.
• An execution mechanism E : S→D for surveys that gathers data

D based on S and stores it.
• A query language Q : D → D for analyzing and transforming

the collected data into statistical data.

The query component is in many cases not (considered) a part of a
survey system, but we believe that this aspect must not be ignored.
Of course, a valid stance that a survey system can take is to deliver
the data in some standard format (such as XML) for which standard
query languages are already available.

With online survey systems such as SurveyMonkey [14] or sim-
ilar, a survey can be designed, conducted, and analyzed entirely
through a web browser. In this case S is included as a set of HTML
forms and interfaces through which the survey designer can con-
struct, arrange and configure a survey. In such tools, after design-
ing a survey, an online version can be produced and tested or dis-
tributed to respondents with the click of a few buttons, representing
E in this sort of system. Finally, with these web tools, the results
can usually be dumped into CSV or XML file formats (D) to be
loaded and analyzed by external software. Here, Q is represented
by the already-existing, standard query strategies for those formats,
such as XQuery [2].

Formlets [3] is a similar tool available in Haskell which offers a
way to programmatically and compositionally describe how data
is collected through HTML forms and, ultimately, collect well-
typed data (D). In this case S is the set of compositional building
blocks that Formlets provides which can be brought together to
construct the final value. E is the form mechanism in HTML and
the Formlets integration with HTTP servers. Finally, since Formlets
produces data in the host language, the provisions for Q are merely

81

those already available for any data type (such as Haskell’s record
syntax).

Our approach in Surveyor is to provide S as a set of descriptive,
strongly typed and composable language features. The features are
such that the type (D) is evident in S. We provide an example of
E for executing the language on a computer terminal. Finally, we
provide a set of generic programming tools that query the data (Q)
for analysis, taking advantage of type information of the data.

In particular, Surveyor is a domain-specific embedded language
(DSEL) in Haskell, presenting a way to design surveys that is
strongly typed from the ground up. Useful type information is
preserved where components of the survey are written, making it
easy to use resulting data and automatically verifying correctness.
The typed information also makes it simple to describe common
analysis tasks within the language.

In Surveyor, a survey is built up of one or more questions.
Questions themselves can take different forms. For example, some
questions can be answered with any text (free-response questions),
while others require one answer to be selected from a finite set of
choices (multiple-choice questions). When a survey respondent an-
swers a question, a value is produced which is of a type determined
by the type of the question.

The pervasiveness of types in Surveyor makes defining the
composition of surveys clear. Since any individual part of a survey
has type information associated with it, composing two surveys
together will result in a composition of their types. This aids in
assembling the parts of a survey because the parts can be written
separately and then composed together in the end. It also promotes
the reuse of survey code because sets of questions common to
surveys can be written once and used in any number of survey
scenarios.

Since types are explicitly preserved in Surveyor expressions,
analysis tasks can be defined in terms of types as they appear in
surveys. This strongly typed notion of analysis also allows us to
naturally compose simple analyses into larger analyses of higher
dimensionality.

The design and implementation of the Surveyor domain-specific
language makes the following main contributions.

(1) It demonstrates how the use of GADTs allows a flexible, com-
positional approach to the description of user-interaction el-
ements. In the Surveyor language, these elements are simple
question-and-response building blocks for construction of sur-
veys and the corresponding response data, but this pattern can
potentially be used in other DSLs (for example, for describing
the composition of multi-media streams or web pages).

(2) It demonstrates that a strongly typed data representation can be
maintained through a series of transformations (survey descrip-
tion, data collection, and data analysis), and that it actually aids
the definition of queries and analysis tasks.

The two main parts of the Surveyor DSEL are the survey descrip-
tions and the data analysis combinators.

In the remainder of this paper we will look at survey descrip-
tions in detail in Section 2, show how to execute surveys in Section
3, demonstrate Surveyor’s data analysis tools in Section 4, and ex-
plain some of the implementation details in Section 5. We finish
by discussing related work in Section 6 and drawing conclusions in
Section 7.

2. Survey Descriptions
In this section we describe the constructs used to represent surveys.
We will introduce basic survey constructions in Section 2.1 and
discuss the special case of multiple-choice questions in Section 2.2.
In Section 2.3 we introduce syntactic sugar for the DSL in the form

type Prompt = String

data Survey a where
Respond :: Typeable a => Prompt -> (String->a) -> Survey a
Choose :: Typeable a => Prompt -> Choice a -> Survey a
(:+:) :: Survey b -> Survey c -> Survey (b,c)
Group :: String -> Survey a -> Survey a

Figure 1. GADT for representing surveys.

of smart constructors, and in Section 2.4 we illustrate the possibility
for parameterized surveys that can extend the degree of modularity
and reuse.

2.1 Basic Survey Construction
At its core, Surveyor provides a parameterized data type Survey a

to represent a survey which, if conducted, would produce a value
of type a. This definition allows the type of a survey to be highly
suggestive of the survey’s nature. For example, two extremely
simple surveys might ask participants for only their name or age.

type Name = String
type Age = Int

name :: Survey Name
age :: Survey Age

Each survey’s parameter type indicates tbe type of data that an
execution of that survey will produce. The way in which a survey
is constructed is not important for its future use as part of other
surveys. This fact ensures a high degree of modularity for survey
construction.

Survey combinators allow the construction of complex surveys
out of simpler ones. For example, a “person” survey that uses the
name and age to ask for both a person’s name and age, can be
expressed using the :+: constructor for surveys.

person :: Survey (Name,Age)
person = name :+: age

The :+: constructor is part of the Survey data type, whose def-
inition is shown in Figure 1. As seen in the type signature, this
constructor is able to compose two surveys of different types into
a larger survey of both types. Survey is defined as a Generalized
Algebraic Datatype (GADT) containing constructors which can be
used and composed to specify the elements of a survey. A GADT is
used here rather than a standard algebraic data type in order that the
composition of different constructors corresponds to the structure
of the type parameter a. The Survey type definition is shown below.

The first two constructors of Survey specify different types of
questions, whereas the remaining two specify survey structure.
We will describe the first question constructor Respond, and the
two structure constructors in the following. Then we defer the
description of Choose to Section 2.2.

The Respond constructor can be used to present a question to
which the respondent may reply with text. This text response is
parsed into the resulting value of the question. The first parameter
to the constructor is the text displayed as the prompt of the question
and the second parameter is the “parsing” function which is able to
convert the response into an appropriate value of type a.

For example, one might use this constructor to produce a ques-
tion which asks for the respondent’s name in the following way.
Because String is the destination type, id is an appropriate pars-
ing function.

name :: Survey Name
name = Respond "Your name" id

82

data Choice a where
Item :: Typeable a => Prompt -> a -> Choice a
(:|:) :: Choice a -> Choice a -> Choice a
(:||:) :: Choice b -> Choice c -> Choice (Either b c)
(:->:) :: Typeable b => Choice b -> Survey c -> Choice (b,c)

Figure 2. GADT for representing Choices.

If the destination type were something other than String, then the
parsing function would naturally be different. For example, the age

survey must produce an Int value, which can be obtained from
entered text using the standard read function. 1

age:: Survey Age
age = Respond "Your age" (read :: String -> Int)

As mentioned before, the implementation of a survey has no im-
plication on its use since the survey type serves as an interface.
For example, we could imagine a more sophisticated function that
ensures the Age value is within a certain range.

The purpose of the Group constructor is to attach a textual
heading to a section of a survey. As shown in the type signature,
a Group is given a String to use for a heading and a Survey a to
enclose. Since the final type of the Group constructor is identical to
that of the Survey it wraps, one can infer that its purpose is strictly
presentational—it does not change the survey it wraps. A simple
example use of Group is shown below.

personal :: Survey (Name,Age)
personal = Group "Personal Information" person

2.2 Multiple Choice Questions
The Choose constructor represents the second type of question that
can be included in a survey. In this case, the question specifies
a finite set of valid responses which the respondent may select
from as an answer. As the type signature shows, the constructor
is provided with a textual prompt to display for the question, as
well as a Choice a expression, which completely determines the
type encapsulated by the question (Survey a).

From this perspective, Choose questions may seem simple, but
the choice expression is actually where the power lies and can
be fairly intricate. Figure 2 shows the definition of the Choice

GADT. The use of a GADT again ensures that the structure of
the expression matches with the resulting type. We discuss the
constructors of the Choice type in detail in the following.

The Item choice constructor is used to specify one item of a
multiple-choice question. The constructor is to be given the prompt
for the option as well as the value which is to result, should that
choice be selected by a respondent.

The Item constructor will typically be used repeatedly in con-
junction with the :|: constructor that composes two choices. As
shown in the type signature, the choices which are composed must
be of the same type, and the resulting Choice type is the same as
the two which are composed. Equipped with this constructor, we
are able to create useful multiple-choice questions.

rating :: Survey Int
rating = Choose "Rating" $

Item "Good" 3 :|: Item "Fair" 2 :|: Item "Poor" 1

Options of differing types can be composed together in a similar
fashion using the :||: operator. As is shown in the type signature,

1 It should be noted, the use of the read function here introduces a vul-
nerability to malformed input, and thus, runtime errors. A more complex
function could be used which makes use of validation or a default value.
Here we use read for the sake of simplicity.

a choice of type b is composed with a choice of type c to form
a larger choice of type Either b c. The meaning of the Either

type is that if a respondent were to select one of the options in the
left-hand set of choices, the resulting type would not be the same
as if they selected something from the right-hand set. But, since
the selected option in any case will be one or the other, Haskell’s
Either type is sufficient to unify these two types.

We could use this to create a multiple choice question which
results in an Either in the following way.

voteQuestion :: Survey (Either Char Bool)
voteQuestion = Choose

"Did you vote/who did you vote for?" $
(Item "Candidate A" ’a’ :|:
Item "Candidate B" ’b’ :|:
Item "Candidate C" ’c’)

:||: (Item "Didn’t vote" False :|:
Item "Rather not say" True)

Finally, we can create a form of dependent survey, a survey that
is partially conditioned on specific responses from other parts of
a survey. This kind of survey is quite common in larger surveys
or questionnaires since they conveniently allow the diversification
of the survey and the customization to particular situations of re-
spondents. We want to express this kind of survey by tying a com-
plete survey to a specific answer of another survey question. This
is realized by using the :->: constructor of the Choice GADT. As
a simplification for the involved type description we introduce the
following type abbreviations DepSurvey a b for dependent surveys
of type b that depend on a value of type a, and more specifically,
CondSurvey b for a survey that depends on a boolean value.

type DepSurvey a b = Survey (Either a (a,b))
type CondSurvey b = DepSurvey Bool b

As an example of a dependent survey, consider a survey that asks
a respondent’s dietary restrictions if they have previously indicated
that they have any to declare.

diet :: CondSurvey String
diet = Choose "Do you have any dietary restrictions" $

Item "No" False
:||: Item "Yes" True :->: Respond "Which?" id

With dependent surveys one can easily create cascading surveys by
repeatedly attaching different surveys to different responses.

2.3 Survey and Choice Smart Constructors
Being a DSL embedded into Haskell brings along the benefit for
Surveyor of having access to the expressive computational features
of the host language. This allows us, among other things, to keep
the core data types for surveys and choices relatively small, but
at the same time add syntactic sugar through function definitions.
In this section we illustrate how to specialize some of the general-
purpose constructors for common use cases by defining a collection
of smart constructors.

For example, a common use of the Respond question type would
be to create a question which simply accepts text. As we’ve seen
above, this is quite easily achieved by using id as the parsing
function, but we are able to neatly abstract that detail away by
providing a smart constructor for the very purpose.

text :: Prompt -> Survey String
text p = Respond p id

Another common thing is the use of an Item prompt as its value.
We can define a smart constructor which does just this for both the
Item and the :->: constructor.

83

prompt :: Prompt -> Choice Prompt
prompt p = Item p p

prompted :: Prompt -> Survey a -> Choice (Prompt,a)
prompted p = (prompt p :->:)

In a similar way, to construct an option with a type a which
implements Show a, we also provide two smart constructors which
can simply use the String representation of the Item’s value as the
text to display. A smart constructor for :->: is provided as well.

showItem :: (Show v,Typeable v) => v -> Choice v
showItem v = Item (show v) v

vdep :: (Show v,Typeable v) => v -> Survey b -> Choice (v,b)
vdep v = (showItem v :->:)

In order to be able to specify the options for a multiple-choice ques-
tion through a list, we define a smart constructor called showItems

that accepts a list of a values and yields a Choice of a.

showItems :: (Show a,Typeable a) => [a] -> Choice a
showItems = foldr1 (:|:) . map showItem

With showItems we can construct a short form for encapsulating
multiple-choice survey questions as follows.

(???) :: (Show a, Typeable a) => Prompt -> [a] -> Survey a
(???) p = Choose p . showItems

With the showItems smart constructor, one could even build
multiple-choice options programmatically. For example, in the fol-
lowing code, the multiple choice question asks the respondent to
select a square number, however, instead of hard-coding the op-
tions, we can write the numbers with a list comprehension.

square :: Survey Int
square = "Pick a square" ??? [x*x | x <- [1..10]]

We can also predefine particular choices that will often occur in
multiple-choice questions. Here are two examples.

yes :: Choice Bool
yes = Item "Yes" True

no :: Choice Bool
no = Item "No" False

With these smart constructors we can redefine, for example, the
diet survey from the previous subsection in the following, more
concise way.

diet :: CondSurvey String
diet = Choose "Do you have any dietary restrictions" $

no :||: yes :->: text "Which?"

This definition reveals a new survey pattern, namely that of an
optional survey, which is a survey only performed if the respondent
“agrees” to enter it by answering a lead-in question with yes.

(==>) :: Prompt -> Survey a -> CondSurvey a
p ==> s = Choose p $ no :||: yes :->: s

With this survey combinator we can finally express diet quite
elegantly as follows.

diet = "Do you have any dietary restrictions"
==> text "Which?"

2.4 Reusable and Parameterized Surveys
Another useful tool that we can provide to the survey designer is a
set of simple, basic surveys representing common sets of questions,
which can be reused at will.

Unless a survey is meant to be anonymous, it is very likely that
it would ask for a respondent’s name. After having identified this
common trait of surveys, we are able to provide this functionality
to be easily used in any number of surveys.

type FullName = (Name,Name)

fullName :: Survey FullName
fullName = text "First name" :+: text "Last name"

In this case, fullName is, itself, a complete survey, but since Sur-
veyor is nicely compositional, this small example can be incorpo-
rated into large survey expressions.

Another commonly found survey question is one that asks for
the respondent’s gender. In this case, we build something similar to
the fullName basic survey, except that it uses an algebraic data type
in a multiple-choice question.

data Gender = Male | Female
deriving (Eq, Show, Typeable, Enum, Bounded)

gender :: Survey Gender
gender = "Gender" ??? [Male, Female]

This pattern of using all values of an enumeration type as values for
a multiple-choice question is quite common, and we can support it
through a type class ValueGen that provides a function to generate
all values of a data type automatically.

class (Bounded a,Enum a) => ValueGen a where
values :: [a]
values = enumFrom minBound

With this class we can rewrite the gender survey in a slightly
simplified way.

instance ValueGen Gender

gender :: Survey Gender
gender = "Gender" ??? values

The use of enumFrom and minBound in the definition of values

explains why we need to derive Enum and Bounded for Gender. We
could make this definition even smoother by employing Haskell
generics to let the type class ValueGen be derived automatically for
Gender.

It can also be very useful to provide parameterized survey parts.
For example, it is common for surveys to ask a respondent to an-
swer a question on a Likert scale (for example, when presented
with a statement, the respondent answers with one of Strongly Dis-
agree, Disagree, Neither Agree nor Disagree, Agree, or Strongly
Agree). This type of question could be very nicely represented with
a multiple-choice question, and we can provide an algebraic data
type for the scale to reuse in several of these multiple-choice ques-
tions.

data LikertScale = StronglyAgree | Agree | NeitherNor
| Disagree | StronglyDisagree
deriving (Eq, Typeable, Enum, Bounded)

instance Show LikertScale where
show StronglyDisagree = "Strongly disagree"
show Disagree = "Disagree"
show NeitherNor = "Neither agree nor disagree"
show Agree = "Agree"
show StronglyAgree = "Strongly agree"

instance ValueGen LikertScale

However, each use of the Likert scale type would have to repeatedly
build the choice expression. We can do better. We give this survey

84

part as a function which accepts a prompt and yields a survey which
asks the respondent to answer on the 5-point Likert scale.

likert :: Prompt -> Survey LikertScale
likert = (??? values)

An example use of this parameterized survey might look like the
following. The parameter is a statement with which the respondent
may agree or disagree along the scale.

feedback :: Survey LikertScale
feedback = likert "My experience was positive"

3. Running Surveys
Having an explicit representation for surveys in the form of a data
type allows us to separate the questions of survey specification
from execution of surveys. Specifically, the execution of a survey
can happen on any number of platforms, and the presentation of a
survey could be rendered to any number of formats. For example,
after having written a single survey in Surveyor, one might decide
to render it as an HTML web page, or to print it out on paper, or to
do both. The structure of the Surveyor language is decoupled from
the destination medium so that the same survey could be rendered
to any of them. Our main motivation for designing our DSL was to
identify the essential structure of surveys and their relationships to
collected data. Details regarding the user-interaction with a survey
or engineering aspects related to questions of survey distribution or
the storage of data are important, but not our main concern here.

Therefore, for the examples considered here, we describe how
Surveyor provides a function for rendering a survey as an exe-
cutable program with a Command-Line Interface (CLI). As shown
in the method signature below, the runSurvey function takes a
Survey which results in a value of type a, and produces an operation
in the IO monad which produces a value of type a. This operation
is the CLI which poses questions and collects responses.

runSurvey :: Survey a -> IO a

This function serves as a design and debugging aid for the survey
designer, making it easy to test survey expressions by executing
them, actually answering the questions and observing the resulting
value.

To illustrate the execution of surveys with a small example, we
imagine a survey designer in the sales department of a company that
produces spiral-bound notebooks. The designer decides to build
and conduct a survey to find out what customers think of the
notebooks.

To start with, our designer builds a small survey to ask basic
questions and get context. In this example, Handedness is an alge-
braic data type to represent left- or right-handedness and is imple-
mented in the same way as the Gender data type.

data Handedness = LeftHanded | RightHanded
deriving (Eq, Show, Typeable, Bunded, Enum)

instance Value Handedness

handedness :: Survey Handedness
handedness = "Handedness" ??? values

With this definition the designer can create a basic survey about the
user’s background.

type Personal = ((FullName,Gender),Handedness)

background :: Survey Personal
background = name :+: gender :+: handedness

Next, the designer needs to write the part of the survey which
collects the customer sentiment. For simplicity’s sake, in this case,

we ask whether the respondent owns one of the notebooks, and, if
they do, a Likert question is used directly asking what they think of
it.

sentiment :: CondSurvey LikertScale
sentiment =

Choose "Have you bought one of our notebooks?" $
no :||: yes :->: likert "The notebook is good"

Finally, the designer can compose these two together into the final
survey.

type Notebook = (Personal,CondSurvey LikertScale)

notebook :: Survey Notebook
notebook = background :+: sentiment

We can run this survey now using the function runSurvey, which
then produces the following output (for brevity we show only the
portion for the personal data). Note that the listing includes both
the output from the survey and the input from the participant.

*Main> runSurvey $ Group "Personal Data" background

Personal Data
=============

First name: John

Last name: Smith

Gender:
[1] Male
[2] Female
1

Handedness:
[1] Left handed
[2] Right handed
2
((("John","Smith"),Male),RightHanded)

As shown above, the title attached to the survey with the Group con-
structor is presented in this interface as a heading which precedes
the questions it groups. The question responses of John, Smith, 1
and 2 are typed by the respondent where the question is presented
and must be entered before the interface moves on to the next ques-
tion. When the survey is complete and all the questions have been
answered, the resulting value is displayed by the environment as
the result of the IO operation.

If this survey were to be conducted and several people re-
sponded to it, then a set of the produced values might look some-
thing like this.

responses :: [Notebook]
responses = [
(((("John","Smith"),Male),RightHanded),

Right (True,Agree)),
(((("Jane","Doe"),Female),LeftHanded),Left False),
...
]

4. Typed Data Analysis
Having explored the building blocks of a survey, and seen an ex-
ample of building a survey that has some usefulness, the remaining
challenge is making use of respondent data with analyses of vary-
ing dimensionality.

Imagine having accumulated a set of data such as the responses
to the customer survey in the previous example (responses). If we
want to understand this dataset, two problems immediately present

85

themselves. First, the actual type of the data is a somewhat deeply
nested tuple structure which may be difficult to read by simply
printing. Second, the survey (ideally) will have received a large
number of responses from customers, and there will be too many
to make any significant determination from them without the aid of
a tool. These problems can be solved with the analysis parts of the
Surveyor DSL.

We can categorize analyses by their dimensionality, by which
we mean the number of different types in the data that an analysis
focuses on.

We will present several examples of 0-, 1-, and 2-dimensional
data analyses in the following subsections.

4.1 0-Dimensional Analyses
A 0-dimensional analysis of data ignores any specific type and pro-
duces a single value, typically through some form of data aggrega-
tion. A trivial example would be to count the number of responses
using Haskell’s length function. As is indicated by the type of
length this analysis is completely generic because it does not con-
sider any of the values that are contained in the data. Even such a
trivial analysis can be useful because we can use it to make a deter-
mination of the data, such as whether it is in sufficient number to
bear statistical significance.

Other 0-dimensional analyses could compute a maximum or
minimum of some sort, which will depend on types of the survey
data, but not on a specific one.

4.2 1-Dimensional Analyses
In the notebook customer-survey data, it might be useful to see
whether the survey was responded to by more women or more men.
This is an example of 1-dimensional analysis because it examines
how one part of the survey was answered. Indeed, because Surveyor
is strongly typed, we can more precisely say that 1-dimensional
analysis, in this case, is examining the values of one data type as it
appears in the survey.

However, before we can analyze the one particular aspect of
the survey, we need a systematic way of extracting it from any of
the responses. Surveyor provides two functions (called accessors)
which aid in this task.

The first accessor tool is a generic function which, given the
actual specification of the survey involved (of type Survey a), is
able to retrieve a value of some arbitrary destination type (b) from
an answer to the survey (a value of type a).

guidedBy :: Typeable b => Survey a -> a -> Maybe b

The result of running the accessor is Maybe b rather than simply b

to account for the possibility that a value of the target type is not
present in the particular answer (for example, if it would only be
present in the untaken branch of an Either construct, or, indeed
if the survey did not involve the target type at all). We could use
this function to get a list of all the Genders that were provided as
answers in the survey data.

In the below example, we show the use of this accessor for
extracting a distribution of Genders from the data. In doing so we
employ an auxiliary function scan that uses the catMaybes function
from Haskell’s Data.Maybe module to filter out any Nothing values
produced by the accessor.

scan :: (a -> Maybe b) -> [a] -> [b]
scan f = catMaybes . map f

Since guidedBy is a generic function, its return type is determined
by Haskell to be Maybe Gender from the type signature of the
genders declaration.

genders:: [Gender]
genders = guidedBy notebook ‘scan‘ responses

The second type of accessor is a variation of the first and is designed
to find a question with a given text as its prompt. This can be useful
for extraction of only one of several questions which have the same
type in the survey, but different prompts.

searchingFor :: Typeable b =>
String -> Survey a -> a -> Maybe b

This function can be used in the same way as guidedBy, except that
it needs the extra parameter for the question’s prompt text.

firstNames :: [String]
firstNames = searchingFor "First name" notebook

‘scan‘ responses

It is important not to confuse this use of searchingFor to be
indexing the data by a string. Rather, it searches for answers which
meet the string constraint in addition to the type constraint.

Finally, equipped with these data accessor tools, we can perform
interesting analysis on individual data types. For example, we may
wish to see how the two Gender answers are distributed throughout
the data. We can take advantage of Surveyor’s facilities for value
distributions to do this. In Surveyor, we have a parameterized type
to describe this sort of information called Dist.

data Dist a b

The parameters of the Dist type illustrate what information is being
described by it. The parameter a refers to the type of the survey
being analyzed. In our case a would be Notebook. The second
parameter is the type of the values whose distribution is being
analyzed. For example, to look at the Gender distribution in we
might use the following type.

genderDist :: Dist Notebook Gender

To build a value of this distribution type, Surveyor provides the
collate function, which, given an accessor and a set of responses,
produces the desired distribution.

collate :: Eq b => (a -> Maybe b) -> [a] -> Dist a b

Using collate, the gender distribution can be apprehended with
the familiar building blocks. As before, the type of the guidedBy is
determined by the type signature of genderDist, which was given
above.

genderDist = guidedBy notebook ‘collate‘ responses

The construction of this distribution has already accomplished an
analysis task. To illustrate this we can take advantage of how Dist

is an instance of the Show type class and see what it can say about
how genders are distributed throughout the survey.

> genderDist
Male: 41.666668%
Female: 58.333332%

The above result, which is produced by calling show on the distribu-
tion, demonstrates at a glance that there were slightly more women
than men who responded to the customer survey. Using an iden-
tical approach, we can construct distributions for the Handedness

and the LikertScale types, which we call handednessDist and
likertDist, respectively. The following two results are produced.
First, for handedness.

> handednessDist
RightHanded: 75.0%
LeftHanded: 25.0%

And then for the Likert scale we obtain the following distribution.

86

> likertDist
Agree: 33.333332%
Disagree: 16.666666%
Strongly agree: 16.666666%
Strongly disagree: 8.333333%
N/A: 8.333333%
Neither agree nor disagree: 16.666666%

The distribution entries listed under N/A are from those answers for
which the accessor produced Nothing, rather than an actual value,
meaning, in this case, that the respondent had indicated that they
had not bought a notebook and therefore did not rate it.

The Handedness distribution shows that there were three times
as many right-handed respondents as left-handed ones, while the
LikertScale distribution shows that opinions of the notebooks are
generally positive, which is good news for our imaginary sales
department.

4.3 Multivariate Analysis
Surveyor’s 1-dimensional value distribution analysis is useful to
identify simple trends, but the real goal of analysis is the discovery
of relationships between multiple parts of a survey. In this strongly
typed context, we can state this more precisely as the discovery of
relationships between the values under multiple types in the survey.
This can be described as multivariate analysis, or, as we implement
it in Surveyor, 2-dimensional analysis.

Following the principle of compositionality, 2-dimensional
analysis can be defined in terms of the composition of two 1-
dimensional analyses (of type Dist). The combinator provided
in Surveyor for this purpose computes a cross-tabulation of the
distributed data (also sometimes called a contingency table).

crosstab :: Eq a => Dist a b -> Dist a c -> Table b c

As is shown in the type signature of crosstab, given two distri-
butions that examine values of potentially different types over the
same survey type, a cross-tabulation is constructed which lists val-
ues of the first distribution type along one axis, and those of the
second along the perpendicular axis.

For example, we could use this combinator to attempt to dis-
cover any relationship between the gender of the respondents and
their dominant hand by composing these two distributions under
crosstab.

genderHandedness :: Table Gender Handedness
genderHandedness = genderDist ‘crosstab‘ handednessDist

As with distributions, the type Table is an instance of the Show type
class, and we can use this to see what the table can say about these
two dimensions.

> genderHandedness

RightHanded LeftHanded
Male 4 1
Female 5 2

There appears to be no outstanding relationship between these two
dimensions, and this is just as we would expect. We can continue
our hunt by using an identical approach with the Handedness and
LikertScale distributions to check if there is any relationship to
be seen between a customer’s opinion of the notebook and their
dominant hand.

> likertDist ‘crosstab‘ handednessDist

RightHanded LeftHanded
Agree 3 1
Disagree 1 1
Strongly agree 2 0
Strongly disagree 0 1
N/A 1 0
Neither agree nor disagree 2 0

5. Implementation
Here we examine how some of Surveyor’s functionality is im-
plemented. As we’ve seen, the bulk of the language constructs
are implemented as GADT constructors. In general, the advantage
afforded the Haskell programmer who makes use of GADTs is
that, when writing functions, pattern-matching against constructors
causes type-refinement—knowing information about the construc-
tor automatically provides type information [7]. In the implemen-
tation of Surveyor’s functions, we will be making significant use of
pattern matching, and this advantage will be evident.

5.1 Run Survey
We look at parts of the implementation of the runSurvey function,
which, as seen above, is of type Survey a -> IO a, meaning that it
transforms a survey of some type into a Command-Line Interface
for the survey as an IO action, which can produce a value of that
type.

The simplest pattern for this function to handle is the Group con-
structor. Since the purpose of this part of the language is merely to
attach a label to a section of survey questions, the implementation
here will simply print the prompt to the terminal (with a small hor-
izontal rule) and recurse on the enclosed questions.

runSurvey (Group name sub) = do
putStrLn $ "\n" ++ name
putStrLn $ replicate (length name) ’=’
runSurvey sub

Another easy pattern for the runSurvey function is the survey com-
position operator. Recall that the type of the survey composition
operator is Survey b -> Survey c -> Survey (b,c), so the result
of this IO operation needs to be the pair of the results of the two
operands. This is as simple as recursing on each argument sepa-
rately, and then packaging the results in a pair.

runSurvey (left :+: right) = do
l <- runSurvey left
r <- runSurvey right
return (l,r)

Next we look at the implementation for Respond. In this code the
constructor is identified and the prompt and parsing function are
matched to names. The prompt is displayed for the user to respond
to and a line of text is read from the standard input. Recall however
that if a Respond question is a Survey a, then the parsing function
will be of type String -> a. Therefore, in order for this IO action
to result in a value of type a, it must apply parser to the line of text.

runSurvey (Respond prompt parser) = do
putStr $ "\n" ++ prompt ++ " "
ans <- getLine
return $ parser ans

The implementation for Choose is slightly more involved. We dis-
play the prompt in the same way as we do in the case of Respond,
and then list the valid answers by calling dispChoices. This lists
the options on several lines with indices next to each. These indices
start with the integer which is passed as the first parameter, so these

87

will be displayed starting with 1 (one-offset). We read an integer
from the standard input and then use it to select an option for use as
the final result. This is done by calling the selected function with
the predecessor of the user-provided index (converting one-offset
to zero-offset).

runSurvey (Choose prompt choiceExp) = do
putStrLn $ "\n" ++ prompt ++ ": "
dispChoices 1 choiceExp
ans <- readLn :: IO Int
selected (pred ans) choiceExp

The dispChoices function is implemented as follows. This function
builds an IO action which results in an Int that represents the
successor of the highest index under which an option was printed.
Since homogeneous and heterogeneous choice composition are
displayed the same way, their display code is wrapped in another
helper function called disp2.

dispChoices :: Int -> Choice a -> IO Int
dispChoices num (Item text _) = do

putStrLn $ "[" ++ show num ++ "] " ++ text
return $ succ num

dispChoices num (choice :->: _) =
dispChoices num choice

dispChoices num (l :|: r) = disp2 num l r
dispChoices num (l :||: r) = disp2 num l r

disp2 :: Int -> Choice a -> Choice b -> IO Int
disp2 l r = do

next <- dispChoices num l
dispChoices next r

The selected function takes the selected index and a choice ex-
pression and will yield the value corresponding to that choice (call-
ing runSurvey on a dependent survey where necessary). The only
reason this function is in the IO monad is because it could poten-
tially have to execute runSurvey. This follows a simple recursive
pattern which works in much the same way as a binary search al-
gorithm.

selected :: Int -> Choice a -> IO a

When presented with the homogeneous composition of choices, it
measures the number of items in the first one. If the index is less
than that number, it will recurse with that set of choices, but if
it’s greater, it will recurse on the second list with an index that
is less the number of items in the first. When presented with a
heterogeneous composition, the case behaves in a similar fashion,
except that it must apply the Left and Right constructors of the
Either data type because the choice sets will be of different types.
This is done with the <$> operator from the Control.Applicative

module.

selected n (l :|: r)
| n < m = selected n l
| otherwise = selected (n-m) r

where m = choiceLength l
selected n (l :||: r)

| n < m = Left <$> selected n l
| otherwise = Right <$> selected (n-m) r

where m = choiceLength l

When presented with a dependent choice, the selected func-
tion must call itself recursively as well as the runSurvey func-
tion. Recall that the type of a dependent choice is Choice b

-> Survey c -> Choice (b,c). Therefore, it first recurses into the
choice that is the first parameter of the construction, and must also
execute the sub-survey that is the second parameter. The results are
paired together according to the type of dependent choices.

selected n (choice :->: survey) = do
c <- selected n choice
s <- runSurvey survey
return (c,s)

Finally, when presented with an item, the effective size of the
choice set in this invocation is zero, so this case is only defined
for when the index parameter is zero.

selected 0 (Item _ val) = return val

To measure the length of choices, the choiceLength function is
provided, the implementation of which is trivial. Its signature is
given below.

choiceLength :: Choice a -> Int

5.2 Data Analysis
The analysis task in Surveyor is made possible by the generic pro-
gramming facilities provided by the Scrap-Your-Boilerplate library
for Haskell (SYB) [11]. In overall design, the analysis parts of Sur-
veyor abstract generic programming into the accessor functions.
The central generic function in Surveyor is guidedBy, which was
introduced earlier. Its type is repeated here for convenience.

guidedBy :: Typeable b => Survey a -> a -> Maybe b

When given a survey of some type a, and when called with target
type of b (which has to implement the Typeable type class), it is
able to yield a function which, given a survey value, will yield a
Maybe b. That is, guidedBy will try to find the value of type b within
a value a of type a, but if it cannot succeed, it will return Nothing.

To handle survey composition, guidedBy recurses twice and
coalesces the resulting values with Haskell’s orElse function. If
the accessor succeeds in either branch, the value will be used, with
preference going to the left.

guidedBy (left :+: right) = \x -> orElse
(guidedBy left $ fst x)
(guidedBy right $ snd x)

When the guidedBy function is called with Respond, the prob-
lem is reduced to a use of the cast function provided by SYB.
This function constitutes a type-safe cast tool given by the type
(Typeable b, Typeable a) => a -> Maybe b, which will convert
types where it can and deliver the result within a Just constructor;
however, if it cannot, it will yield a Nothing. This is precisely the
behavior we want for a value resulting from a Respond question.

guidedBy (Respond _ _) = cast

The case for Group constructions is trivial: the accessor recurses
directly on the sub-survey. In the case for handling Choose ques-
tions, the genericChoiceAccessor function is used, which is im-
plemented with the same strategy as the guidedBy function, except
that it is designed to traverse across choice expressions rather than
survey expressions.

guidedBy (Group _ s) = guidedBy s
guidedBy (Choose _ c) = guidedByChoice c

guidedByChoice :: Typeable b => Choice a -> a -> Maybe b

The guidedBy function suffers from the limitation that it cannot
differentiate between values of the same type. For example, imag-
ine a survey which involves two likert questions. Since guidedBy

is built with a left-preference, it would only be able to access
the first one. To solve this problem, we also provide the function
searchingFor, which is built on top of guidedBy to be able to dif-
ferentiate questions of the same type.

88

The searchingFor function operates with the same traversal
pattern as guidedBy, except that it searches with the condition of
matching a String value against the Prompt value of questions.
Where it finds a match, it immediately defers to the guidedBy

function to actually do the casting. In a similar way, the remainder
of the analysis functionality provided in Surveyor is built upon the
single generic building block of the guidedBy function and do not
themselves need to directly make use of the generic programming
tools from SYB.

As we saw in section 4.2, the Dist type can be used as the result
of 1-dimensional analysis and the type is parameterized by the type
of the survey and by the type under analysis. The complete type
definition is below. It shows that, under the covers, a distribution
is a list of pairs. This list act likes a dictionary, with values of the
type Maybe b as the keys and lists of the full survey answers as the
values.

data Dist a b = Dist [(Maybe b, [a])]

The reason that Dist uses this representation is so that it can track
the unique values of type b from the survey as well as know which
answers correspond to them. This is enough information to com-
pute the percentage-based distribution analysis that a distribution
presents when passed into show. It counts the total number of an-
swers represented in the distribution and, for each value in the type
b, it finds the proportion of the total answers which had that value.
The key for this list must be wrapped in Maybe to be able to still ac-
count for those times that the accessor fails to withdraw a value. To
produce a distribution with the collate function, the Eq typeclass is
needed for the type b in order to compare the values extracted from
answers, but, beyond that, the implementation is straightforward.

6. Related Work
There is no shortage of survey tools in the wild. Many of these tools
are online, including LimeSurvey [12], SurveyMonkey [14], and
SurveyGizmo [13], as well as ad-hoc polling functionality in social
networks, such as Facebook Questions. An important advantage to
online survey systems is the way that the entire survey lifecycle
can take place in the same online space. Some of these tools even
provide simple (1-dimensional) analytic tasks on the survey data,
but more involved analyses can only be accomplished by leaving
the online environment and importing the data into a specialized
analysis tool such as IBM SPSS [9].

SPSS itself is an important tool which is able to encompass
the entire lifecycle of data collection and analysis. With SPSS,
however, the emphasis is placed on analysis tasks, and the survey
component is essentially a more business-oriented version of the
survey tools provided with online survey systems. The analysis
capabilities in SPSS are highly sophisticated, but are designed
to be generally applicable to any dataset. In particular, they are
not designed specifically to analyze surveys. In a similar way,
the R programming language [10] provides tools for sophisticated
analysis on arbitrary data.

Hage and van Keeken’s Neon DSL [8] represents a related ap-
proach to constructing and composing analytic tasks as typed func-
tions in the Haskell host language. After having collected a large,
somewhat cumbersome dataset of compilation problems encoun-
tered by students working on programming assignments, they im-
plemented Neon as a tool to easily and functionally explore the
dataset and draw conclusions about language use and error fixing.
Moreover, Neon’s design is motivated by the application of descrip-
tive statistics (to summarize the large dataset, and draw general
conclusions on trends in language use), whereas our analysis tools
in Surveyor are motivated by inferential statistics (to elicit relation-
ships within the data).

In our design, we drew upon the inspiration of Cunningham’s
“Little Language for Surveys” [4]. Although its purpose was
mainly to demonstrate how one might implement a DSEL in the
Ruby programming language, the example illustrates how the prob-
lem of survey specification is amenable to a domain-specific treat-
ment. In this Ruby DSEL, one can construct surveys made up of
multiple-choice questions that behave in very much the same way
that they do in Surveyor. The main difference is that the Ruby
DSEL creates surveys that carry no explicit type information, and
thus the data is dynamically typed (as is expected in Ruby program-
ming). Data is collected by the execution of Ruby block functions
against a common scope, and the blocks are programmed to de-
structively assign values in variables to store survey respondent
data. Furthermore, conditional parts of a survey are determined
to be included or excluded based on the result of executing Ruby
blocks that test against variables in this common scope. As a con-
sequence, these Ruby surveys are neither strongly typed nor truly
compositional. The composition of two surveys could potentially
involve a name conflict resulting in the loss of respondent data and
even potentially an unanticipated change in the type of the data.
With Surveyor, we instead explicitly define how survey composi-
tion results in the composition of survey types. This makes conflicts
between survey parts impossible, ensuring data cannot be lost and
making the resulting types of data completely predictable.

Cunningham himself calls upon inspiration from the “Little
Languages” column by John Bentley [1], in which Bentley makes
several cases for the benefits of DSLs. He also presents an example
of a DSL for surveys. Like the Ruby DSL, this language only in-
volves multiple choice questions and provides a way to make some
of them conditional in terms of other answers. However, it does not
resort to scope trickery to store answers, but questions must explic-
itly state database column indices in which their answers are to be
stored. This prevents the language from being compositional in a
similar way as the Ruby DSEL: conflicts between column indices
are possible.

The systematic collection of strongly typed data as propagated
by Surveyor is not new. Formlets [3] provide an excellent exam-
ple of populating typed data structures by compositionally assem-
bling lenses that compile to an HTML form as the interface. Our
approach differs from Formlets in two important ways.

(1) In Surveyor, the type of the survey is defined by the structure
of the survey. This is a natural way to have the data typed
because the specification of a survey is basically a description
of how data is to be collected. From this the type of the data
to be collected follows naturally. Compare this approach with
Formlets, where the type of the data is chosen beforehand, and
the specification is a technique for populating the type.

(2) In Surveyor, the final representation is not bound to any specific
format. A Surveyor expression could be compiled into HTML,
but could just as easily be run on a text terminal (as we’ve seen)
or be rendered to a print document. Contrast this with Formlets,
where the language is specifically geared towards HTML. Even
though in principle, Formlets could target other representations
than HTML, it doesn’t make a clear, purposeful decision to
separate the description from this design commitment.

Our approach to type composition was partially inspired by Func-
tionalForms [6], which is a Haskell library for strongly typed GUI
dialogs. In FunctionalForms, a dialog is a data type parameterized
by the type of values it produces when executed. Composition of
these dialogs results in composition of the result type in much the
same way as this occurs in Surveyor. However, FunctionalForms
takes extra measures to minimize the complexity of the resulting
type. In our approach, we allow a highly composed Survey type to

89

become deeply nested, but mitigate the difficulty of dealing with
such a type by also providing easy-to-use analysis tools.

7. Conclusions & Future Work
We have introduced the Surveyor DSL for constructing strongly
typed surveys. The implementation as a DSEL in Haskell relies
crucially on the concept of GADTs and the type-directed generic
programming facilitated by the Scrap-Your-Boilerplate approach.
The incorporation of types into the representation of surveys has
provided two distinctive benefits. First, the data collected using
typed surveys will also be typed and can thus be analyzed in a
more flexible, yet still type-safe way. Second, we found that the
need to treat the types of surveys systematically in compositions
was a helpful guide in actually designing the final representation
and thus the DSL.

In future work, we plan to evaluate Surveyor by using it as part
of ongoing end-user research at Oregon State University [5]. To this
end we are currently working on completing a web interface for
the Surveyor language that is entirely based on HTML and CCS
and independent from other tools (such as the jQuery library or
Apache). We will use this interface to conduct real-world surveys
and analyze the gathered data.

Acknowledgments
We would like to thank the anonymous reviewers for their helpful
and constructive comments.

The first author wants to thank Eric Walkingshaw for his help
with type-directed algorithms.

References
[1] J. L. Bentley. Programming Pearls: Little Languages. Communica-

tions of the ACM, 29(8):711–721, 1986.
[2] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,

and J. Siméon, editors. XQuery 1.0: An XML Query Language (2nd
Edition), 2010. www.w3.org/TR/xquery/.

[3] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. An idioms guide to
formlets. Technical Report EDI-INF-RR-1263, University of Edin-
burgh, 2008.

[4] C. H. Cunningham. A little language for surveys: Constructing an
internal DSL in Ruby. In Proceedings of the ACM SouthEast Confer-
ence. ACM Press, 2008.

[5] EUSES. End users shaping effective software.
http://EUSESconsortium.org.

[6] Evers, S., Achten, P., Kuper, J. A functional programming technique
for forms in graphical user interfaces. . In 16th International Workshop
on Implementation and Application of Functional Languages, 2004.

[7] The glorious glasgow haskell compilation system user’s guide.
http://www.haskell.org/ghc/docs/6.6/html/users_
guide/gadt.html (Last accessed: June 2012).

[8] J. Hage and P. van Keeken. Neon: a Library for Language Usage
Analysis. In Int. Conf. on Software Language Engineering, pages 33–
53, 2008.

[9] IBM SPSS Software. http://www-01.ibm.com/software/
analytics/spss/ (Last accessed: June 2012).

[10] R. Ihaka and R. Gentleman. R: A Language for Data Analysis
and Graphics. Journal of Computational and Graphical Statistics,
5(3):299–314, 1996.

[11] R. Lämmel and S. Peyton Jones. Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming. In ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, pages 26–37,
2003.

[12] LimeSurvey. http://www.limesurvey.org/ (Last accessed: June
2012).

[13] SurveyGizmo. http://www.surveygizmo.com/ (Last accessed:
June 2012).

[14] SurveyMonkey. http://www.surveymonkey.com/MySurveys.
aspx (Last accessed: June 2012).

90

