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Abstract

When type inference fails, it is often difficult to pinpoint the cause of the type error among

many potential candidates. Generating informative messages to remove the type error is

another difficult task due to the limited availability of type information. Over the last three

decades many approaches have been developed to help debug type errors. However, most

of these methods suffer from one or more of the following problems: (1) Being incomplete,

they miss the real cause. (2) They cover many potential causes without distinguishing them.

(3) They provide little or no information for how to remove the type error. Any one of this

problems can turn the type-error debugging process into a tedious and ineffective endeavor.

To address this issue, we have developed a method named counter-factual typing, which (1)

finds a comprehensive set of error causes in AST leaves, (2) computes an informative message

on how to get rid of the type error for each error cause, and (3) ranks all messages and

iteratively presents the message for the most likely error cause. The biggest technical challenge

is the efficient generation of all error messages, which seems to be exponential in the size of

the expression. We address this challenge by employing the idea of variational typing that

systematically reuses computations for shared parts and generates all messages by typing the

whole ill-typed expression only once. We have evaluated our approach over a large set of

examples collected from previous publications in the literature. The evaluation result shows

that our approach outperforms previous approaches and is computationally feasible.

1 Introduction

Static typing is one of the most widely used formal methods. A type system is an

effective, but not too intrusive, method to catch a wide range of programming errors.

Type inference increases the usability of type systems by allowing programmers to

omit type annotations.

However, when type inference fails, it is often difficult to precisely locate the

erroneous code and produce a suggestion to fix the error. This problem was
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2 S. Chen and M. Erwig

recognized by researchers (Johnson & Walz, 1986; Wand, 1986) soon after the inven-

tion of the algorithm W (Damas & Milner, 1982), the classic type inference algorithm

underlying many modern type checkers for functional languages. Many researchers

view fixing type errors in response to obscure and misleading error messages as one

of the biggest obstacles to beginners to functional programming (Heeren et al., 2003;

Neubauer & Thiemann, 2003). Recent studies have confirmed this view (Chambers

et al., 2012; Tirronen et al., 2015; Wu & Chen, 2017).

1.1 The difficulty of debugging type errors

In the last three decades, numerous approaches have been developed to assist the

type error debugging process (Lee & Yi, 1998; Lee & Yi, 2000; Tip & Dinesh, 2001;

Yang, 2001; Choppella, 2002; McAdam, 2002a; McAdam, 2002b; Haack & Wells,

2003; Heeren, 2005; Wazny, 2006; Lerner et al., 2007; Schilling, 2012; Zhang &

Myers, 2014; Loncaric et al., 2016; Chen et al., 2017; Wu et al., 2017). Although

considerable progress has been made, generating informative and helpful type error

messages is still a challenge. In particular, there is still no single method that

consistently produces satisfactory results. Most of the existing approaches perform

poorly in certain cases.

As an example, consider the following Haskell function palin, which checks

whether a list is a palindrome (Stuckey et al., 2003). The first equation for fold

contains a type error and should return z instead of [z].

fold f z [] = [z]

fold f z (x:xs) = fold f (f z x) xs

flip f x y = f y x

rev = fold (flip (:)) []

palin xs = rev xs == xs

Existing tools have difficulties in finding this error. For example, the Glasgow Haskell

Compiler (GHC) 7.81 produces the following error message.2

Occurs check: cannot construct the infinite type: t ~ [t]

Expected type: [[t]]

Actual type: [t]

Relevant bindings include

xs :: [t] (bound at Palin.hs:5:7)

palin :: [t] -> Bool (bound at Palin.hs:5:1)

In the second argument of (==), namely ‘xs’

In the expression: rev xs == xs

GHC 8.0.2, the latest version of GHC at the time of writing, produces the same

message. Hugs98,3 another modern Haskell compiler, displays the following message:

1 www.haskell.org/ghc/
2 For presentation purposes, we have slightly edited the outputs of some tools by changing their

indentation and line breaks.
3 http://www.haskell.org/hugs/
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Systematic identification and communication 3

*** Expression : rev xs == xs

*** Term : rev xs

*** Type : [[a]]

*** Does not match : [a]

*** Because : unification would give infinite type

We observe similar error messages from both compilers. While technically accurate,

the error messages do not directly point to the source of the error, and they do

not tell the user how the type error could be fixed either. The use of compiler

jargon makes the error messages difficult to understand for many programmers.

While giving reasons for the failure of unification might be useful for experienced

programmers and type system experts, such error messages still require efforts to

manually reconstruct some of the types and solve unification problems.

In general, compilers perform type inference by traversing the expression from left

to right and generating and solving typing constraints at each node.4 This approach

suffers from three problems as far as error debugging is concerned. First, it tends to

locate the type error to the right of the real cause in the AST (right bias). Second, it

attributes each type error to a single subexpression (single-error limitation). In many

cases, such reported locations are incorrect, since the program text does not contain

enough information to confidently make the right decision about the correct error

location. Third, it reports type errors in terms of unification failures and does not

suggest changes to fix the type error (lack of suggestions).

In addition to the fixed order of traversing expressions, the principality of type

inference also contributes to the right bias problem. In type inference, the types for

all subexpressions should be as general as possible, captured in principal types. For

example, the function id should have the type a -> a, rather than a more specific

type, to make both id 1 and id True well typed. In general, principality implies that,

in e1 e2, any subexpression in e1 should not be blamed as an error cause as long as

e1 is well-typed, even though the real cause may be that some subexpression inside

e1 is too restrictive. This is exactly why both GHC and Hugs98 identify the error in

the body of palin rather than in fold.

Many approaches have been proposed to address the right bias problem with the

standard type inference model. They all share the idea of traversing the expression in

a different order to eliminate the bias (Lee & Yi, 2000; Yang et al., 2000; McAdam,

2002b; Eo et al., 2004). However, while eliminating right bias, they introduce other

biases. In fact, based on our analysis in the last paragraph, biases cannot be fully

eliminated unless we forgo principality, the principle underlying type inference.

The right bias and single-error limitation problems with the standard type

inference model have been tackled by a number of program slicing approaches.

These try to identify a set of possible error locations rather than commit to a single

location. The basic idea is to find all program positions that contribute to a type

error and exclude those that do not. For example, the Skalpel5 type error slicer for

SML (Haack & Wells, 2003) produces the following result. (We have translated the

4 Our discussion applies even when constraint generating and solving are separated into two phases.
5 www.macs.hw.ac.uk/ultra/skalpel/
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4 S. Chen and M. Erwig

above program into ML for Skalpel to work.) All the parts that contribute to the

type error are shaded.

fun fold f z [] = [z] ;

| fold f z (x::xs) = fold f (f (z,x)) xs ;

fun flip f (x,y) = f (y, x) ;

fun rev xs = fold ( (flip op ::)) [] xs ;

fun palin xs = rev xs = xs ;

Skalpel finds type error slices in two steps. First, it generates labeled constraints

for programs such that constraint solving failure can be linked back to programs.

Second, it finds a minimal unsolvable constraint set if the generated constraints

could not be solved successfully. A significant difference of its constraint generation

process compared to other inference algorithms is that to represent the result type

of a subexpression, it creates a fresh variable and a constraint equating that fresh

variable and the result type. This ensures that all subexpressions involved in the

type error will be included in the slice. However, this strategy also causes the slice to

include unnecessary subexpressions. For example, the variables defined for passing

around an erroneous expression will be included in the slice. As we can see from

the example, Skalpel includes most program parts in the slice.

Showing too many program locations involved in the type error diminishes the

value of the slicing approach because of the cognitive burden put on the programmer

to work through all marked code and to single out the proper error location. To

address this problem, techniques have been developed that try to minimize the

possible locations contributing to a type error. An example is the Chameleon Type

Debugger,6 which produces the following output:

fold f z [] = [z] ;

fold f z (x:xs)= fold f (f z x) xs ;

flip f x y = f y x ;

rev = fold (flip (:)) [] ;

palin xs = rev xs == xs ;

Chameleon is based on constraint handling rules and identifies a minimal set

of unsatisfiable constraints, from which the corresponding places in the program

contributing to the type error are derived.

Following this idea of showing fewer locations, a more aggressive strategy is taken

by SHErrLoc,7 which analyzes all the constraints and identifies the constraint that

is most likely to cause the error based on a simple Bayesian model (Zhang & Myers,

2014; Zhang et al., 2015). For the palin example, it outputs the following message:

6 ww2.cs.mu.oz.au/ sulzmann/chameleon/. Since Chameleon doesn’t offer a type diagnosis option
anymore, the result is reproduced directly from Stuckey et al. (2003).

7 http://www.cs.cornell.edu/projects/SHErrLoc/
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Systematic identification and communication 5

Constraints in the source code that appear most likely to be wrong

(mouse over to highlight code):

(variable)t_aU9 == (variable)t_aUf [loc: program.hs:3,19-20]{z in [z]}
(variable)t_aTX == (variable)t_aU0 [loc: program.hs:5,16-17]{y }
(variable)t_aUi == (variable)t_aUs [loc: program.hs:4,30-31]{x in (f z x)}

4 errors found

A value with type a_aUJ is being used at type a_aUJ

fold f z [] = [z]

fold f z (x:xs)= fold f (f z x) xs

flip f x y = f y x

rev = fold (flip (:)) []

palin xs = rev xs == xs

Three other messages and their associated slices omitted

SHErrLoc’s response consists of two parts. The first presents the constraints that

are most likely to cause the type error. We have attached the highlighted code in

italics in a pair of curly brackets to each corresponding constraint. Note that the

first constraint mentions z, which is just part of the real error cause [z], according

to Stuckey et al. (2003). The second part presents the likely errors and related slices.

While SHErrLoc is a clear improvement over other slicing approaches in reporting

fewer potential error locations, a programmer still has to work through several code

parts to find the type error. In particular, figuring out which types should be used

at specific locations can be quite time consuming.

Many techniques have been developed to address the lack-of-suggestions problem

of the standard type inference model. They locate the most likely cause of the

type error based on heuristics and provide change suggestions in some form. One

example is the Helium compiler,8 which was developed to support the teaching of

typed functional programming languages. A declared focus of Helium is to generate

good error messages (Heeren, 2005). In many cases, Helium produces high quality

type error messages. For our example, it produces the following message:

(5,19): Type error in infix application

expression : rev xs == xs

operator : ==

type : a -> a -> Bool

does not match : [[b]] -> [b] -> c

because : unification would give infinite type

Unfortunately, Helium does not perform much better than GHC or Hugs on this

example and provides feedback only in terms of internal representations used by the

compiler.

Helium locates type errors in several steps. First, it builds a type graph (McAdam,

1999; Erwig, 2006) to represent the constraints about typing relations among different

parts of the program. When constraint solving fails, it will search through the type

graph to discover a constraint whose removal will cause the constraint solving to

8 www.cs.uu.nl/wiki/bin/view/Helium/WebHome
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6 S. Chen and M. Erwig

File "Palin.ml", line 8, characters 21-27:

This expression has type ’a list list but is

here used with type ’a list

Relevant code: rev xs

-----------------------------------------------

File "Palin.ml", line 8, characters 15-17:

Try replacing

xs == (rev xs)

with

( == ) (xs, (rev xs))

of type

’b list * ’b list list -> bool

within context

let palin xs = ( == ) (xs, (rev xs)) ;;

Fig. 1. The error message of Seminal for palin.

succeed. Helium finds the most suspicious constraint based on some heuristics (Hage

& Heeren, 2007).

Seminal,9 a tool for type checking OCaml programs, also produces change

suggestions (Lerner et al., 2006, 2007). Seminal blames the type error on the function

palin and produces a corrective change shown in Figure 1.

Unfortunately, the suggested error location is not correct according to Stuckey

et al. (2003). Although the suggested change will eliminate the type error, it changes

the wrong code: The suggested change of partially applying == to the pair of

differently typed lists turns palin’s type into ’a list -> ’a list * ’a list list ->

Bool.

Seminal locates type errors using binary search. In the example, it first type checks

the first half of the program, which does not contain a type error when considered

alone. It then concludes that the type error is in the second half and directs the

search process to that part. Following this search strategy, the type error will be

found in the last line because if we remove that line, the remaining program is well

typed. This shows that Seminal does not work well when the cause of a type error

occurs in a subexpression that is itself well typed but causes type errors in other

subexpressions.

Offering change suggestions is a double-edged sword: While it can be very helpful

in simplifying the task of fixing type errors, it can also be sometimes very misleading

and frustrating when the suggested change does not work. In the shown example,

both change-suggesting tools fail to correctly locate the error, and consequently their

change suggestions also fail.

Overall, none of the existing approaches adequately addresses all the problems

with the standard type inference model. While error slicing approaches tackle the

right bias and single-error limitation problems, they do not address the lack-of-

suggestions problem. Moreover, they are too general, and their improved variants can

again miss the real error cause. While change-suggestion tools obviously address the

latter problem, they generally do not address right bias and single-error limitation.

9 cs.brown.edu/∼blerner/papers/seminal prototype.html
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Systematic identification and communication 7

In some cases, both Helium and Seminal can report errors at more than one location.

However, in general they report only few locations, and the identified sets of causes

are incomplete.10

1.2 Systematic identification and communication of type errors

The task of debugging type errors seems to be an inherently ambiguous undertaking,

because in some situations there is just not enough information present in the

program to generate a correct change suggestion. Consider, for example, the

following expression.

not 1

The error in this expression is either not or 1,11 but without any additional knowledge

about the purpose of the expression, there is no way to decide whether to replace

the function or the argument. This is why it is generally impossible to isolate one

point in the program as the source of a type error. This observation provides strong

support for slicing approaches that try to provide an unbiased account of error

situations. On the other hand, in many cases some locations are more likely than

others, and specifically in larger programs, information about the context of an

erroneous expression can go a long way in isolating a single location for a type

error.

Thus, a reasonable compromise between slicing and single-error-reporting ap-

proaches could be a method to principally compute all possible type error locations

(together with possible change suggestions) and present them ranked and in small

portions to the programmer. This idea addresses all the three problems mentioned

above and avoids the shortcoming of error slicing approaches of not being specific.

The biggest challenge in realizing this idea is its high complexity. To find the change

suggestion for each location, or any combination of the locations, we potentially

have to repeatedly modify the program and run the type inference process. The

complexity of this naive approach is exponential in the size of the input program.

To address this challenge, we propose a method that identifies type errors by

systematically varying the program being checked. We call this method counter-

factual (CF) change inference, whose core is a technique to answer the question

“What type should a particular subexpression have to remove type errors in a

program.” We have implemented and evaluated a prototype for a type checker that

is based on this technique.

For each identified type error, the following information will be computed:

• The location of the erroneous expression that needs to be changed. When

fixing the type error needs to change multiple locations, all of them will be

identified.

10 The approach we will present is provably complete, yet our algorithm sacrifices it for performance in
large programs. In practice, this does not have an adverse effect on the precision of our algorithm.
We discuss this in detail in Sections 5 and 7.

11 It could also be the case that the whole expression is incorrect and should be replaced by something
else, but we ignore this case for now.
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8 S. Chen and M. Erwig

Fig. 2. Ranked list of the first five single-location type and expression change suggestions

inferred for the palin example. The types t1 and t2 in the table are (a -> b -> a) ->

a -> [b] -> [a] and ([a] -> a -> [a]) -> [b] -> [a] -> [a], respectively. The first

two lines denote a single fix, where the expression change in the second line is deduced from

the type change from the first line. We discuss the deduction process in Section 6.

• The type of the identified erroneous subexpression under normal type inference.

• The expected type each identified erroneous expression ought to have to remove

the type error.

• The result type of the expression if all the identified subexpressions are changed

to the expected types.

To keep the complexity manageable we only produce type changes at AST leaves.

Here “type” indicates that the change information is about the types of program

parts, for example the inferred type and the expected type of the erroneous leaf. An

example type change for palin is

Change (:) of type a -> [a] -> [a] to something of type a -> [b] -> a

However, errors that are best fixed by expression changes are quite common.

Examples are the swapping of function arguments or the addition of missing

function arguments. In such cases, where the underlying change to the program is

clear, we can directly report an expression change instead of a type change. An

example for the palin program is

Change [z] to z

The identification of such expression changes is not precluded by our approach that

focuses on identifying corrective type changes. In fact, expression changes can often

be deduced from type changes. We discuss an approach of deducing expression

changes from type changes in Section 6. Overall, our approach produces two kinds

of change suggestions, type changes for AST leaves (potentially multiple leaves for

fixing a single error) and expression changes for non-leaves. Since we never generate

type changes for non-leaves and expression changes for leaves, we will from now on

simply use the terms type changes and expression changes, without the qualifications

“for AST leaves” and “for non-leaves,” respectively.

Returning to the palin example, Figure 2 shows the ranked list of the first five12

(single-location) type changes that are computed by our prototype and that can fix

12 We omitted the remaining eight for clarity.
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Systematic identification and communication 9

the type error. The correct change ranks first in our method. Note that this is not a

representation intended to be given to end users. We rather envision an integration

into a user interface in which locations are underlined and hovering over those

locations with the mouse will pop up windows with individual change suggestions.

In this paper, we focus on the technical foundation to compute the information

required for implementing such a user interface.

Each suggestion is essentially represented by the expression that requires a change

together with the inferred actual and expected type of that expression. Since we are

only considering type changes at leaves, this expression will always be a constant

or variable in case of a type change, but it can be a more complicated expression

in case of a deduced expression change. We also show the position of the code in

the program13 and the result types of the program if the corresponding change is

adopted. This information is meant as an additional guide for programmers to select

among suggestions.

The list of shown suggestions is produced in several steps. First, we generate

(lazily) all possible type changes, that is, even those that involve several locations.

Note that sometimes the suggested types are unexpected. For example, the suggested

type for fold is ([a] -> a -> [a]) -> [b] -> [a] -> [a] although (a -> b -> a)

-> a -> [b] -> a would be preferable. This phenomenon can be generally attributed

to the context of the expression. On the one hand, the given context can be too

restrictive and coerce the inferred type to be more specific than it has to be, just

as in this example the first argument flip (:) forces fold to have [a] -> a -> [a]

as the type of its first argument. On the other hand, the context could also be too

unrestrictive. There is no information about how fold is related to [] in the fourth

line of the program. Thus, the type of the second argument of fold is inferred as [b].

This imprecision cannot be remedied by exploiting type information of the program.

We show how to generate such type changes with a small example in Section 3 and

present general rules in Section 4.2 and an inference algorithm in Section 5.

Second, we filter out those type changes that involve only one location. We present

those first to the programmer, since these are generally easier to understand and

to adopt than multi-location change suggestions. Should the programmer reject all

these single-location suggestions, two-location suggestions will be presented next,

and so on.

Third, in addition to type-change suggestions, we also try to infer some expression

changes from type changes. In general, only the programmer who wrote the program

knows how to translate required type changes into expression changes. However,

there are a number of common programming mistakes, such as swapping or

forgetting arguments, that are indicated by type-change suggestions. Similar to

Seminal, our prototype identifies these kind of changes that are mechanical and do

not require a deep understanding of the program semantics. In our example, we infer

the replacement of [z] by z, because the expected type requires that the return type

be the same as the first argument type. We thus suggest to use the first argument,

13 We have added the line and column numbers by hand since our prototype currently works on abstract
syntax and does not have access to the information from the parser.
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10 S. Chen and M. Erwig

that is z, to replace the application (:) z []. We present the deduction process in

Section 6.

Note however, that we do not infer a similar change for the fifth type change

because fold is partially applied in the definition, and we have no access to the third

argument of fold. Had the rev function been implemented using an eta-expanded

list argument, say xs, we would have also inferred the suggestion to change fold

(flip (:)) [] xs to xs.

Note also that we do not supplement type changes at leaves with expression

changes. For example, in the second suggestion, we do not suggest to replace xs by

[xs]. There are two reasons for this. On the one hand, we believe that, given the very

specific term to change, the inferred type, and the expected type, the corresponding

required expression change is often easy to deduce for a programmer. On the other

hand, suggesting specific expression changes requires knowledge about program

semantics that is in many cases not readily available in the program. Thus, such

suggestions can often be misleading.

Finally, all the type-change suggestions are ranked according to a few simple, but

effective complexity heuristics. We present such heuristics in Section 5.

1.3 Structure of the paper

At the core of the proposed method of CF typing is a type system for inferring a

set of type-change suggestions. This type system is described in detail in Section 4.

We show that the type system generates a complete and correct set of type change

suggestions.

The type system is based on a systematic variation of the types of AST leaves in

a program. Therefore, some background information on how to represent variation

in expressions and types, how to make use of it for the purpose of type inference,

and what technical challenges this poses, is provided in Section 2. Equipped with

the necessary technical background, the rationale behind type-change inference can

then be explained on a high level in Section 3.

The algorithmic aspects of type-change inference and some measures for control-

ling runtime complexity are discussed in Section 5. We also briefly describe the set

of heuristics that we use for ranking change suggestions. The method of deducing

expression changes from type changes is discussed in Section 6. We have evaluated

our prototype implementation by comparing it with three closely related tools and

found that CF typing can generate correct change suggestions more often than the

other approaches. The evaluation is described in Section 7. Related work is discussed

in Section 8, and conclusions presented in Section 9 complete this paper.

1.4 Additions in the journal paper

This paper is based on our prior work (Chen & Erwig, 2014a) but contains the

following additions and updates:

• We have expanded the evaluation by adding a comparison of CF typing

and Seminal on debugging programs with multiple type errors in Section 7.2.
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Systematic identification and communication 11

We have also extended the performance evaluation by considering programs

from Hage (2013) in Section 7.3.

• We have corrected an error in the rule for typing let-expressions in Section 4.2.

• We have added a high-level overview of CF typing in Section 6.

• We have added complete proofs for all theorems except simple ones.

• We have expanded our analysis of existing approaches in Section 1.1.

• We have extended the discussion of variational typing to make this paper more

self-contained.

• We have included a discussion of recent publications in the literature.

2 Variational typing

The idea of type-change inference is to explicitly represent and reason about

discrepancies between inferred and expected types. This idea can be exploited

in different ways, and the CF typing method presented in this paper is just one

incarnation of this more general strategy. In this section, we will first introduce the

idea of variational types and variational type inference. We will then develop some

technical machinery that is needed for the formalization of CF typing.

First, the goal of CF typing is to generate suggestions for how to change types and

expressions in a program to fix a type error. Both kinds of changes will be represented

using the generic choice representation of the choice calculus that was introduced

in Erwing & Walkingshaw (2011). The first application of this representation in the

context of type checking was to extend type inference to program families (that is, a

set of related programs) (Chen et al., 2014). We will introduce the concept of choices,

variational expressions and types, and some related concepts in Section 2.1.

Second, when type checking a program family, it is important to obtain the types

of some programs (family members) even if the typing of other programs fails. This

leads to the notion of partial types, typing patterns, and an associate method for

partial unification. The application rule will be further generalized to accommodate

partial types. We will explain these concepts in Section 2.2.

2.1 Variational expressions and variational types

The Choice Calculus (Erwig & Walkingshaw, 2011) provides a disciplined way of

representing variation in software. The most important concept is the named choice,

which can be used to represent variation points in both expressions and types. For

example, the variational expression e = not A〈1, True〉 contains the named choice

A〈1, True〉 that represents a choice between the two constants 1 and True as the

argument to not .

The process of eliminating a variation point is called selection (Chen et al., 2014).

Selection takes a selector of the form D.i, where D is the name of a choice, traverses

the expression and replaces each D choice with its corresponding ith alternative.

We write �e�D.i for selecting e with D.i. In this paper, we are only concerned

with binary choices, that is, i will be either 1 or 2. For example, selecting A.1

from e yields the plain expression not 1. Plain expressions are obtained after all
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12 S. Chen and M. Erwig

choices are eliminated from a variational expression. Note that variation points with

different names vary independently of one another, and only those with the same

name are synchronized during selection. For example, the variational expression

A〈odd, not〉 A〈1, True〉 represents only the two expressions odd 1 and not True, while

A〈odd, not〉 B〈1, True〉 represents the four expressions odd 1, odd True, not 1, and

not True.

Through the use of independent choices, variational programs can very quickly

encode a huge number of programs that differ only slightly. Ensuring the type

correctness of all selectable plain programs is challenging because the brute-force

approach of generating and checking each variant individually is generally infeasible.

Variational type inference (Chen et al., 2014) solves this problem by introducing

variational types and a method for typing variational programs in one run. The

result of type inference applied to a variational program is a variational type, from

which the types for individual program variants can be obtained with the same

selection as the programs.

The syntax of variational types is shown below where α ranges over type variables,

and γ ranges over type constants. The type ⊥ denotes the occurrences of type errors

and will be discussed in Section 2.2.

φ ::= γ | α | φ → φ | D〈φ, φ〉 | ⊥

For example, the variational expression e = A〈odd, not〉 has the variational type

φ = A〈Int → Bool, Bool → Bool〉. The most important property of variational typing

is that the type for each plain expression selected from a variational expression can

be obtained through the same selections from the corresponding variational type.

For example, by selecting A.2 from e we obtain the expression not, which has the

type Bool → Bool that is obtained by selecting A.2 from φ.

An important technical part of variational typing is the fact that the equivalence

of choices is not merely syntactical, but governed by a set of equivalence rules,

originally described in Erwing & Walkingshaw (2011). For example, A〈Int, Int〉 is

equivalent to Int, written as A〈Int, Int〉 ≡ Int, since either decision in A yields

Int. The full set of rules defining the equivalence relation is given in Figure 3. The

first three rules state that the type equivalence relation is reflexive, symmetric, and

transitive. The rule E4 states that a choice is equivalent to either of its alternative

if both alternatives are the same. Here the metavariable D ranges over dimension

names. The rule E5 states that the type equivalence relation is a congruence, where

φ[ ] represents a type context into which we can plug a type. The rule E6 states

that removing dead alternatives preserves the equivalence relation. The operation

�φ1�D.1 in the first alternative of D removes all variants reachable by D.2. These

variants are dead due to choice synchronization. Finally, rule E7 states that the

function constructor and the choice constructor may be commuted while preserving

the equivalence relation. Note that all occurrences of D must be substituted with a

same choice name.

As a slightly more sophisticated example, we can show that choices can sometimes

commute past each other. For example, A〈B〈φ1, φ2〉, φ2〉 ≡ B〈A〈φ1, φ2〉, φ2〉 can be
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Fig. 3. Variational type equivalence.

shown as follows:

A〈B〈φ1, φ2〉, φ2〉
≡ B〈A〈B〈φ1, φ2〉, φ2〉, A〈B〈φ1, φ2〉, φ2〉〉 by E4 from right to left

≡ B〈�A〈B〈φ1, φ2〉, φ2〉�B.1, �A〈B〈φ1, φ2〉, φ2〉�B.2〉 by E6 from left to right

= B〈A〈φ1, φ2〉, A〈φ2, φ2〉〉 by the definition of selection

≡ B〈A〈φ1, φ2〉, φ2〉 by E4 from left to right and E5

A shortcoming of the variational typing approach is that it can succeed only if all

variants are well typed, that is, it is impossible to assign a type to the variational

expression A〈odd, not〉 1, even though one of its variants is type correct. Error-

tolerant variational typing addresses this issue.

2.2 Error-tolerant variational typing

The idea of error-tolerant typing (Chen et al., 2012) is to assign the type ⊥ to

program variants that contain type errors. The explicit representation of type errors

via ⊥ as ordinary types supports the continuation of the typing process in the

presence of type errors. Moreover, each variational program can be typed, and the

resulting variational type contains ⊥ for all variants that are type incorrect and

a plain type for all type-correct variants. For example, A〈odd, not〉 1 has the type

A〈Bool, ⊥〉, which encodes exactly the types that we obtain if we generate and type

each expression separately.

The most challenging part of the error-tolerant type system is the handling of

function applications because type errors can be introduced in different ways. For

example, the function might not have an arrow type, or the type of the argument

might not match the argument type of the function. Moreover, we have to consider

the case of partial matching, that is, in the case of variational types, the argument

type of the function and the type of the argument might be compatible for some

variants only. Deciding in such a case that the whole application is of type ⊥ would

be too restrictive. This challenge is addressed by the following typing rule (Chen

et al., 2012).

Γ � e1 : φ1 Γ � e2 : φ2 vt′
2 → φ′ = ↑(φ1) π = φ′

2 �� φ2 φ = π � φ′

Γ � e1 e2 : φ

The first two premises retrieve the types for the function and argument. Unlike in

the traditional application rule, however, we do not require φ1 to be a function

type. Instead, the third premise tries to lift φ1 into an arrow type using a function

↑ that is defined at the top of Figure 4. Lifting specifically accounts for the case in
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14 S. Chen and M. Erwig

Fig. 4. Operations for typing applications.

which φ1 is a choice between arrow types, as in ↑(A〈Bool → Bool, Int → Bool〉) =

A〈Bool, Int〉 → A〈Bool, Bool〉, and it also deals with, and introduces if necessary,

error types. For example, ↑(A〈Int → Bool, Int〉) can succeed only by introducing an

error type and thus yields A〈Int, ⊥〉 → A〈Bool, ⊥〉.
The fourth premise computes a typing pattern π that records to what degree (that

is, in which variants) the type of e2 matches the argument type of the (partial) arrow

type obtained for e1. As can be seen in Figure 4, a typing pattern is a (possibly

deeply nested) choice of the two values ⊥ (type error) and typing success (�). The

computation of a typing pattern proceeds by induction over the type structure of its

arguments. Note that the definition given in Figure 4 contains overlapping patterns

and assumes that more specific cases are applied before more general ones. When

two rules are equally applicable, the computed result is equivalent modulo the ≡
relation (Chen et al., 2012).

For two plain types, matching reduces to checking equality. For example, Int ��

Int = � and Int �� Bool = ⊥. On the other hand, matching a plain type with

a variational type results in a choice pattern. For example, Int �� D〈Int, Bool〉 =

D〈�, ⊥〉.
Note that for two arrow types to be matched successfully, both their corresponding

argument types and return types have to be matched successfully. There is no

partial matching for function types. We define the operation ⊗ to achieve this,

which is also presented in Figure 4. We can essentially view it as the logical “and”

operation if we treat � as true and ⊥ as false. For example, when computing

Int → A〈Bool, Int〉 �� B〈Int, ⊥〉 → Bool, we first obtain B〈�, ⊥〉 and A〈�, ⊥〉 for
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matching the argument types and return types, respectively. Next, we use ⊗ to derive

the final result as B〈A〈�, ⊥〉, ⊥〉.
In the fifth and final premise, the typing pattern is used to preserve the type errors

that the fourth premise has potentially produced. This is done by “masking” the

return type with the typing pattern. The masking operation essentially replaces all

the �s in the typing pattern with the variants in the return type and leaves all ⊥s

unchanged, denoting the occurrences of type errors.

To see the application rule in action, consider the expression A〈not, odd〉 B〈1, True〉.
The first two premises produce the following typing judgments.

A〈not, odd〉 : A〈Bool → Bool, Int → Bool〉
B〈1, True〉 : B〈Int, Bool〉

Lifting transforms the type of the function into A〈Bool, Int〉 → A〈Bool, Bool〉,
which is equivalent to A〈Bool, Int〉 → Bool. The computation of A〈Bool, Int〉 ��

B〈Int, Bool〉 yields π = A〈B〈⊥, �〉, B〈�, ⊥〉〉, and masking the return type of the

function, Bool, with π yields A〈B〈⊥, Bool〉, B〈Bool, ⊥〉〉.

3 Counter-factual typing

The main idea behind CF typing is to systematically vary parts of the ill-typed

program to find changes that can eliminate the corresponding type error(s) from the

program. It is infeasible to apply this strategy directly on the expression level, since

one could consider infinitely many changes in general. Therefore, we perform the

variation on the type level. Basically, we ask for each AST leaf e the counter-factual

question: What type should e have to make the program well typed?

The CF reasoning is built into the type checking process in the following way. To

determine the type of an expression e, we first infer e’s type, say φ. But then, instead

of fixing this type, we leave the decision open and assume e to have the type D〈φ, α〉,
where D is a fresh choice name and α is a fresh type variable. By leaving the type

of e open to revision we account for the fact that e may, in fact, be the source of a

type error. By choosing a fresh type variable for e’s alternative type, we enable type

information to flow from the context of e to forge an alternative type φ′ that fits

into the context in case φ does not. If φ does fit the context, it is unifiable with φ′,

and the choice could in principle be removed. However, this is not really necessary

(and we, in fact, don’t do this) since in case of a type-correct program, we can find

the type at the end of the typing process by simply selecting the first option from

all generated choices.

Let us illustrate this idea with a simple example. Consider the expression e = not 1.

If we vary the types of both not and 1, we obtain the following typing judgments:

not : A〈Bool → Bool, α1〉
1 : B〈Int, α2〉

where α1 and α2 represent the expected types of not and 1 according to their

respective contexts. To find the types α1 and α2, we have to solve the following
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unification problem:

A〈Bool → Bool, α1〉 ≡? B〈Int, α2〉 → α3

where α3 denotes the result type of the application and ≡? denotes that the unification

problem is solved modulo the type equivalence relation mentioned in Section 2.1

rather than the usual syntactical identity.

Another subtlety of the unification problem is that two types may not be unifiable.

In that case a solution to the unification problem consists of a so-called partial unifier,

which is both most general and introduces as few errors as possible. The unification

algorithm developed in Chen et al. (2012) achieves both these goals.

For the above unification problem, the following unifier is computed. The gener-

ality introduced by α6 and α7 ensures that only the second alternatives of choices A

and B are constrained (Chen et al., 2014).

{α1 �→ A〈α6, B〈Int, α4〉 → α5〉,
α2 �→ B〈α7, A〈Bool, α4〉〉,
α3 �→ A〈Bool, α5〉}

Additionally, the unification algorithm returns a typing pattern that characterizes

all the viable variants and helps to compute the result type of the varied expression.

In this case, we obtain A〈B〈⊥, �〉, �〉. Based on the unifier and the typing pattern,

we can compute that the result type of the varied expression of not 1 is φ =

A〈B〈⊥, Bool〉, α5〉. From the result type and the unifier, we can draw the following

conclusions:

• If we do not change e, that is, if we select A.1 and B.1 from the variational

type, the result type is ⊥ (the variant corresponds to A.1 and B.1 in the result

type), which reflects the fact that the original expression is ill typed.

• If we change not to some other expression f, that is, if we select variant A.2

and B.1 from the variational type, the result type will be α5. Moreover, the

type of f is obtained by selecting A.2 and B.1 from the type that α1 is mapped

to, which yields Int → α5. In other words, by changing not to an expression

of type Int → α5, not 1 becomes well typed. In the larger context, α5 may be

further constrained to have some other type.

• If we change 1 to some expression g, that is, if we select A.1 and B.2 from the

variational type, then the result type becomes Bool.

• If we vary both not to f and 1 to g, which means to select A.2 and B.2 from

the variational type, the result type is α5. Moreover, from the unifier we know

that f and g should have the types α4 → α5 and α4, respectively.

This gives us all type changes for the expression not 1. The combination of creating

variations at the type level and variational typing provides an efficient way of finding

all possible type changes.
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Fig. 5. Syntax of expressions, types, and environments.

4 Type-change inference

This section presents the type system that generates a complete set of corrective

type changes. After defining the syntax for expressions and types in Section 4.1, we

present the typing rules for type-change inference in Section 4.2. In Section 4.3, we

investigate some important properties of the type-change inference system.

4.1 Syntax

We consider a type checker for lambda calculus with let-polymorphism. Figure 5

shows the syntax for the expressions, types, and meta environments for the type

system. We employ the abbreviating notation α for a sequence of type variables

α1, . . . , αn. Both the definitions of expressions and types are conventional, except for

variational types, which introduce choice types and the error type.

We use l to denote program locations, in particular, leaves in ASTs. We assume

that there is a function �e(f) that returns l for f in e. For presentation purposes, we

assume that f uniquely determines a location. We may omit the subscript e when

the context is clear. The exact definition of �(·) does not matter.

As usual, Γ binds type variables to type schemas for storing typing assumptions.

We use η to denote type substitutions that map type variables to variational types.

The metavariable θ ranges over type substitutions that are unifiers for unifiable types

or partial unifiers for non-unifiable types. Finally, we use the choice environment

Δ to associate choice types that were generated during the typing process with the

corresponding location in the program. Operations on types can be lifted to Δ by

applying them to the types in Δ. We stipulate the conventional definition of FV that

computes the free type variables in types, type schemas, and type environments. We

write η/S for {α �→ φ ∈ η | α /∈ S}.

The application of a type substitution to a type schema is written as η(σ) and

replaces free type variables in σ by the corresponding images in η. The definition is

as follows.
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Fig. 6. Rules for type-change inference. The notations are defined in Figure 5.

η(⊥) = ⊥
η(∀α.φ) = ∀α.η/α(φ)

η(D〈φ1, φ2〉) = D〈η(φ1), η(φ2)〉

η(φ1 → φ2) = η(φ1) → η(φ2)

η(α) =

�
α if α /∈ dom(η)

φ if α �→ φ ∈ η

Note that we do not consider variational polymorphic types. This is not a problem

since we can always lift quantifiers out of choices. For instance, D〈∀α.φ1, ∀β.φ2〉
can be transformed to ∀α1β1.D〈φ′

1, φ′
2〉 with α1 /∈ FV(φ1) and β1 /∈ FV(φ2), and

φ′
1 = {α �→ α1}(φ1) and φ′

2 = {β �→ β1}(φ2).

4.2 Typing rules

Figure 6 presents the typing rules for inferring type changes. The typing judgment is

of the form Γ � e : φ|Δ and produces as a result a variational type φ that represents

all the typing “potential” for e plus a set of type changes Δ for the AST leaves in e

that will lead to the types in φ.

During this phase, we compute type changes in the form of choices only for AST

leaves, that is, constants and variables. This is reflected in the typing rules as we

generate fresh choices in rules Con, Var, and Unbound. In each case, we place the

actual type in the first alternative and an arbitrary type in the second alternative of

the choice. When an unbound variable is accessed, it causes a type error. We thus

put ⊥ in the first alternative of the choice.
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The rule Abs for abstractions is very similar to that in other type systems except

that variables are bound to variational types. The rule App for typing applications

is very similar to the application rule discussed in Section 2.2. The only difference is

that the rule here keeps track of the information for Δ.

We need to pay special attention to let-expressions, where type errors can occur in

different parts. For example, a type error can occur in either the body or the bound

term or both. An interesting situation arises when a type error occurs in the bound

term, but the binding is not used in the body. To illustrate, consider the following

example:

v = let x = not 1 in 5.

To simplify the discussion, assume that none of not, 1, and 5 is changed during

the typing process. In other words, both alternatives for the choices created for not,

1, and 5 are Bool → Bool, Int, and Int, respectively. Under this assumption, the

expression should have the result type ⊥, indicating an error when no changes are

made to the expression. If we do not track the type error in not 1, then we may

conclude that the whole expression is well typed because 5 is well typed.

To correctly track errors in the bound term, we define an auxiliary function �·�
at the bottom of Figure 6. This function abstracts a variational type into a typing

pattern by keeping all ⊥s in the type and turning all other types into �s. For example,

�Int� = � and �D〈Int → Bool, ⊥〉� = D〈�, ⊥〉. With �·�, we type let-expressions

with the rule Let. The first three premises are standard. In the fourth premise, we

compute where type errors have happened in the bound term with �·�. After that,

we mask the type of the body with the pattern from the previous premise, making

sure that the errors from the bound term are transferred to the whole expression.

We have defined the masking operation � in Figure 4.

Now reconsider typing the expression v with Let, assuming again that none of not,

1, and 5 is changed. The type for x is ⊥, yielding ⊥ for π based on �·�. Consequently,

the result type (φ2) is ⊥. Overall, we observe that the error in the bound term is not

lost in the result type.

The If rule employs the same machinery as the App rule for the potential

introduction of type errors and partially correct types. In particular, the condition

e1 is not strictly required to have the type Bool. However, only the variants that

are equivalent to Bool are type correct. Likewise, only the variants in which both

branches are equivalent are type correct.

4.3 Properties

In this section, we investigate some important properties of the type-change inference

system. We show that it is consistent in the sense that any type selected from the

result variational type can be obtained by applying the changes as indicated by

that selection. We also show that the type-change inference is complete in finding

all corrective type changes for leaves. Based on this result, we show that the type-

change inference system is a conservative extension of the Hindley–Milner type

system (HM).
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Fig. 7. Simplifications and selection.

We start with the observation that type-change inference always succeeds in

deriving a type for any given expression and type environment.

Lemma 1

Given e and Γ, there exist φ and Δ such that Γ � e : φ|Δ.

The proof of this lemma is obvious because for any construct in the language, even

for unbound variables, there is a corresponding typing rule in Figure 6 that applies

and returns a type.

Next, we need to simplify Δ in the judgment Γ � e : φ|Δ to investigate the

properties of the type system. Specifically, we define a simplification relation ⇓
in Figure 7 that eliminates idempotent choices from Δ. Note that the sole purpose

of simplification is to eliminate choice types that are equivalent to monotypes, or

equivalently, remove all positions that do not contribute to type errors. Thus, there

is no need to simplify types nested in a choice D in Figure 7. Also, we formally

define the selection operation �φ�s in Figure 7. Selection extends naturally to lists

of selectors in the following way: �φ�s′s = ��φ�s′ �s.

Next we want to establish the correctness of the inferred type changes. Formally,

a type update is a mapping from program locations to monotypes. The intended

meaning of one particular type update l �→ τ is to change the expression at l to an

expression of type τ. We use δ to range over type updates. A type update is given

by the locations and the second component of the corresponding choice types in

the choice environment. We use ↓· to extract that mapping from Δ. The definition

is ↓Δ = {l �→ τ2 | (l, D〈τ1, τ2〉) ∈ Δ}. (For the time being we assume that all the

alternatives of choices in Δ are monotypes; we will lift this restriction later.) For

example, with Δ = {(l, A〈Int, Bool〉)} we have ↓Δ = {l �→ Bool}.

The application of a type update is part of a type update system that is defined

by the set of typing rules shown in Figure 8. These typing rules are identical to an

ordinaryHM type system, except that they allow to “override” the types of AST

leaves according to a type update δ that is a parameter for the rules. We only show

the rules for constants, variables, and applications since those for abstractions and

let-expressions are obtained from the HM ones in the same way as the application

rule by simply adding the δ parameter. We write more shortly δ(e) for δ(�(e)), and
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Fig. 8. Rules for the type-update system.

we use the “orelse” notation δ(e)||τ to pick the type δ(e) if δ(e) is defined and τ

otherwise.

The rules Con-C and Var-C employ a type update if it exists. Otherwise, the

usual typing rules apply. Rule App-C delegates the application of change updates to

subexpressions since we are considering change suggestions for AST leaves only.

We can now show that by applying any of the inferred type changes (using the

rules in Figure 8), we obtain the same types that are encoded in the variational type

potential computed by type-change inference. We employ the following additional

notation. We write Δ.2 for the list of selectors D.2 for each choice D〈〉 in Δ.

For example, {(�1, A〈Int, Bool〉), (�2, B〈Bool, Int〉)}.2 = [A.2, B.2]. We call a type

environment that maps variables to plain types (types without choices) a plain

type environment. Formally, we have the following result. (We assume that Δ has

been simplified by ⇓ in Figure 7 and the alternatives of choices in Δ are plain

(non-variational), as mentioned before.)

Theorem 1 (Type-change inference is consistent)

For any given e and plain environment Γ, if Γ � e : φ|Δ1, Δ1 ⇓ Δ, and �φ�Δ.2 = τ,

then Γ; ↓Δ �C e : τ.

This theorem makes two assumptions: (1) Γ is plain and (2) the alternatives of

choices in Δ are plain. Neither assumptions implies a limitation of the typing

relation �. Assumption (1) is required because the typing relation �C is only defined

when Γ is plain. The reason is that �C defines a type system that is similar to HM

but also considers changes and HM is defined only for plain Γ. Assumption (2)

helps to simplify the theorem and the proof process. Note that in this theorem, each

typing derivation can produce exactly one type update for an ill-typed expression.

For example, with Γ � not 1 : A〈⊥, α5〉|Δ where Δ = {(�(not), A〈Bool → Bool, Int →
α5〉)}, we can produce the type update that changes not to something of the type

Int → α5. For such a typing, both alternatives of choices in Δ will be plain. Of

course, in general each typing derivation could encode multiple type updates, and

the alternatives may be variational. In fact, Theorem 3 demonstrates that for each

ill-typed expression there is one typing derivation that encode all possible type

updates. Since the goal of this theorem is to prove that each type update encoded in

the typing result of � is correct, we can, for now, assume that alternatives are plain.

We lift this assumption from Lemma 3.

For the proof of this theorem, we need the following lemma, whose proof can be

found in Chen et al. (2012).
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Lemma 2
�↑(φ)�s = ↑(�φ�s)

�π � φ�s = �π�s � �φ�s

�φ1 �� φ2�s = �φ1�s �� �φ2�s

�φ1 ⊗ φ2�s = �φ1�s ⊗ �φ2�s

Proof of Theorem 1

We consider two different cases. In the first case, Δ = �. According to the definition

of ⇓, this indicates that no changes have been made in the typing process for

Γ � e : φ|Δ. In this case, the assumption �φ�Δ.2 = τ simplifies to φ = τ. Thus, the

theorem itself simplifies to Γ � e : τ|� ⇒ Γ; � �C e : τ. This holds trivially since

both type systems coincide with HM when no type changes have been inferred.

In the second case, Δ �= �. This indicates that type changes have been inferred

during the typing process. We prove this case by structural induction over the typing

relation defined in Figure 6.

Case Con: We have e = c and Γ � c : D〈γ, τ〉|{(�(c), D〈γ, τ〉)} for a fresh choice D

since alternatives of choices are plain. The type update in this case is

δ = ↓Δ = ↓{(�(c), D〈γ, τ〉)} = {c �→ τ}.

Our goal is to prove Γ; δ �C c : τ. Based on the structure of e, the only rule

that applies in Figure 8 is Con-C. The proof follows directly as δ changes c to

τ.

Case Var: The proof for this case is very similar to that for case Con and is

omitted here. Note that the instantiation of φ1 in rule Var is irrelevant as the

instantiation is overridden by the change.

Case App: We need to show that

Γ � e1 e2 : φ|Δ ⇒ Γ; ↓Δ �C e1 e2 : �φ�Δ.2

with the following induction hypotheses:

Γ � e1 : φ1|Δ1⇒Γ; ↓Δ1 �C e1 : �φ1�Δ1 .2

Γ � e2 : φ2|Δ2⇒Γ; ↓Δ2 �C e2 : �φ2�Δ2 .2

Additionally, φ is computed by φ1 and φ2 through a use of the App rule. Let

↑(φ1) = φ1l → φ1r , then we have the following relation:

τ = �φ�Δ.2

= �φ1l �� φ2 � φ1r�Δ.2

= �φ1l�Δ.2 �� �φ2�Δ.2 � �φ1r�Δ.2 By Lemma 2

According to the definitions of �� and �, we have

�φ1l�Δ.2 = �φ2�Δ.2 (1)

�φ1r�Δ.2 = τ. (2)

Combing the fact that ↑(φ1) = φ1l → φ1r with the Equations (1) and (2),

we have �↑(φ1)�Δ.2 = �φ2�Δ.2 → τ. Based on the definition of ↑, we have the
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following relation.

�φ1�Δ.2 = �φ2�Δ.2 → τ (3)

From Γ; ↓Δ1 �C e1 : �φ1�Δ1 .2, we have Γ; ↓Δ �C e1 : �φ1�Δ1 .2 because compared

to Δ1, Δ contains additional information that only has an impact on typing

e2. From Γ; ↓Δ �C e1 : �φ1�Δ1 .2, we have Γ; ↓Δ �C e1 : �φ1�Δ.2 because �φ1�Δ1 .2

already yields a plain type, and expanding the decision Δ1.2 to Δ.2 will not

change the result. Overall, we have

Γ; ↓Δ1 �C e1 : �φ1�Δ1 .2 ⇒ Γ; ↓Δ �C e1 : �φ1�Δ.2 (4)

Similarly, we have

Γ; ↓Δ2 �C e2 : �φ2�Δ2 .2 ⇒ Γ; ↓Δ �C e2 : �φ2�Δ.2 (5)

From Equations (3) and (4), we have

Γ; ↓Δ1 �C e1 : �φ1�Δ1 .2 ⇒ Γ; ↓Δ �C e1 : �φ2�Δ.2 → τ (6)

From Equations (5) and (6), the typing rule App-C, and the induction hypothe-

ses, we have Γ; ↓Δ �C e1 e2 : τ. Since τ = �φ�Δ.2, we have

Γ; ↓Δ �C e1 e2 : �φ�Δ.2, completing the proof.

The case for the rule Abs is straightforward and those for rules Let and If are similar

to that for rule App and are therefore omitted here. �

Moreover, type-change inference is complete, since it can generate a set of type

changes for any desired type.

Theorem 2 (Type-change inference is complete)

For any e, Γ and δ, if Γ; δ �C e : τ, then there exist φ, Δ, and a typing derivation

for Γ � e : φ|Δ such that ↓Δ = δ and �φ�Δ.2 = τ.

Proof

Again, we consider two cases. In the first case, δ = �, which means no changes

have been applied. Thus, Γ; � �C e : τ implies that the expression e under Γ is well

typed. When typing using the rules in Figure 6, we make the second alternative the

same as the first alternative for all choices. In other words, we create idempotent

choices only. The theorem holds trivially in this case.

In the second case, δ �= �. We prove the lemma by structural induction over the

typing relation in Figure 8.

Case Con-C: We have e = c. Since δ �= �, it must be of the form δ = {c �→ τ}.

We construct the typing relation as Γ � c : D〈γ, τ〉|{(�(c), D〈γ, τ〉)}, where γ is

the type of c and D is a fresh choice. It’s easy to verify that ↓{(�(c), D〈γ, τ〉)} =

{c �→ τ} and �D〈γ, τ〉�D.2 = τ.

Case Var-C: The proof of this case is the same as for Con-C and is omitted here.

The only difference is that we are dealing with a variable reference rather than

a constant.
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Case App-C: We need to show that

Γ; δ �C e1 e2 : τ ⇒ Γ � e1 e2 : φ|Δ with ↓Δ = δ and �φ�Δ.2 = τ

with the following induction hypotheses:

Γ; δ �C e1 : τ1 → τ ⇒ Γ � e1 : φ1|Δ with ↓Δ = δ and �φ1�Δ.2 = τ1 → τ

Γ; δ �C e2 : τ1 ⇒ Γ � e2 : φ2|Δ with ↓Δ = δ and �φ2�Δ.2 = τ1

We can split Δ into Δ1 and Δ2 such that they contain the change information

for e1 and e2, respectively. With that, we have the following relations:

Γ; δ �C e1 : τ1 → τ ⇒ Γ � e1 : φ1|Δ1 with �φ1�Δ1 .2 = τ1 → τ

Γ; δ �C e2 : τ1 ⇒ Γ � e2 : φ2|Δ2 with �φ2�Δ2 .2 = τ1

Since Δ1.2 ⊆ Δ.2 and �φ1�Δ1 .2 = τ1 → τ, we have �φ1�Δ.2 = τ1 → τ. We have a

similar result regarding φ2. Based on these, we arrive at the following relations:

Γ; δ �C e1 : τ1 → τ ⇒ Γ � e1 : φ1|Δ1 with �φ1�Δ.2 = τ1 → τ

Γ; δ �C e2 : τ1 ⇒ Γ � e2 : φ2|Δ2 with �φ2�Δ.2 = τ1

Let ↑(φ1) = φ1l → φ1r . We compute �φ�Δ.2 as follows:

�φ�Δ.2 = �φ1l �� φ2 � φ1r�Δ.2

= �φ1l�Δ.2 �� �φ2�Δ.2 � �φ1r�Δ.2 By Lemma 2

= τ1 �� τ1 � τ By relation between �φ1�Δ.2, φ1l , and φ1r

= � � τ

= τ

This shows that �φ�Δ.2 = τ. Based on the induction hypotheses, ↓Δ = δ, which

completes the proof.

We can prove the cases for other rules in Figure 8 similarly. �

The introduction of arbitrary alternative types in rules Con, Var, and Unbound

are the reason that type-change inference is highly non-deterministic, that is, for any

expression e we can generate an arbitrary number of type derivations with different

type potentials and corresponding type changes.

Many of those derivations do not make much sense. For example, we can

derive Γ � 5 : A〈Int, Bool〉|Δ where Δ = {(�5(5), A〈Int, Bool〉)}. However, since the

expression 5 is type correct, it does not make sense to suggest a change for it.

On the other hand, the ill-typed expression e = not (succ 5) can be typed

in two different ways that can correct the error, yielding two different type

potentials and type changes. We can either suggest to change not to an expression

of type Int → α1, or we can suggest to change succ into something of type

Int → Bool. The first suggestion is obtained by a derivation for Γ � e : A〈⊥, α1〉|Δ1

with Δ1 = {(�e(not), A〈Bool → Bool, Int → α1〉)}. The second suggestion is obtained

by a derivation for Γ � e : B〈⊥, Bool〉|Δ2 with Δ2 = {(�e(succ), B〈Int → Int, Int →
Bool〉)}.
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Interestingly, we can combine both suggestions by deriving a more general typing

statement, that is, we can derive the judgment Γ � e : A〈B〈⊥, Bool〉, B〈α1, α2〉〉|Δ3

where

Δ3 = {(�e(not), A〈Bool → Bool, B〈Int → α1, α3 → α2〉〉),
(�e(succ), B〈Int → Int, A〈Int → Bool, Int → α3〉〉)}

We can show that the third typing is better than the first two in the sense that its

result type (a) contains fewer type errors than either of the result types and (b) is

more general. For example, by selecting [A.1, B.2] from both result types, we obtain

⊥ and Bool, respectively. Making the same selection into the third result type, we

obtain Bool. Likewise, when we select the result types of these three typings with

[A.2, B.1], we get the types α1, ⊥, and α1, respectively. For each selection, the third

result type is better than either one of the first two.

In the following, we show that this is not an accident, but that we can, in fact,

always find a most general change suggestion from which all other suggestions can

be instantiated.

First, we extend the function ↓ to take as an additional parameter a list of selectors

s. We also extend the definition to work with general variational types (and not just

monotypes).

↓sΔ = {l �→ �φ2�s | (l, D〈φ1, φ2〉) ∈ Δ ∧ D.2 ∈ s}
Intuitively, we consider all the locations for which the second alternative of the

corresponding choices are chosen. We need to apply the selection �φ2�s because

each variational type may include other choice types that are subject to selection

by s.

Next we will show that type-change inference produces most general type changes

from which any individual type change can be instantiated. We observe that type

potentials and type changes can be compared in principally two different ways. First,

the result of type-change inference φ can be more defined than another result φ′,

which means that for any s for which �φ′�s yields a monotype, so does �φ�s. Second,

a result φ can be more general than another result φ′, written as φ � φ′, if there is

some type substitution η such that φ′ = η(φ). Similarly, we call a type update δ1

more general than another type update δ2, written as δ1 � δ2, if dom(δ1) = dom(δ2)

and there is some η such that for all l: δ2(l) = η(δ1(l)).

Since we have these two different relationships between type changes, we have to

show the generality of type-change inference in several steps.

First, we show that we can generalize any type change that produces a type error

in the resulting variational type for a particular selection when there is another type

change that does not produce a type error for the same selection. In the following

lemma, we stipulate that the two typings Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2 assign the

same choice name to the same program location.

Lemma 3 (Most defined type changes)

Given e and Γ and two typings Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, for any s if �φ1�s = ⊥
and �φ2�s = τ, then there is a typing Γ � e : φ3|Δ3 such that
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• �φ3�s = �φ2�s and for all other s′ �φ3�s′ = �φ1�s′ .

• ↓sΔ3 = ↓sΔ2 and ↓s′Δ3 = ↓s′Δ1 for all other s′.

Proof

We construct a typing Γ � e : φ3|Δ3 so that both conditions of the lemma are

satisfied. To construct a typing using the rules in Figure 6, we need to designate the

second alternatives of the freshly created choices and the mappings for instantiating

type schemas. Once they are decided, the typing is determined for the given e and

Γ. The construction is based on a structural induction over the typing relation in

Figure 6. The general idea is that the third typing is the same as the second typing

at s and is the same as the first typing at all other s′s differing from s. We can realize

this because each node has a variational type that can be viewed as a tree with

choices as internal nodes and plain types as leaves. Moreover, we can replace one

branch of the tree without affecting other branches. Specifically, we can first make

the third typing the same as the first typing and then replace, for each type in the

third typing, the branch identified by s with the same branch of the corresponding

type from the second typing. The proof may be best understood by also reading the

example after this proof at the same time. We prove a stronger lemma by dropping

the conditions that �φ1�s = ⊥ and �φ2�s = τ.

Case Con: We need to further consider two sub-cases. Assume φ1 = D〈γ, φ′
1〉 and

φ2 = D〈γ, φ′
2〉, where γ is the type of the constant c. In this case, φ1 and φ2

determine the contents of Δ1 and Δ2, respectively.

(1) D.2 ∈ s. Let φ3 = D〈γ, φ′
3〉 where φ′

3 = expand(s, φ′
1, φ′

2). Here

expand(s, φ′
1, φ′

2) builds a type φ such that �φ�s = φ′
2 and �φ�s′ = φ′

1

for all other s′. This function is formally defined as follows:

expand(D.1s, φ′
1, φ′

2) = D〈expand(s, φ′
1, φ′

2), φ′
1〉

expand(D.2s, φ′
1, φ′

2) = D〈φ′
1, expand(s, φ′

1, φ′
2)〉

expand(D.1, φ′
1, φ′

2) = D〈φ′
2, φ′

1〉
expand(D.2, φ′

1, φ′
2) = D〈φ′

1, φ′
2〉

Given a decision, we write ss to single out an arbitrary selector s from that

decision and bind the remaining to s.

With the constructed φ3 we can verify that �φ3�s = �φ′
3�s = φ′

2 = �φ2�s

and �φ3�s′ = �φ′
3�s′ = φ′

1 = �φ1�s′ for all other s′. Since φ3 determines Δ3,

verifying the second condition of the lemma follows directly from that of

the first condition.

(2) D.2 /∈ s. Let φ3 = φ1. When D.2 /∈ s, we have both �φ1�s = γ and �φ2�s = γ,

which means that the change does not affect the decision s. Thus, we do

not need to change the type of c. We can verify that �φ3�s = c = �φ2�s

and �φ3�s′ = c = �φ1�s′ for all other s′.

Case Var: The proof is similar to that of case Con and is omitted here.

Case App: For this case, we do not need to construct anything but only have to

show that the lemma is preserved over applying the App rule. The induction

hypotheses are as follows:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S095679681700020X
Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core


Systematic identification and communication 27

Γ � e1 : φ11|Δ11 Γ � e2 : φ12|Δ12 Γ � e1 e2 : φ1|Δ1

Γ � e1 : φ21|Δ21 Γ � e2 : φ22|Δ22 Γ � e1 e2 : φ2|Δ2

Γ � e1 : φ31|Δ31 Γ � e2 : φ32|Δ32 Γ � e1 e2 : φ3|Δ3

�φ31�s = �φ21�s �φ31�s′ = �φ11�s′ ↓sΔ31 = ↓sΔ21 ↓s′Δ31 = ↓s′Δ11

�φ32�s = �φ22�s �φ32�s′ = �φ12�s′ ↓sΔ32 = ↓sΔ22 ↓s′Δ32 = ↓s′Δ12

We need to show that

�φ3�s = �φ2�s �φ3�s′ = �φ1�s′ ↓sΔ3 = ↓sΔ2 ↓s′Δ3 = ↓s′Δ1

In the following, we show �φ3�s = �φ2�s with the assumptions that ↑(φ31) =

φ31l → φ31r and ↑(φ21) = φ21l → φ21r .

�φ3�s = �φ31l �� φ32 � φ31r�s

= �φ31l�s �� �φ32�s � �φ31r�s By Lemma 2

= �φ31l�s �� �φ22�s � �φ31r�s By induction hypothesis

= �φ21l�s �� �φ22�s � �φ21r�s By Lemma 2 and induction hypothesis

= �φ21l �� φ22 � φ21r�s By Lemma 2

= �φ2�s

We can prove �φ3�s′ = �φ1�s′ similarly. Since Δ3 = Δ31 ∪ Δ32 = Δ21 ∪ Δ22 = Δ2,

we have ↓sΔ3 = ↓sΔ2.

The proofs for other cases are very similar to the case App and are omitted

here. �

We use an example to illustrate the proof process. We consider constructing the

new typing for the example expression e = not (succ 5) under the following typings:

Γ � e : φ1|Δ1 φ1 = A〈⊥, α1〉 Δ1 = {(�(not), A〈Bool → Bool, Int → α1〉)
(�(succ), B〈Int → Int, Int → Int〉)}

Γ � e : φ2|Δ2 φ2 = B〈⊥, Bool〉 Δ2 = {(�(not), A〈Bool → Bool, Bool → Bool〉)
(�(succ), B〈Int → Int, Int → Bool〉)}

We consider s = [A.1, B.2] and observe that �φ1�s = ⊥ and �φ2�s = Bool. We

construct Γ � e : φ3|Δ3 as follows. For not, the choice created is A. Since A.2 /∈
[A.1, B.2], the type for not is A〈Bool → Bool, Int → α1〉, the type for not in Δ1. For

succ, the created choice is B. Since B.2 ∈ [A.1, B.2], the type of succ, written as

φsucc, can be computed as follows:

φsucc = B〈Int → Int, expand([A.1, B.2], Int → Int, Int → Bool)〉
= B〈Int → Int, A〈expand(B.2, Int → Int, Int → Bool), Int → Int〉〉
= B〈Int → Int, A〈B〈Int → Int, Int → Bool〉, Int → Int〉〉
= B〈Int → Int, A〈Int → Bool, Int → Int〉〉

The type for 5 is always Int. Now that we have specified types for not, succ, and

5, we compute φ3 = A〈B〈⊥, Bool〉, α1〉. The content for Δ3 is easy to construct, and

we omit it here. It is easy to verify that �φ3�[A.1,B.2] = Bool = �φ2�[A.1,B.2] and that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S095679681700020X
Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core


28 S. Chen and M. Erwig

for all other s′ we have �φ3�s′ = �φ1�s′ . We can verify that the relation given in the

lemma holds for Δ1, Δ2, and Δ3.

Next we show that given any two type changes, we can always find a type change

that generalizes the two.

Lemma 4 (Generalizability of type changes)

For any two typings Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2 and any s, there is a typing

Γ � e : φ3|Δ3 such that

• �φ3�s � �φ1�s, �φ3�s � �φ2�s and for all other s′, �φ3�s′ = �φ1�s′ .

• ↓sΔ3 � ↓sΔ1, ↓sΔ3 � ↓sΔ2 and for all other s′, ↓s′Δ3 = ↓s′Δ1.

The proof strategy is similar to that for Lemma 3, except for one subtle difference.

In proving Lemma 3, we take something directly from the second typing and merge

it into the first to get the third without any changes. This strategy is insufficient

here. We use two examples to illustrate the problem. Both examples relate to the

typing of expression not 1.

In the first example, we remove the type error with the following potential

typings:

Γ � not 1 : φ1|Δ1 φ1 = A〈⊥, Int〉 Δ1 = {(�(not), A〈Bool → Bool, Int → Int〉)}
Γ � not 1 : φ2|Δ2 φ2 = A〈⊥, Bool〉 Δ2 = {(�(not), A〈Bool → Bool, Int → Bool〉)}

We observe that these typings have different result types and that neither is more

general than the other. We know that there must exist a third typing that gives a

more general result type. The type that is more general than both Int and Bool is a

type variable, say α. We can achieve this result type by changing not to something

of type Int → α. This change can be derived by looking at the types that not is

changed to in both typings. The type of not is changed to Int → Int and Int → Bool,

respectively. A type that is more general than the both is Int → α.

In general, however, we need to accommodate the impact of changing the type for

some subexpression on the typing of the whole expression. In the second example,

we use the following typings to remove the type error in not 1:

Γ � not 1 : φ1|Δ1 φ1 = A〈⊥, Int〉 Δ1 = {(�(not), A〈Bool → Bool, Int → Int〉),
(�(1), B〈Int, Int〉)}

Γ � not 1 : φ2|Δ2 φ2 = B〈⊥, Bool〉 Δ2 = {(�(not), A〈Bool → Bool, Bool → Bool〉)
(�(1), B〈Int, Bool〉)}

We consider s = [A.2, B.2] and observe that �φ1�s = Int and �φ2�s = Bool. Now

in order to get a more general typing for the expression with α being the result

type, we need to change the types assigned to subexpressions not and 1. First, how

should we change the type for not? Since these two typings assign it Int → Int

and Bool → Bool, respectively, a more general type is of the form α1 → α, following

the idea of anti-unification (Pfenning, 1991). In other words, we assign α1 → α to

not. Now how about the type for 1? The two typings change it to Int and Bool,

respectively. We may be tempted to assign it an arbitrarily more general type, for

example α3. However, this change will make not 1 ill typed because the domain type
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of the function, α1, does not match the type of the argument, α3. We should instead

assign 1 the type α1, taking the fact that not has changed to α1 → α into account.

In summary, while we need to generalize the types for certain subexpressions

during the construction process, we should perform it consistently among all

subexpressions. To simplify the presentation, we assume that there exists a function

postgene(l, τ) that returns the type for the location l in e after generalization. We

usually omit the subscript when the context makes it clear what e is. When no

constraints have been seen so far for l in e, postgene(l, τ) returns a type that

has the same structure as τ except that primitive types are replaced by fresh

type variables. Otherwise, it returns the type that satisfies the type constraints

among subexpressions. For example, consider again e = not 1. For e, we have

postgen(�(not), Int → Int) = α1 → α2. Since we have not seen any constraints for

not, we assign a fresh type variable to each Int. For 1, we need to consider the

constraint between not and 1, and we have postgen(�(1), Int) = α1. In static typing,

the constraints among all subexpressions are easy to derive. Thus, the function

postgene(l, τ) is easy to compute, and the definition is omitted here.

Proof of Lemma 4

The proof is by constructing a new typing based on the given typings so that both

conditions of the lemma are satisfied.

Case Con: Assume e = c, φ1 = D〈γ, φ′
1〉, and φ2 = D〈γ, φ′

2〉, where γ is the type

of c. We further consider two sub-cases.

(a) D.2 ∈ s. Let φ3 = D〈γ, expand(s, φ′
1, postgen(�(c)))〉 and Δ3 = {(�(c), φ3)}.

We can easily verify that both conditions of the lemma hold.

(b) D.2 /∈ s. Let φ3 = φ1 and Δ3 = Δ1. We simply do not make any change

because changing c will not affect the result selected with s.

Case Var: The proof is similar to that for Con and is omitted here.

Case App: We show the proof for the first condition about the relation among

φ1, φ2, and φ3. Since the proof about relations among Δ1, Δ2, and Δ3 is almost

the same as in proof for Lemma 3 and is rather simple, we omit it here. We

have the following induction hypotheses.

Γ � e1 : φ11|Δ11 Γ � e2 : φ12|Δ12 Γ � e1 e2 : φ1|Δ1

Γ � e1 : φ21|Δ21 Γ � e2 : φ22|Δ22 Γ � e1 e2 : φ2|Δ2

Γ � e1 : φ31|Δ31 Γ � e2 : φ32|Δ32 Γ � e1 e2 : φ3|Δ3

�φ31�s � �φ11�s �φ31�s � �φ21�s �φ31�s′ = �φ11�s′

�φ32�s � �φ12�s �φ32�s � �φ22�s �φ32�s′ = �φ12�s′

We need to show that

�φ3�s � �φ1�s �φ3�s � �φ2�s �φ3�s′ = �φ1�s′
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In the following, we show �φ3�s � �φ1�s with the assumptions that ↑(φ31) =

φ31l → φ31r and ↑(φ21) = φ21l → φ21r .

�φ3�s = �φ31l �� φ32 � φ31r�s

= �φ31l�s �� �φ32�s � �φ31r�s By Lemma 2

= � � �φ31r�s By definition of postgen

= �φ31r�s

� �φ11r�s By induction hypothesis

= �φ1�s By a similar reasoning for φ11r

We can prove �φ3�s � �φ2�s and �φ3�s′ = �φ1�s′ similarly.

The proof for other rules is similar to that for App and is omitted here. �

We can now combine and generalize Lemmas 3 and 4 and see that type-change

inference can always produce maximally error-free and general results at the same

time. This is an important result, captured in the following theorem.

Theorem 3 (Most general and error-free type changes)

Given e and Γ and two typings Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, there is a typing

Γ � e : φ3|Δ3 such that for any s,

• if �φ1�s = ⊥ and �φ2�s = τ, then �φ3�s = τ and ↓sΔ3 = ↓sΔ2.

• if �φ2�s = ⊥ and �φ1�s = τ, then �φ3�s = τ and ↓sΔ3 = ↓sΔ1.

• if �φ1�s = τ1 and �φ2�s = τ2, then �φ3�s � τ1 and �φ3�s � τ2. Moreover,

↓sΔ3 � ↓sΔ1 and ↓sΔ3 � ↓sΔ2.

Proof

We delegate the actual construction process to the ones described in the proofs

for Lemmas 3 and 4. In particular, given two typings, only one of the three cases

mentioned in the theorem can occur. First, if �φ1�s = ⊥ and �φ2�s = τ, we use the

idea presented in the proof for Lemma 3 to construct the new typing. The second

case is a dual case of the first case, where �φ2�s = ⊥ and �φ1�s = τ. We proceed as

we do in the first case but swap φ1 and φ2, and also Δ1 and Δ2. Finally, if �φ1�s = τ1

and �φ2�s = τ2, we use the construction process described in the proof for Lemma 4

to construct the new typing. In each case, the proof follows directly from Lemma 3

or Lemma 4. �

From Theorems 2 and 3 it follows that there is a typing for complete and principal

type changes. We express this in the following theorem.

Theorem 4 (Complete and principal type changes)

Given e and plain Γ, there is a typing Γ � e : φ|Δ such that for any δ if Γ; δ �C e : τ,

then there is some s such that �φ�s � τ and ↓sΔ � δ.

Proof

Based on Theorem 2, if Γ; δi �C e : τi, then there is a typing and some s such that

Γ � e : φi|Δi with �φi�s = τi and ↓sΔi = δi. For different τis we may get different φis

and Δis. Based on Theorem 3, there is a typing Γ � e : φ|Δ that is better than all

typings with φis and Δis. The result holds. �
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Finally, there is a close relationship between type-change inference and the HM type

system. When type-change inference succeeds with an empty set of type changes, it

produces a non-variational type that is identical to the one derived by HM. This

result is captured in the following theorem, where we write Γ �HM e : τ to express

that expression e has the type τ under Γ in the HM type system.

Theorem 5

For any given e and plain Γ, Γ; � �C e : τ ⇐⇒ Γ �HM e : τ.

Proof

The proof is a straightforward induction over the typing relations in Figures 6 and

8. Note that when δ = �, the typing rules in Figure 8 simplify exactly to those for

the HM typing rules. �

Based on Theorem 1, Theorem 2, Theorem 5, and the fact that ↓� = �, we can

infer that when a program is well typed, the type change-inference system and the

HM system produce the same result.

Theorem 6

Γ � e : τ|� if and only if Γ �HM e : τ.

Proof

Based on Theorem 1, Γ � e : τ|� implies that Γ; � �C e : τ, which implies Γ �HM e : τ

according to Theorem 5. Meanwhile, Γ �HM e : τ implies Γ; � �C e : τ according to

Theorem 5. Based on Theorem 2, Γ � e : τ|� holds. �

Note that Γ � e : τ|� implies that Γ � e : φ|Δ, φ ≡ τ, and Δ ⇓ �. This theorem also

implies that type-change inference will never assign a monotype to a type-incorrect

program.

5 A change inference algorithm

This section presents an algorithm for inferring type changes. We will discuss

properties of the algorithm as well as strategies to bound its complexity.

Given the partial type unification algorithm presented in (Chen et al., 2012), the

inference algorithm is obtained by a straightforward translation of the typing rules

presented in Figure 6. The cases for variable reference and if statements are shown

in Figure 9. Function application is very similar to if statements, and the cases

for abstractions and let-expressions can be derived from W by simply adding the

threading of Δ.

For variable reference, the algorithm first tries to find the type of the variable in Γ

and either instantiates the found type schema with fresh type variables or returns ⊥
if the variable is unbound. After that, a fresh choice containing a fresh type variable

is returned. The variable then has the returned choice type with the inferred type in

the first alternative and the type variable in the second.

For typing if statements, we use an algorithm vunify(φ1, φ2) for partial unifica-

tion (Chen et al., 2012) that generalizes standard unification to variational types.
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Fig. 9. An inference algorithm for variable references and conditionals.

We describe the algorithm briefly below. Otherwise, the algorithm follows in a

straightforward way the usual strategy for type inference.

The algorithm vunify has two special aspects. First, it handles types that contain

variations. Correspondingly, the returned unifier may map variables to variational

types. For example, vunify(Int, A〈Int, α〉) returns {α �→ A〈α2, Int〉} as the unifier,

where α2 is a fresh type variable. (Intuitively, if we follow choice 1 of A, then α is

irrelevant; only when we follow choice 2 of A, should α unify with Int. Therefore

vunify maps α to a variational type to record this split.) Second, vunify also returns

a typing pattern to indicate where unification fails and succeeds. For example,

vunify(Int, A〈Bool, α〉) returns A〈⊥, �〉, indicating that the unification fails in A.1

and succeeds in A.2. For any unification problem, vunify reconciles these two aspects

such that for any unification problem it returns a most general unifier that also leads

to as few ⊥s as possible. The first aspect allows us to, for any expression, perform

type inference once and generate all possible type updates. The second aspect allows

us to solve unification problems in the presence of type errors, and thus infer types

for ill-typed expressions. Section 3 presents a concrete example of using vunify for

debugging the type error in not 1.

We can prove that the algorithm infer correctly implements the typing rules in

Figure 6, as expressed in the following theorems.

Theorem 7 (Type-change inference is sound )

Given any e and Γ, if infer(Γ, e) = (θ, φ, Δ), then θ(Γ) � e : φ|Δ.

At the same time, the type inference is complete and principal. We use the auxiliary

relation φ1 � φ2 to express that for any s, either �φ2�s = ⊥ or �φ1�s � �φ2�s.

Intuitively, this expresses that either the corresponding variant in φ1 is more general

or more correct. We also define Δ1 � Δ2 if for any (l, φ1) ∈ Δ1 and (l, φ2) ∈ Δ2 the

condition φ1 � φ2 holds.

Theorem 8 (Type-change inference is complete and principal )

If θ(Γ) � e : φ|Δ, then infer(Γ, e) = (θ1, φ1, Δ1) such that θ = η1θ1 for some η1,

Δ1 � Δ, and φ1 � φ.
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From Theorems 3 and 8, it follows that our type-change inference algorithm correctly

computes all type changes for a given expression in one single run.

During the type-change inference process, choice types can become deeply nested,

and the size of types can become exponential in the nesting levels. Fortunately,

this can occur only for deeply nested function applications where each argument

type is required to be the same. For example, the function f : α → α → . . . → α is

more likely to cause this problem than the functions g : α1 → α2 → . . . → αn and

h : γ1 → γ2 → . . . → γn because only the function f requires all argument types to be

unified, which is the source of nested choices.

To illustrate, consider the expressions and2 = 1 && True and equal2 = 1 == True,

where (&&) : Bool → Bool → Bool and (==) : α → α → Bool. In each expression, the

choices B and D are created for 1 and True, respectively. The choice A is created

for && in and2 and for == in equal2. Let Δ1 and Δ2 be the change information

(third return value) returned by infer for and2 and equal2, respectively. We observe

that Δ1(�(1)) = B〈Int, A〈Bool, α1〉〉, and Δ2(�(1)) = B〈Int, A〈D〈Bool, α4〉, α2〉〉. The

nesting of choices in Δ2(�(1)) is deeper than in Δ1(�(1)) because the argument types

of == are both α and those of && are constant types. This is also the case when

we consider �(True) in Δ1 and Δ2. The reason is that in and2 the arguments can be

changed independently of one another while in equal2 the arguments have to be

synchronized through the shared argument type α.

To keep the run-time complexity of our inference algorithm under control, we

eliminate choices beyond an adjustable nesting level that satisfy one of the following

conditions: (1) choices whose alternatives are unifiable, and (2) choices whose

alternatives contain errors in the same places. These two conditions ensure that the

eliminated choices are unlikely to contribute to type errors. This strategy may fail

to eliminate choices, but this happens only when there are already too many type

errors in the program, and we therefore stop the inference process and report type

errors and change suggestions found so far.

This strategy allows us to maintain choices whose corresponding locations are

likely sources of type errors and discard those that are not. Note, however, that

this strategy sacrifices the completeness property captured in Theorem 8. We have

evaluated the running time and the precision of error diagnosis against the choice

nesting levels (see Section 7). We observed that only in very rare cases will the

choice nesting level reach 17, a value that variational typing is able to deal with

decently (Chen et al., 2014).

Finally, we briefly describe a set of simple heuristics that define the ranking

of type and expression changes. Each heuristic assigns a numerical score to each

changed location in a message, and we order messages by the sums of the scores

from high to low. (1) We prefer places that have deduced expression changes (see

Section 6) because these changes reflect common editing mistakes (Lerner et al.,

2007). Specifically, we assign messages with an expression change the numerical

value 3. Other messages get the value 1. (2) We favor changes that are lower in

the abstract syntax trees because changes at those places have a smaller effect on

the context and are less likely to introduce exotic results. Roughly speaking, we can

partition all functions in a file into layers such that layer 1 contains all the functions
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Fig. 10. The error message generation process.

that are not called by any other functions, layer 2 contains all the functions that

are called at least once from layer 1, and layer n contains all the functions that

are called at least once from layer n − 1. For example, for the palin example from

Section 1.1, palin belongs to layer 1, rev belong to layer 2, and fold and flip belong

to layer 3. We assign n to a message if its involved location is within a function

belonging to layer n. Multiple messages pointing to the same function are ordered

similarly by regarding let, where, or anonymous functions to be in lower layers.

(3) We prefer changes that have minimal shape difference between the inferred type

and the expected type. For example, a change that does not influence the arities of

function types is ranked higher than a change that does change arities. Specifically,

we assign 3 to messages that do not change arities, 2 to those that change arities by

1 or 2, and 1 to others. Expression changes are considered as not changing arities.

Based on these three heuristics, each message that changes one location (n

locations) will be assigned three values (3 × n values). All the messages that change

the same number of locations are ordered by the sum of these numbers, and those

with larger values are presented first. In case of ties, we use some additional rules,

such as preferring changes of constants over variable references. If messages are still

tied, we order them by their reported locations, from left to right in the program text.

Messages that change more locations are considered only if all messages changing

fewer locations have been rejected by the user.

6 Generating error messages

Given an expression e and the type environment Γ, we generate the error messages

following the algorithm sketch shown in Figure 10. The first step is to use infer,

defined in Section 5, to compute the type potential. D represents the complete
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change space, which is computed incrementally. We use the notation D.i to get all

the decisions that change the expression at i locations. In other words, for each s in

D.i, there are i unique Ds such that D.2 ∈ s.

For each decision s in D.i, we compute an error message if �φ�s is not ⊥. Note

�φ�s is the type of the expression if the changes specified in s are applied. Each

member of P is a triple (l, τi, τe), where l is the location of the expression to be

changed, τi is the inferred type for the expression at l, and τe is the expected type to

remove the type error. Given τi and τe, we use an extended version of McAdam’s

approach (McAdam, 2002a), discussed below, to deduce expression changes, which

are stored in F . Using the function rank, which implements all the rules descried in

Section 5, we then rank all computed messages and present them iteratively to the

user. The error debugging process is terminated if a message is accepted by the user.

Once we run out of messages for changing i locations, we increment the counter

i and generate, rank, and present the next batch of messages for changing i + 1

locations.

Instead of presenting each message iteratively, we could envision several ways of

integrating CF typing into a user interface. First, in addition to a source code editing

panel, we could have an error message panel that can show, say, three messages at

a time. This allows the user to quickly compare different error messages. Second, we

could add a small numbered mark to each identified error location. Each number

indicates how the corresponding location is ranked in comparison to other locations.

When the mouse hovers over such a location, we can show more information, such

as the inferred type and the expected type of the expression and the type of the

whole function if the current expression is changed. We leave the construction of

such a user interface for future work.

While it is generally impossible to deduce expression changes from type changes,

there are several idiosyncratic situations in which type changes do point to likely

expression changes. These situations can be identified by unifying both types of

a type change where the unification is performed modulo a set of axioms that

represent the pattern inherent in the expression change.

As an example, consider the following expression.14

zipWith (\(x,y) -> x+y) [1,2] [3,4]

Our type change inference suggests to change zipWith from its original type (a ->

b -> c) -> [a] -> [b] -> [c] to something of type ((Int,Int) -> Int) -> [Int]

-> [Int] -> d. Given these two types, we can deduce to curry the first argument to

the function zipWith to remove the type error. (At the same time, we substitute d in

the result type with Int.)

By employing unification modulo different theories, McAdam (McAdam, 2002a)

has developed a theory and an algorithm to systematically deduce changes of

this sort. We have adopted this approach (and extended it slightly) for deducing

expression changes, such as swapping the arguments of function calls, currying,

14 This example is adapted from Lerner et al. (2007), where zipWith is called map2.
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and uncurrying of functions, or adding and removing arguments of function

calls.

The extension is based on a simple form of identifying non-arity-preserving type

changes. If such a change is used to modify the types, then McAdam’s approach is

applied, and the result is then interpreted in light of the non-arity-preserving type

change as a new form of expression change. As an example, here is the method of

identifying the addition or removal of arguments to function calls. In this case, the

differences in the two types to be unified will lead to a second-level type change

that pads one of the types with an extra type variable. For example, given the

inferred type τ1 → τ3 and the expected type τ1 → τ2 → τ3, we turn the first type

into α → τ1 → τ3. The application of McAdam’s approach suggests to swap the

arguments. Also, α is mapped to τ2. Interpreting the swapping suggestion through

the second-level type change of padding, we deduce the removal of the second

argument.

Besides these systematic change deductions, we also support some ad hoc expres-

sion changes. Specifically, we infer changes by inspecting the expected type only. For

example, if the inferred type for f in f g e is b -> c while the expected type is (a

-> b) -> a -> c, we suggest to change f g e to f (g e). Another example is given

by situations in which the result type of an expected type matches exactly one of its

(several) argument types. In that case, we suggest to replace the whole expression

with the corresponding argument. This case applies, in fact, to the palin example,

where the type change for (:) is to replace a -> [a] -> [a] by a -> [b] -> a. We

therefore infer to replace (:) z [], which is [z], by z because the first argument

type is the same as the return type. Another case is when in expression f g h the

expected type for f is (a -> b) -> a -> b. Then, we suggest to remove f from the

expression. There are several other similar ad hoc changes that are useful in some

situations, but we do not discuss them here.

In Section 8, we compare our method with McAdam’s original approach. Here,

we only note that the success of the method in our prototype depends to a

large degree on the additional information provided by type-change inference,

specifically, the more precise and less biased expected types that are used for the

unification.

7 Evaluation

To evaluate the usefulness and efficiency of the CF typing approach, we have

implemented a prototype of type-change inference and expression-change deduction

in Haskell. (In addition to the constructs shown in Section 4, the prototype

also supports some minor, straightforward extensions, such as data types and

case expressions.) We compare the results produced by our CF typing tool to

Seminal (Lerner et al., 2006, 2007), Helium (Heeren et al., 2003; Heeren, 2005),

and GHC. There are several reasons for selecting this group of tools. First, they

provide currently running implementations. Second, these tools provide a similar

functionality as CF typing, namely, locating type errors and presenting change

suggestions, both at the type and the expression level. We have deliberately excluded
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slicing tools from the comparison because they only show all possible locations, and

do not suggest changes.15

In Section 7.1, we report the evaluation results for a set of programs that

were gathered from a wide range of publications on type error debugging.16

One of the reasons for Seminal’s comparatively modest performance is due to

the fact that it systematically deals with multiple errors in programs, whereas

the examples in Section 7.1 focus on single errors. We therefore specifically in-

vestigate the performance of CF typing in the presence of multiple errors in

Section 7.2. After that, we investigate the running time aspect of CF typing in

Section 7.3.

7.1 Evaluation of programs from the literature

For evaluating the applicability and accuracy of the tools, we have gathered a

collection of 121 examples from 22 publications about type-error diagnosis. These

papers include recent Ph.D. theses (Yang, 2001; McAdam, 2002a; Heeren, 2005;

Wazny, 2006) and papers that represent most recent and older work (Schilling,

2012; Lerner et al., 2007; Johnson & Walz, 1986). These papers cover many different

perspectives of the type-error debugging problem, including error slicing, explanation

systems, reordering of unification, automatic repairing, and interactive debugging.

Since the examples presented in each paper have been carefully chosen or designed

to illustrate important problem cases for type-error debugging, we have included

them all, except for examples that involve type classes since our tool (as well as

Seminal) does not currently support type classes. This exclusion did not have a

significant effect. We gathered eight unique examples regarding type classes involved

in type errors discussed in Stuckey et al. (2003) and Wazny (2006). Both GHC and

Helium were able to produce a helpful error message in only 1 case. Otherwise, the

examples range from very simple, such as test = map [1,10] even to very complex

ones, such as the plot example introduced in Wazny (2006). The program sizes range

from 1 LOC to 15 LOC.

We have grouped the examples into two categories. The first group (“with

Oracle”) contains 86 examples for which the correct version is known (because

it either is mentioned in the paper or is obvious from the context). The other group

(“ambiguous”) contains the remaining 35 examples that can be reasonably fixed

by several different single-location changes. For the examples in the “with Oracle”

group, we have recorded how many correct suggestions each tool can find with at

most n attempts. For the examples in the “ambiguous” group, we have determined

how often a tool produces a complete, partial, or incorrect set of suggestions.

For example, for the expression \f g a -> (f a, f 1, g a, g True), which is given

in Bernstein & Stark (1995), Helium suggests to change True to something of

15 There are a few interactive approaches that have been proposed (Chitil, 2001; Stuckey et al., 2003),
but they currently do not provide running implementations. Moreover, Chameleon (Wazny, 2006) has
evolved to focus on typing extensions of the Haskell type system. Since the tool has switched off its
type-debugging facilities, it is not a viable candidate for comparison.

16 Available at http://www.ucs.louisiana.edu/ sxc2311/ws/files/cft-bench.hs
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86 examples with Oracle 35 ambiguous examples
1 2 3 � 4 never complete partial incorrect

CF typing 67.4 80.2 88.4 91.9 8.1 100.0 0.0 0.0
Seminal 47.7 54.7 58.1 59.3 40.7 40.0 25.7 34.3
Helium 61.6 - - 61.6 38.4 0.0 100.0 0.0
GHC 17.4 - - 17.4 82.6 0.0 34.3 65.7

Fig. 11. Evaluation results for different approaches over 121 collected examples (in %). The

column headers are the numbers of messages. For example, the entry with the row header

“CF typing” and the column header “3” indicates that with up to 3 messages, CF typing can

locate 88.4% of all the type errors in the 86 examples with oracle.

type Int. While this is correct, there are also other changes possible, for example,

changing f 1 to f True. Since these are not mentioned, the result is categorized as

partial.

Figure 11 presents the results for the different tools and examples with uncon-

strained choice nesting level for CF typing. Note that GHC’s output is considered

correct only when it points to the correct location and produces an error message

that is not simply reporting a unification failure or some other compiler-centric

point of view. We have included GHC only as a baseline since it is widely known.

The comparison of effectiveness is meant to be between CF typing, Seminal, and

Helium.

The numbers show that CF typing performs overall best. Even if we only consider

the first change suggestion, it outperforms Helium that comes in second. Taking into

account second and third suggestions, Seminal catches up, but CF typing performs

even better.

In cases where Helium produces multiple suggestions, all suggestions are wrong.

For CF typing 21 out of the 58 correct suggestions (that is, 36%) are expression

changes. For Seminal the numbers are 20 out of 41 (or 51%), and for Helium it is

15 out of 52 (or 29%). This shows that Seminal produces a higher rate of expression

change suggestions at a lower overall correctness rate.

Most of Helium and Seminal’s failures are due to incorrectly identified change lo-

cations. Another main reason for Seminal’s incorrect suggestions is that it introduces

too extreme changes.

Most cases for which CF typing fails are caused by missing parentheses. For

example, for the expression print "a" ++ "b" (Lerner et al., 2007), our approach

suggests to change print from the inferred type a -> IO () to the type String ->

String or change (++) from the expected type [a] -> [a] -> [a] to the inferred

type IO () -> String -> String. Neither of the suggestions allows us to deduce the

regrouping of the expression.

To summarize, since the examples that we used have been designed to test very

specific cases, the numbers do not tell much about how the systems would perform

in everyday practice. They provide more like a stress test for the tools, but the direct

comparison shows that CF typing performs very well compared with other tools

and thus presents a viable alternative to type debugging.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S095679681700020X
Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core


Systematic identification and communication 39

Fig. 12. Type errors that are independent (left) and entangled (right). The gray background

marks the second type error in each program.

30 examples with 2 independent errors 30 examples with 2 entangled errors
1 2 3 � 4 1 2 3 � 4

CF typing 66.6 80.0 86.7 93.3 0.0 0.0 13.3 46.7
Seminal 43.3 50.0 60.0 66.6 0.0 0.0 11.7 33.3

Fig. 13. Accuracy of error reporting for CF typing and Seminal for programs with multiple

errors (in %). The column headers have the same meaning as those in Figure 11.

7.2 Evaluation of programs containing multiple errors

Since most ill-typed programs reported in the type error debugging literature contain

only single type errors, we have manually created programs containing multiple type

errors for the evaluation. We first focus on the case that each program has two type

errors. We say that two type errors are independent if the presence of one does not

have any impact or causes a negative impact on the debugging of the other. Dually,

we call two type errors that are not independent entangled. Consider the examples

in Figure 12.

On the left of Figure 12, both palin and not 1 contain a type error. Those two

errors are independent, and to make the program well typed, we have to make two

changes. Two independent type errors may be close (like the ones shown) or far

apart. On the right of Figure 12, the use of False (which should be []) in rev adds

a second type error that is entangled with the first type error in fold because it

prevents or postpones the identification of the first one. The reason for this effect

of entangled type errors is that there are many single-location updates that will fix

both type errors, and this causes typing approaches that favor the identification of

single-location updates, such as CF typing, to be misled by the second type error.

For example, CF typing will first suggest to change f in f z x from type [a]

-> a -> [a] to Bool -> Bool -> Bool, which will fix both type errors. The second

suggestion generated by CF typing is to change (:) from type a -> [a] -> [a] to

Bool -> Bool -> Bool, which will also fix both type errors. As a result, the fixes

regarding [z] and False will be presented later. Seminal reports for this program

the type error at fold in rev in its first message and (:) in flip (:) in its second

message, missing the real error causes in both messages.

To evaluate how CF typing and Seminal behave on programs with multiple

errors, we have created 30 programs with independent errors by randomly merging

the programs from the set we collected from the literature (Section 7.1). We have

also created 30 programs with entangled errors by modifying the collected programs.

Figure 13 presents the evaluation result for those programs. For programs

with independent errors, each message generated by CF typing contains change

suggestions for two locations because both of them have to be changed to make
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the program well typed. For entangled errors, CF typing may generate messages

that contain only one change suggestion because changing a single location could

already fix both type errors, as discussed earlier. Also, each error message may fix

one type error but miss the other one. For each message, we assign a value 0%,

50%, or 100% if the message does not fix any error, fixes one error, or fixes both

errors, respectively. Each entry in Figure 13 is the average of the values over all 30

programs.

We can observe that for independent errors, the result of CF typing and Seminal is

similar to that in Figure 11. This indicates that the presence of multiple independent

errors does not cause problems for type error debugging approaches that favor single-

location updates. However, entangled errors are more problematic. As Figure 11

shows, the precision of both CF typing and Seminal decreases significantly. In

particular, with the first two messages, neither CF typing nor Seminal could locate

any type error correctly. The main reason, as we have seen already, is that both CF

typing and Seminal prefer to change as few locations as possible, which may lead

to the identification of less likely causes. (Note that for this analysis we considered

for each program only up to eight messages, since it is not very likely that the user

will go through more messages to fix the type error.)

Besides the programs with two type errors, we have also created 30 programs with

four type errors by randomly merging the 60 programs we created with two type

errors. These programs now contain a mix of independent and entangled errors. We

have evaluated them using the same evaluation scheme as for programs with two

type errors, that is we assign a value of 0% to 100% with a 25% interval for each

message which fixes 0–4 type errors, respectively.

The precision for CF typing with 1, 2, 3, and � 4 messages are 32.5%, 38.4%,

44.2%, and 65.4%, respectively. The result for Seminal with 1, 2, 3, and � 4

messages are 21.4%, 24.7%, 30.6%, and 39.2%, respectively. (Note that, as before,

we investigated up to eight messages for each program.)

Overall, our conclusion regarding the debugging of programs with multiple type

errors is that CF typing performs better than Seminal, and both of them work

poorly for entangled errors. In fact, most existing debuggers prefer to change as few

locations as possible and will therefore probably not work well for entangled errors.

An interesting question for future work is to investigate how often entangled errors

happen in practice.

7.3 Performance

With the help of variational typing, we can generate all the potential changes very

efficiently. The running time for all the collected examples (Section 7.1) is within 2

seconds. Figure 14 shows the running time for both our approach and Seminal for

processing the reported examples. For each point (x, y) on the curve, it means that

x% of all examples are processed with y seconds. The running time for our approach

is measured on a laptop with a 2.8GHz dual core processor and 3GB RAM running

Windows XP and GHC 7.0.2. The running time for Seminal is measured on the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S095679681700020X
Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core


Systematic identification and communication 41

Fig. 14. Running time for typing x% of the examples. The time reported is the accumulated

time for 10 runs.

same machine with Cygwin 5.1. The purpose of the graph is simply to demonstrate

the feasibility of our approach.

To gauge the impact of the nesting level restriction, we have also measured

the running time of CF typing on a number of programs from the Helium

benchmarks (Hage, 2013), the program sizes of which range from 2 LOC to 190

LOC. Specifically, we randomly picked 200 programs: 50 each of the size 50 LOC,

100 LOC, 150 LOC, and 190 LOC. The following table gives a summary of the

running time (in seconds) of CF typing on these programs:

Maximum nesting level: None Maximum nesting level: 17

Min Max Average Min Max Average

50 LOC 0.3 11.4 5.6 0.3 2.1 1.6

100 LOC 0.7 23.4 12.6 0.7 3.8 2.5

150 LOC 1.3 89.7 47.4 1.3 5.1 3.8

190 LOC 2.3 374.5 147.9 2.3 7.5 5.4

We observe that the running time varies quite a bit. The reason is that different

programs have very different dependencies and used very different functions. The

programs on which CF typing runs fastest (column min in the table) contain small

independent functions, whereas the ones for which CF typing needs the most time

(column max in the table) contain functions that have a linear dependency, that

is one function is dependent on another, which is in turn dependent on a third

function, and so on. The average time is a division of the total running time for

programs of a specific size over 50. We can observe that CF typing slows down

quite quickly as program size increases when we do not set a maximum choice

nesting level. The reason is that it computes all potential type error fixes at once. As

the above table shows, the performance issue can mostly be mitigated by setting a

maximum choice nesting level, such as 17. Overall, CF typing is efficient enough for
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Fig. 15. Limits on choice nesting trade efficiency for precision.

most student programs from the benchmark. Also, as pointed out by Lerner et al.

(2007), the short time spent by a tool often pays off, since students usually spend a

long time on debugging type errors.

While the idea of setting a maximum choice nesting level can address the

performance issue with CF typing, it is unclear about its impact on error localization

precision of CF typing. For this purpose, we have automatically generated large

examples, and we use functions of types such as α → α → . . . → α to trigger the

choice elimination strategies discussed in Section 5. We first generated 200 type

correct examples and then introduced one or two type errors in each example by

changing the leaves, swapping arguments, and so on. Each example contains about

60,000 nodes in its tree representation.

Figure 15 presents the running time and precision against choice nesting levels

for these generated examples. A change suggestion is considered correct if it fixes

a type error and appears among the first four changes for that example. Precision

is measured by the quotient of the number of examples that have correct change

suggestions and the number of all examples. From the figure, we observe that a

nesting level cut-off between 12 and 18 achieves both high precision and efficiency.

8 Related work

We have grouped our discussion of related work according to major features shared

by the different approaches.

Reporting single locations: Most of the single-error-location approaches are based on

some variant of the algorithm W and report an error as soon as the algorithm fails.

Since the original algorithm W is biased in the order in which unification problems

are solved (which has a negative impact on locating errors), many approaches have

tried to eliminate this bias. Examples are algorithms M (Lee & Yi, 2000), G (Eo
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et al., 2004), WSYM and MSYM (McAdam, 2002b), and UAE and IEI (Yang et al.,

2000). All these algorithms interpret the place of unification failure as the source of

the type error. In contrast, Johnson and Walz (1986) and the Helium tool (Heeren

et al., 2003; Heeren, 2005) use heuristics to select the most likely error location

from a set of potential places. Although heuristics often work well and lead to more

accurate locations, they can still get confused due to the single-location constraint.

In contrast, we explore all potential changes and rank them from most to least

likely. Recently, Seidel et al. (2017) developed a machine learning-based approach

for locating most likely error locations.

In deducing expression changes from type changes, we have used (an extension

of) McAdam’s technique (2002a). Since his approach is based on the algorithm W,

it suffers from the bias of error locating mentioned above. Moreover, his approach

does not have access to the precise expected type, which helps in our approach to

ensure that deduced expression changes will not have an impact on the program as

a whole.

Explaining type conflicts: Some approaches have focused on identifying and explain-

ing the causes of type conflicts. Wand (1986) records each unification step so that

they can be tracked back to the failure point. Duggan and Bent (1995) on the other

hand record the reason for each unification that is being performed. Beaven and

Stansifer (1994) and Yang (2000) produce textual explanation for the cause of the

type errors.

While these techniques can be useful in many cases, there are also potential

downsides. First, the explanation can become quite verbose and repetitive, and the

size grows rapidly as the program size increases. Second, the explanation is inherently

coupled to the underlying algorithm that performs the inference. Thus, knowledge

about how the algorithm works is often needed to understand the produced messages.

Third, the explanations usually lead to the failure point, which is often the result

of biased unification and not the true cause of the type error. Finally, although a

potential fix for the type error may lurk in the middle of the explanation chain, it is

not always clear about how to exploit it and change the program.

Recently, Seidel et al. (2016) developed an explanation approach from a very

different perspective. Given an ill-typed expression, their approach finds an input

such that the evaluation of the expression will fail with the given input.

Interactive debugging: While many tools attempt to improve the static presentation

of type error information, interactive approaches give users a better understanding

about the type error or why certain types have been inferred for certain expressions.

Consequently, several approaches to interactive type debugging have been pursued.

The ability to infer types for unbound variables enables a type debugging paradigm

that is based on the idea of replacing a suspicious program snippet by a fresh

variable (Bernstein & Stark, 1995). If such a replacement leads to a type-correct

program, then the error location has been identified. However, the original system

proposed by Berstein and Stark requires users to perform these steps manually. Later,

Braßel (2004) automated this process by systematically commenting out parts of the
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program and running the type checker iteratively. This method also suffers from

the right bias problem unless all expression leaves are considered for replacement.

Moreover, it is unclear how to handle programs that contain more than one type

error.

Through employing a number of different techniques, Chitil (2001), Neubauer

and Thiemann (2003), Wazny (2006), and Stuckey et al. (2003) have developed tools

that allow users to explore a program and inspect the types for any subexpres-

sion. Chameleon (Stuckey et al., 2003; Wazny, 2006) also allows users to query

how the types for specific expressions are inferred. All these approaches provide

a mechanism for users to explore a program and view the type information.

However, none of them provides direct support for finding or fixing type errors.

Building on the idea from this paper, we have developed a method called

guided type debugging (Chen & Erwig, 2014b), which allows users to specify an

expected type for an ill-typed expression. The guided type debugger will then

find updates that transform the ill-typed expression to have the user-specified

type.

Error slicing: The main advantage of slicing approaches (Tip & Dinesh, 2001;

Haack & Wells, 2003; Schilling, 2012) is that they return all locations related to type

errors. The downside is that they cover too many locations. Recent improvements

in Chameleon (Wazny, 2006) have helped to reduce the number of locations, but

the problem still persists (recall the example in the Introduction). Moreover, slicing

tools do not provide suggestions for how to get rid of the type error. A problem

with slicing approaches and their improvements is that it is quite difficult to achieve

a good balance to report fewer locations while not to miss the real error cause. This

problem was recently addressed by Pavlinovic et al. (2014; 2015), who developed a

method that can find comprehensive error causes but present them iteratively using

some ranking criterion. Our CF typing approach also implements this idea but

additionally provides informative error messages while their method only locates

error causes.

Probabilistic approaches: SHErrLoc (Zhang & Myers, 2014; Zhang et al., 2015)

debugs type errors in the following steps. First, it transforms type constraints

generated by compilers into a graph representation, where nodes are types and

edges are relations between types. For example, two types that are required to be the

same are connected with an edge. Also, if a type is a component of another type, for

example the argument type of a function type, then they are also connected. After

that, each edge is classified as satisfiable or unsatisfiable. Unsatisfiable edges cause

type errors. Finally, a Bayesian model is applied to determine which node (and

the constraints that correspond to incident edges of that node) most likely causes

the type error. Intuitively, SHErrLoc selects the node that is shared by more

unsatisfiable edges but does not belong to satisfiable edges as the error cause.

SHErrLoc can also generate error slices by reporting all nodes that are involved

in unsatisfiable edges. Besides the technical differences between SHErrLoc and our
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approach, the error messages generated by our approach include more information,

as they contain at least the expected type and the inferred type of the error cause and

also the resulting type if the suggested change is followed. In contrast, SHErrLoc

reports type errors in constraints only, as can be seen from Section 1.1.

Embracing type uncertainty: Instead of choice types, one can encode variational

types also using sum types. This is the approach taken by Neubauer and Thie-

mann (2003), who developed a type system based on discriminative sum types to

record the causes of type errors. Specifically, they place two non-unifiable types

into a sum type. Named choice types as employed by CF typing provide more fine-

grained control over variations in types than discriminative sum types. While sum

types are unified component-wise, this is only the case for choice types of the same

name. Each alternative in a choice type is unified with all the alternatives in other

choices with different names. Also, their system returns a set of sources related to

type errors. Thus, it can be viewed as an error slicing approach. However, compared

to other slicing approaches, it is not guaranteed that the returned set of locations

is minimal. Moreover, the approach does not provide specific change locations or

change suggestions.

Typing by searching: CF typing and Seminal (Lerner et al., 2006; Lerner et al.,

2007) could both be called “search based,” although the search happens at different

levels. While CF typing explores changes on the type level, Seminal works on the

expression level directly. Given an ill-typed program, Seminal first has to decide

where the type error is. Seminal uses a binary search to locate the erroneous place.

Once the problematic expression is found, Seminal searches for a type-corrected

program by creating mutations of the original program, for example, by swapping

the arguments to functions, currying or uncurrying function calls, and so on. This

way of searching causes Seminal to make mistakes in locating errors when the first

part of the program itself does not contain a type error but actually triggers type

errors because it is too constrained. For example, the cause of the type error in the

palin example discussed in Section 1 is the fold function, which is itself well typed.

As a result, Seminal fails to find a correct suggestion. Our approach does not suffer

from this problem since the generation of type changes equally varies all AST leaves

in the program.

Tsushima and Chitil (2014) also developed a search method by using an exiting

type checker. Given an ill-typed expression e, they transformed it into λhole.e[hole],

where e[hole] replaces one leaf of e with a hole. Their approach then calls an existing

type checker to check the transformed expression. If the new expression type checks,

then an error location has been identified. Moreover, the parameter type of the new

expression is the expected type of the leaf and the return type of the new expression

is the type of e if the leaf has the suggested type. Compared to our approach, their

approach does not reuse computations when considering changing different leaves.

Moreover, their approach does not work when the expression has more than one

type error.
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9 Conclusions

We have presented a new method for debugging type errors. The approach is based

on the notion of CF typing, which is the idea of systematically varying the types of

all AST leaves to generate a typing potential for the erroneous program that can

be explored and reasoned about. We have exploited this typing potential and the

associated set of type changes to create a ranked list of type-change and expression-

change suggestions that can eliminate type errors from programs. A comparison of

a prototype implementation with other tools has demonstrated that the approach

works very well and, in fact, outperforms its competitors.

In future work, we plan to investigate other uses of typing potentials and type

changes. For example, we may extract more information from typing potentials

about why certain error messages have been generated. Specifically, besides showing

the expected type in each error message, we may show the related context that

coerces the erroneous expression to have the expected type. Finally, we plan to

investigate how well the approach works for the debugging of type errors in richer

type systems.
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Tirronen, V., Uusi-mäkelä, S. & Isomöttönen, V. (2015) Understanding beginners’ mistakes

with Haskell. J. Funct. Program., 25, 1–31.

Tsushima, K. & Chitil, O. (2014) Enumerating counter-factual type error messages with an

existing type checker. In Proceedings of 16th Workshop on Programming and Programming

Languages.

Wand, M. (1986) Finding the source of type errors. In Proceedings of ACM Symposium on

Principles of Programming Languages, pp. 38–43.

Wazny, J. R. (2006 January) Type Inference and Type Error Diagnosis for Hindley/Milner with

Extensions. Ph.D. thesis, The University of Melbourne.

Wu, B. & Chen, S. (2017) How type errors were fixed and what students did? Proc. ACM

Program. Lang. 1(OOPSLA), 105:1–105:27.

Wu, B., Campora III, John P. & Chen, S. (2017) Learning user friendly type-error messages.

Proc. ACM Program. Lang. 1(OOPSLA), 106:1–106:29.

Yang, J. (2000) Explaining type errors by finding the source of a type conflict. In Proceedings

of Trends in Functional Programming. Intellect Books, pp. 58–66.

Yang, J. (2001 May). Improving Polymorphic Type Explanations. Ph.D. thesis, Heriot-Watt

University.

Yang, J., Michaelson, G., Trinder, P. & Wells, J. B. (2000) Improved type error reporting. In

Proceedings of International Workshop on Implementation of Functional Languages, pp.

71–86.

Zhang, D. & Myers, A. C. (2014) Toward general diagnosis of static errors. In Proceedings

of ACM Symposium on Principles of Programming Languages, pp. 569–581.

Zhang, D., Myers, A. C., Vytiniotis, D. & Peyton-Jones, S. (2015) Diagnosing type errors

with class. In Proceedings of ACM Conference on Programming Language Design and

Implementation, pp. 12–21.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S095679681700020X
Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

