
Teaching CS Middle School Camps
in a Virtual World

1st Jennifer Parham-Mocello
School of EECS

Oregon State University
Corvallis, OR, USA

parhammj@oregonstate.edu

2nd Martin Erwig
School of EECS

Oregon State University
Corvallis, OR, USA

erwig@oregonstate.edu

3rd Margaret Niess
School of EECS

Oregon State University
Corvallis, OR, USA

niessm@oregonstate.edu

Abstract—In this poster, we report our experiences with imple-
menting two virtual computer science camps for middle school
children. The camps use a two-part curriculum: One designed
for 6th grade students using computer science concepts from
familiar unplugged games, and the other targeted at 7th grade
students using a domain-specific teaching language designed for
programming board games.

We use the camps to pilot the curricular material and
provide teachers with practical training to deliver the curriculum
virtually. Due to the teachers’ commitment to finding successful
strategies for delivering the curriculum online, the unplugged
and programming activities worked surprisingly well in the
remote environment. Overall, we found the use of well-known,
unplugged games to be effective in preparing students to think
algorithmically, and students were able to successfully code small
programs for simple games in a new, functional, text-based
language.

I. INTRODUCTION

In this poster, we present how teachers deliver a curriculum
for introducing computer science (CS) based on identifying
computing concepts in well-known non-electronic games in
an online setting. We think the curriculum and experience
presented in this poster are especially relevant to VL/HCC’s
focus on virtual learning environments this year. Our cur-
riculum is similar to CS For Fun (CS4FN), the Teaching
London Computing, and CTArcade [6], [7], [14], which also
employ tabletop games to teach CS concepts, but it differs in
a fundamental way: Instead of focusing on the strategy for
winning games or students playing against the computer, we
use the rules for playing games to introduce students to CS
concepts, such as representation, algorithm, and computation.
More specifically, our curriculum has the following features.

• Non-Coding First. We deliberately avoid the teaching of a
programming language in the first part of the curriculum.

• Unplugged. We do not use technology and embrace
physical artifacts as teaching devices.

• Games. We employ games as the conceptual framework
and metaphor for computing concepts.

• Familiarity. We use games that students already know.
• Domain-Specific Language (DSL). We introduce students

to a formal programming notation employing a newly
developed DSL for describing board games.

In this study, we pilot some of our 6th and 7th grade
curriculum in two one-week, online summer camps, and we
use the teachers’ instructional material to answer, “How do
middle school teachers adopt and deliver the 6th and 7th
grade CS curriculum in an impromptu, virtual summer camp
environment?”

II. CURRICULUM BACKGROUND

We developed the 6th and 7th grade CS curriculum in
collaboration with teachers from a local dual-language im-
mersion middle school. The 6th grade teacher is a math
teacher with a primary education degree, and the 7th grade
teacher is a math teacher with a BS in Math and MS in math
secondary education background. The 6th grade teacher is new
to teaching, while the 7th grade teacher has been teaching for 6
years. However, neither has a CS or programming background.

A. 6th Grade Curriculum

The goal of the 6th grade curriculum is to introduce CS
concepts, such as representation, abstraction, algorithm, input,
output, instruction, control structures, condition, and compu-
tation, without the use of a computer. First, the concepts of
representation and abstraction are motivated using a story to
represent the well-known board game of Tic-Tac-Toe. Then,
the concept of algorithms is introduced through the games of
tossing a coin to decide who goes first and Nim.

The students are reminded throughout the curriculum that
they are writing algorithms for how to play the game, instead
of expressing how to win the game. This understanding helps
reduce the competition of wanting to win in this curriculum.
We scaffold students’ understanding of how to formally ex-
press algorithms using the idea of Parsons Problems [17] with
pieces of an algorithm jumbled and an outline for sequencing
the algorithm pieces (see Fig. 1).

B. 7th Grade Curriculum

The goal of the 7th grade curriculum is to introduce a formal
notation for algorithms within the scope of board games.
To aid with learning and teaching a text-based language, we
designed a Domain Specific Teaching Language (DSTL) called
BoGL [3], [4], which is a language whose design is targeted
at the particular application domain (board games in this978-1-6654-4592-4/21/$31.00 ©2021 IEEE

case) but is also shaped by the goal of moving students to
a general-purpose language. BoGL is primarily a functional,
text-based language syntactically similar to Haskell [9], but
with a significantly simplified syntax and type system.

We support the smooth transition from algorithmic notation
to a BoGL program through a process we call BoGLization,
which shows an algorithm and the development of the BoGL
program side by side, highlighting corresponding parts in both.
An example is shown in Fig. 2. The partial BoGL program
(shown on top) is manually created by the teacher from an
algorithm (shown at the bottom) in several steps. Parts in
the algorithm that have been translated in previous steps are
shown in gray. The light blue background focuses on those
parts in the algorithm that are translated into BoGL in the
current step. This is not an automated process built into the
BoGL web interface (see Fig. 3). This is a manual process
that the teacher goes through with the students to build their
understanding of how to go from an algorithm description to
a formal programming language.

III. RELATED WORK

Playing games helps develop problem-solving skills and
creativity, which are fundamental to computational thinking
[8], [19], [20]. Thus, it is not surprising that games have
a long tradition as learning tools in education, especially in
the form of gamification, which is the idea of representing
a learning process as playing a game [12]. While studies
have shown that playing board games improves math skills
in elementary school students [5] and involves computational
thinking activities [1], [2], [10], [13], simply playing games
does not increase one’s computational thinking skills, unless
guided instruction about the skills is given [15].

Our curriculum fits into the landscape of game-based CT
teaching approaches by using familiar games, instead of
new ones. However, we use the same games to teach new
computational concepts, unlike other curriculum that uses a
different game to teach a new computational concept. Overall,
our approach embraces all of the following features. (1) Focus
on game rules and not strategy; (2) Connect game descriptions
to CS concepts; (3) Use a DSL for expressing algorithms
formally; (4) Play games to promote communication and and
terminology. (5) Reuse the same games as common threads;
(6) Employ a text-based, functional language.

IV. RESULTS

We separated the camps into two levels to pilot each
curriculum. Both teachers had access to the lesson plans,
presentation slides, and student worksheets designed for the
6th and 7th grade courses, and the teachers could modify
material, add new material, or strictly keep to the lesson plans.

In preparation for their school year, the teachers used Zoom
and a Canvas studio site through the university to house all
information for the camp, such as the schedule, introduction,
and links to external documents. In recognition of middle
school students’ attention spans, they divided the three hours
each day into three 40 minute sessions with 10 minute breaks

and a 30-minute wrap-up discussion. Both teachers used Zoom
polls as a way to keep the students engaged throughout various
5-10 minute presentations, and they used Kahoot! games as a
brain break for the students [11]. Each camp started off with
playing a game, and the students either played the game in
pairs in breakout rooms or played as a class.

1) Level 1 Camp: The 6th grade teacher had exceptionally
strong instructional strategies for successfully delivering the
curriculum virtually. Even though we designed the curricu-
lum to be an unplugged approach using tabletop games, the
teacher used technology to remotely facilitate collaboration
on algorithm design and synchronous game play. For example,
the teacher used Google docs for collaborating on worksheets,
Zoom breakout rooms for students to share their desktop for
group work, and Padlet [16] as a way to organize and share
the work that students completed. The teacher used existing
websites, such as MathIsFun and Tabletopia [18], [21], to play
multiplayer tabletop games remotely.

2) Level 2 Camp: As with level 1, the teacher had very
good instructional strategies for connecting with the students.
He used similar activities as the level 1 teacher for engaging
the students, such as Kahoot!, grouping students, and address-
ing all students equally and by name. Likewise, the level 2
teacher relied heavily on the material for the structure and
activities in the camp.

However, after day 1 this teacher did not use the PowerPoint
slides to introduce concepts. Instead, he primarily used an
electronic whiteboard for explaining concepts and kept the
students in pairs using worksheets and programming activities.
After students worked in groups, the teacher brought the group
back together for a synthesis. The strategy of having students
write the instructions and rules in a game as an algorithm to
use to develop a program did not work as well as it might have
if all students had been in the level 1 camp and received more
directions on how to do this, which was seen in the algorithms
and code developed by the different groups of students.

V. CONCLUSIONS

While the level 1 camp was only “virtually” unplugged, the
use of online multiplayer tabletop games with breakout rooms
for pairs of students fostered collaboration just as in a fully
unplugged environment. In some ways, it forced students to
communicate more precisely having to share a screen with one
student entering player moves while the other student verbally
explained the next move, such as first column in the first row.

We were surprised by how much prior CS and programming
background students had, which proved to be more of an issue
in level 1 than in level 2. While prior programming did not
cause issues in the level 2 camp, teachers need to consider
students’ experience with formally stating algorithms, which
is learned in the level 1 camp. We were surprised by the ease at
which students picked up and accepted the BoGL syntax, even
though the camp was too short to develop a deep understanding
of the language.

VI. ACKNOWLEDGMENT

This work has been partially supported by the National
Science Foundation (NSF) through the grant DRL-1923628.

REFERENCES

[1] M. Berland and S. Duncan. Computational Thinking in the Wild: Uncov-
ering Complex Collaborative Thinking through Gameplay. Educational
Technology, 56(3):29–35, 2016.

[2] M. Berland and V. R. Lee. Collaborative Strategic Board Games as
a Site for Distributed Computational Thinking. Int. Journal of Game-
Based Learning, 1(2):65–81, 2011.

[3] BoGL Team. A Board Game Language. https://bogl.engr.oregonstate.
edu, 2020. Accessed: 2020-08-24.

[4] BoGL Team. A Board Game Language – Tutorial. https://bogl.engr.
oregonstate.edu/tutorials/GettingStarted, 2021. Accessed: 2021-06-11.

[5] S. Cavanagh. Playing Games in Class Helps Students Grasp Math.
Education Digest: Essential Readings Condensed for Quick Review,
(3):43–46, 2008.

[6] CS For Fun: Queen Mary, University of London. Welcome to cs4fn : the
fun side of computer science. http://www.cs4fn.org/, 2011. Accessed:
2021-01-07.

[7] CS For Fun: Queen Mary, University of London. Teaching lon-
don computing: A resource hub from cas london & cs4fn. https:
//teachinglondoncomputing.org/, 2015. Accessed: 2021-01-07.

[8] C. Harris. Meet the New School Board: Board Games Are Back–And
They’re Exactly What Your Curriculum Needs. School Library Journal,
(5):24–26, 2009.

[9] Haskell. An advanced, purely functional programming language. https:
//www.haskell.org, 2019. Accessed: 2020-08-24.

[10] N. R. Holbert and U. Wilensky. Racing games for exploring kinematics:
a computational thinking approach. pages 109–118, 2011.

[11] Kahoot! A game-based learning platform. https://kahoot.it/, 2020.
Accessed: 2020-08-26.

[12] K. M. Kapp. The Gamification of Learning and Instruction: Game-
Based Methods and Strategies for Training and Education. Pfeiffer,
2012.

[13] C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon. Learning
programming at the computational thinking level via digital game-play.
Procedia Computer Science, 9:522–531, 2012.

[14] T. Y. Lee, M. L. Mauriello, J. Ahn, and B. B. Bederson. Ctarcade:
Computational thinking with games in school age children. Int. Journal
of Child-Computer Interaction, 2(1):26–33, 2014.

[15] T. Y. Lee, M. L. Mauriello, J. Ingraham, A. Sopan, J. Ahn, and B. B.
Bederson. CTArcade: Learning Computational Thinking Thile Training
Virtual Characters Through Game Play. In Human Factors in Computing
Systems, pages 2309–2314, 2012.

[16] Padlet. https://padlet.com/. Accessed: 2021-05-05.
[17] D. Parsons and P. Haden. Parson’s Programming Puzzles: A Fun and

Effective Learning Tool for First Programming Courses. volume 52,
pages 157–163, 2006.

[18] Rod Pierce. Math is fun: Multiplayer games (html5), 2020. https:
//www.mathsisfun.com/games/games-multiplayer-html5.html.

[19] C. Ragatz and Z. Ragatz. Tabletop Games in a Digital World. Parenting
for High Potential, (7):16–19, 2018.

[20] L. A. Sharp. Stealth Learning: Unexpected Learning Opportunities
Through Games. Journal of Instructional Research, 1:42–48, 2012.

[21] Tabletopia. Online sandbox arena for playing board games. https://
tabletopia.com/, 2020. Accessed: 2020-08-24.

VII. APPENDICES

https://bogl.engr.oregonstate.edu
https://bogl.engr.oregonstate.edu
https://bogl.engr.oregonstate.edu/tutorials/GettingStarted
https://bogl.engr.oregonstate.edu/tutorials/GettingStarted
http://www.cs4fn.org/
https://teachinglondoncomputing.org/
https://teachinglondoncomputing.org/
https://www.haskell.org
https://www.haskell.org
https://kahoot.it/
https://padlet.com/
https://www.mathsisfun.com/games/games-multiplayer-html5.html
https://www.mathsisfun.com/games/games-multiplayer-html5.html
https://tabletopia.com/
https://tabletopia.com/

Fig. 1. Worksheet with an algorithm as a Parsons problem.

game CoinToss

type Coin = {Heads,Tails}
type Child = {Jack,Rosa}

ALGORITHM Coin Toss
Jack picks heads or tails for the winning side

Rosa tosses the coin
IF the coin toss is equal to the winning side THEN

Rosa starts
ELSE

Jack starts

Fig. 2. BoGLization of the Coin Toss algorithm.

Fig. 3. Screenshot of a Tic-Tac-Toe program in BoGL.

	Introduction
	Curriculum Background
	6th Grade Curriculum
	7th Grade Curriculum

	Related Work
	Results
	Level 1 Camp
	Level 2 Camp

	Conclusions
	Acknowledgment
	References
	Appendices

