
Test-Driven Goal-Directed Debugging in Spreadsheets

Robin Abraham
Microsoft Corporation

Robin.Abraham@microsoft.com

Martin Erwig
Oregon State University

erwig@eecs.oregonstate.edu

Abstract
We present an error-detection and -correction approach

for spreadsheets that automatically generates questions
about input/output pairs and, depending on the feedback
given by the user, proposes changes to the spreadsheet
that would correct detected errors. This approach com-
bines and integrates previous work on automatic test-case
generation and goal-directed debugging. We have imple-
mented this method as an extension to MS Excel. We carried
out an evaluation of the system using spreadsheets seeded
with faults using mutation operators. The evaluation shows
among other things that up to 93% of the first-order mutants
and 98% of the second-order mutants were detected by the
system using the automatically generated test cases.

1. Introduction
Activities related to testing and debugging of code take

up a majority of programmer time and effort as shown by a
study conducted in the U.S. by NIST. The study found that
software engineers typically spend 70-80% of their time
testing and debugging code; on an average, errors take 17.4
hours to find and fix [27].

Other studies have previously shown that spreadsheets
are among the most widely used programming tools [26]
and that spreadsheets contain many errors [23] that have
considerably negative impact [11, 13].

In this context, a major part of spreadsheet research has
focused on helping end users answer the following three
questions.

(1) Are there faults in the spreadsheet?
The “What You See Is What You Test” (WYSIWYT) testing
framework has been developed to help end users test their
spreadsheets to expose faults [24]. Approaches aimed at au-
tomatic consistency checking of spreadsheet formulas have
also been developed to help detect faults. Most of these
systems require the users to annotate the spreadsheet with
additional information, which is then used for consistency
checking of formulas [6, 8–10]. In previous work, we have
developed a system, called UCheck, that automatically in-
fers labels within spreadsheets and uses this information to
carry out consistency checking [3], thereby minimizing the
effort required of the user.

(2) Where are the faults located?
Many of the the systems that aim to help users detect faults
also have fault localization mechanisms. In WYSIWYT,

users can mark cell outputs as correct or incorrect using
X and 7 marks. The system uses this input to gener-
ate feedback about the likelihood of faults in cells through
cell shading—cells with higher fault likelihood are shaded
darker than those with lower fault likelihood. The systems
described in [3, 6, 8] also use similar shading schemes to
draw the user’s attention to cells with higher fault likeli-
hood.

(3) How can the faults be corrected?
Even though techniques like spreadsheet audit and code in-
spection [18, 20, 25] help identify both the presence and lo-
cation of faults in some cases, very few systems actually
help the users correct the identified faults. In previous work,
we have developed a new approach, called “goal-directed
debugging”, to help end users debug their spreadsheets [2].
This approach automatically generates change suggestions
based on the user’s expectations about the output of a cell.
The automatic consistency checker, UCheck, has also been
extended to generate change suggestions based on the in-
consistencies detected by the system [5].

In the evaluation described in [2], we generated first-
order mutants1 from a set of spreadsheets using mutation
operators [4], and studied how effective GoalDebug was at
correcting the seeded faults. The evaluation helped us im-
prove the system so as to make it effective at correcting
almost all the seeded faults that were detected. However,
about 47% of the seeded faults were not even detected since
we only used one set of input values. Moreover, the im-
pact of having more than one fault in the spreadsheet was
not studied. In this paper, we describe the integration of
GoalDebug with an automatic test case generation mecha-
nism together with an evaluation of the extended system.
The evaluation showed that one of the configurations of the
new system detects 92.93% of the first-order mutants and
98.36% of the second-order mutants. The new version of
the system was able to detect more mutants because of the
additional test cases used. Since only one set of inputs were
used, even though the old version of GoalDebug corrected
97.11% of the detected mutants, this figure only translates
to 51.64% of the seeded faults. In comparison, the new ver-
sion of the system corrects 88.45% of the first-order mutants
and 97.81% of the second-order mutants.

We briefly describe GoalDebug, and the results from pre-

1First-order mutants are created by inserting a single fault into a pro-
gram. Higher-order mutants can be created by inserting more than one
fault into a program.

1

Figure 1. Specifying value expectation

vious evaluations in the next section. The modifications
done to the system to integrate the automatic test case gener-
ator AutoTest are briefly described in Section 3. The evalu-
ation we carried out of the test-driven debugging framework
is described in Section 4. We then describe related work in
Section 5. We present conclusions and directions for future
work in Section 6.

2. Goal-Directed Debugging
GoalDebug is an implementation of the goal-directed

debugging approach for Microsoft Excel. Whenever a
spreadsheet user observes a failure in their spreadsheets,
GoalDebug allows them to mark the cell with the failure as
incorrect, and specify their expectation for the output of that
cell as illustrated in Figure 1. The system converts the user
expectation to constraints and propagates these upstream in
the data flow. The propagated constraints are then used to
generate change suggestions, any one of which, if applied,
would result in the output in the marked cell to meet the
user expectation.

In general, the set of generated change suggestions is
large. To minimize the effort required of the user, the sys-
tem uses a set of heuristics to rank the generated change
suggestions from most likely to least likely. The cell with
the highest ranked change suggestion is shaded orange.

After the ranking has been carried out, the user can right-
click in any cell and view the top five change suggestions
that have been generated for that cell as shown in Figure 2.
At this stage, the user can perform any one of the following
actions:

1. Reject one or more of the presented suggestions. In
such cases, the rejected suggestions are converted to
constraints that are then used to refine the change-
inference process.

2. Ask for more suggestions. In this case, the system dis-
plays more suggestions to the user.

3. Pick any one suggestion from the list of suggestions.
The system then brings up a confirmation dialog which
allows the users to make any changes to the suggestion
before the changes are performed on the actual spread-
sheet.

Since the cell with the top-ranked suggestion is shaded
orange by the system, both the change-inference mecha-
nism and ranking heuristics play important roles in fault lo-

Figure 2. Change suggestions

calization. Moreover, the change-inference mechanism de-
termines the classes of faults GoalDebug is useful against.
Ideally, the system should be able to suggest changes that
correct detected faults so that the user does not have to man-
ually edit formulas.

In the evaluation described in [2], we ran mutation oper-
ators on the spreadsheets and generated first-order mutants
by introducing faults in the cells that contain formulas. Us-
ing the values in the data cells2 as input, we then compared
the output from the generated mutants with the output from
the original spreadsheets. For the cells in which the out-
puts from the original spreadsheet differed from the out-
puts from the mutant spreadsheet, we specified the outputs
from the original spreadsheet as the expected values and ran
GoalDebug to generate change suggestions. We had to dis-
card those mutants in which the cell outputs were the same
as those of the original sheet for the given single set of input
values. We applied the generated change suggestions to the
mutated spreadsheets to determine the number of cases in
which the mutation is reversed by the change suggestions
generated by GoalDebug and also recorded the rank of the
correct change suggestions.

The evaluation led us to make improvements to the
change-inference mechanism and the ranking heuristics. As
a result of the improvements, GoalDebug works very well
for first-order mutants. Specifically, the evaluation showed
that the system generated suggestions that would correct
99.97% of the first-order mutants. Moreover, the evalua-
tion also showed that in 59% of the cases, the top ranked
suggestion corrects the mutation, and in 71% of the cases,
the correct suggestion is ranked within the top two.

3. Test-Driven Debugging
In previous work with GoalDebug, we were primarily

concerned with improving the effectiveness of the system
with regard to the following two important aspects.

1. Generate change suggestions to recover from a wide
variety of faults: This aspect is important since it in-
creases the range of faults GoalDebug would be useful

2These are the cells that do not contain formulas.

against.
2. Ability to assign a high rank to the correct change sug-

gestion: If the correct change suggestion is assigned
the top rank, it will show up at the beginning of the list
presented to the user. Therefore, a high rank can lower
the amount of effort the user has to spend to locate the
correct change suggestion.

In around 47% of the mutant spreadsheets in the eval-
uation described in [2], the seeded faults did not result in
failures for the single set of inputs used. These mutants
had to be excluded from the study since the output com-
puted by the cell formula matched the expected output for
the set of inputs used. This result indicates a very strong
need to integrate a mechanism for exposing more faults with
GoalDebug.

The primary user input to GoalDebug are the value ex-
pectations entered by the user in cells where failures are ob-
served. In general, many test cases are required to expose
faults in the cell formulas. As more and more faults get
exposed by test cases, the user would be able to provide ad-
ditional value expectations to the system. The value expec-
tations, in turn, result in more constraints which GoalDebug
can then exploit to refine change inference.

However, to an end-user programmer who does not have
any formal training in software engineering, testing presents
two challenges.

1. When is a spreadsheet well tested? To help with this
aspect of testing, researchers have come up with test
adequacy criteria, which allow a tester to decide when
to stop testing.

2. What test inputs will improve coverage? When an end
user is faced with the task of inventing new test inputs,
it is not clear if a new test input increases coverage.
Moreover, the task of inventing new test cases can be
rather tedious.

In the next section, we briefly describe an automatic test-
case generator we have previously developed. In Sec-
tion 3.2 we describe how the test-case generator can be in-
tegrated with GoalDebug into a new test-driven debugging
framework.

3.1 Generation of Test Inputs

The AutoTest system generates test suites that satisfy the
definition-use (du) test adequacy criterion [1]. The idea be-
hind the definition-use coverage criterion is to test for each
variable (or cell in the case of spreadsheets) all of its uses
(through references).

AutoTest generates test inputs employing a constraint-
based approach. The system presents test inputs and the
corresponding computed output from a cell formula to the
user. The user can then specify if the computed output is
right or wrong. AutoTest also gives the user feedback about
the “level of testedness”, that is, the du coverage of the
spreadsheet, as shown in Figure 3.

Figure 3. Testing with AutoTest

In the following we use a simple example to show how
AutoTest works. A more detailed and formal description of
the system can be found in [1]. Consider a spreadsheet that
contains the following three cells.

A1: 10
A2: IF(A1>15,20,30)
A3: IF(A2>25,A2+10,A2+20)

Cell A1 is an input cell (since it does not contain a formula)
and therefore has one definition. Figure 4(a) is the con-
straint tree3 representation of the formula in cell A2. The
formula in A2 has one use of A1 (which is always executed)
in the condition. The two branches of the formula give A2
two definitions, which can be executed by satisfying the
constraints C1 ≡ A1 > 15 and C2 ≡ A1 ≤ 15 for the
true and false branch, respectively.

A1>15

C1 :20 C2 :30

�
�
�

@
@
@

(a) Formula in A2

A2>25

C3 :A2+10 C4 :A2+20

�
�
�

@
@
@

(b) Formula in A3

Figure 4. Constraint trees

Similarly, the formula in A3 (constraint tree shown in
Figure 4(b)) has three uses of A2—one (which is always
executed) in the condition, and one in each of the true and
false branches. The uses in the true and false branches can
be executed by satisfying the constraints C3 ≡ A2 > 25
and C4 ≡ A2 ≤ 25, respectively.

To test the formula in A3 enough to satisfy the du-
adequacy criterion, we need to execute the two definitions
of A2 and the two uses of A2 in the two branches of the
formula in A3—a total of 4 du pairs. The constraints that
must be satisfied to execute the 4 du pairs are shown below
together with the cell definitions that will be executed when

3A constraint tree is the internal representation of formulas used by
AutoTest in which conditions are stored in internal nodes and condition-
free subformulas are stored in the leaves.

the constraints are fulfilled.

{C1:A2 = 20, C3:A3 = A2+10}
{C1:A2 = 20, C4:A3 = A2+20}
{C2:A2 = 30, C3:A3 = A2+10}
{C2:A2 = 30, C4:A3 = A2+20}

In the above, we use the notation C3:A3 = A2+10 to in-
dicate that satisfying constraint C3 causes A3 to execute
branch A2+10.

In some cases, it might not be possible to solve the
constraints for a du pair. For example, the constraints
{C1:A2 = 20, C3:A3 = A2+10} cannot be solved since
C3 requires A2 to be some value greater than 25. However,
satisfying C1 results in 20 in A2. In such cases, it is not pos-
sible to generate a test case that executes the du pair under
consideration. Such du pairs are said to be infeasible and
cannot be exercised.

In all other cases where the constraints can be solved,
the solution gives test inputs that exercise the du pair under
consideration. For example, {A1 = 16, A2 = 20} is a so-
lution for the constraints {C1:A2 = 20, C4:A3 = A2+20}.
Therefore, changing the value in A1 to 16 exercises this du
pair.

3.2 Debugging With Change Suggestions
To improve fault detection, we integrated GoalDebug

with AutoTest. We envisage the combination of the two
systems working as follows.

1. AutoTest generates the test inputs for a formula.
2. The user examines the computed output from the cell

formulas to determine if it is correct. If the output is
correct, the user “approves” it and the input values and
computed output are stored as a test case.

3. When failures are observed, the user marks the cell as
incorrect and specifies the expected output. The input
values and expected output are stored as a test case,
and the user’s expectation is converted to a constraint
and stored by GoalDebug. The constraints are used by
GoalDebug to generate change suggestions for spread-
sheet formulas.

4. For each cell in the spreadsheet, the system maintains
sets of test cases, constraints, and change suggestions.
The user can view these and apply any of the suggested
changes they deem correct.

The debugging/change-inference component of the new
system has a couple of significant enhancements over the
old one. The previous versions of GoalDebug only allowed
the user to specify one value expectation for each cell. This
expectation was assumed to be on the basis of the values in
the input cells. Within the new framework, users can spec-
ify multiple value expectations for each cell. Each value
expectation is associated with the inputs of a particular test
case.

In the previous versions, whenever a user marks the out-
put of a cell as incorrect and specifies the expected output, it

leads to change suggestions being generated for the marked
cell and all other cells, which contain formulas, upstream
from the marked cell. This approach was adopted since fault
localization was based on user feedback provided on the ba-
sis of a single set of test inputs. In the absence of additional
information about the correctness of the formulas upstream
from the marked cell, the system generates change sugges-
tions for all of them and ranks those suggestions lower than
the changes generated for the marked cell.

In the new framework, it is assumed that the use of addi-
tional test cases improves the capability of the system to ex-
pose more faults. Therefore, the expectation specified for a
cell formula is not used directly to generate change sugges-
tions for formulas upstream from the marked cell. Instead,
it is only used to refine the change suggestions generated
by expectations specified directly within those cells by the
user. This modification prunes the set of generated change
suggestions, and is based on the assumption that additional
test cases increase confidence in the correctness of the un-
marked cells.

4. Evaluation
After integrating GoalDebug with the testing framework

of AutoTest as described in the previous section, we evalu-
ated the system to answer the following research questions.

RQ1: Is goal-directed debugging effective at correcting
faults exposed by additional test cases?
The evaluation described in [2] showed that GoalDebug is
very effective against first-order mutants that manifest as
failures for the single set of input values originally present
in the spreadsheet. However, quite a few of the mutants
went undetected since the computed output matched the ex-
pected output for the particular set of input values used.
We expect additional test cases to expose more faults. We
need to investigate how effective GoalDebug is at correcting
these faults.

RQ2: Is change inference effective against higher-order
mutants?
Higher-order mutants are interesting since they more
closely reflect real-world situations. Moreover, faults in a
few cells usually manifest as failures in many more cells,
thereby making change inference more challenging.

4.1 Setup

An overview of the evaluation setup is shown in Figure 5.
For the purpose of the evaluation, we use spreadsheets that
have been used in previous empirical studies [1, 2, 4]. The
spreadsheets have been picked to include as many different
kinds of formulas, and formulas with branching, as possi-
ble, in the evaluation. Information about the spreadsheets
is given in Table 2. For each spreadsheet used in the eval-
uation, the table contains information about the number of
cells with formulas (Fml) and the total number of cells (To-
tal). The spreadsheets have been picked to include as many
different kinds of formulas as possible in the evaluation.

We generate mutant spreadsheets by seeding faults in the

Table 1. Mutation operators for spreadsheets

Operator Description
ABS ABSolute value insertion
AOR Arithmetic Operator Replacement
CRP Constants RePlacement
CRR Constants for Reference Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RCR Reference for Constant Replacement
FDL Formula DeLetion
FRC Formula Replacement with Constant
RFR ReFerence Replacement
UOI Unary Operator Insertion
CRS Contiguous Range Shrinking
NRS Non-contiguous Range Shrinking
CRE Contiguous Range Expansion
NRE Non-contiguous Range Expansion
RRR Range Reference Replacement
FFR Formula Function Replacement

Spreadsheets Test suites Mutant sheets

Changes

Spreadsheets

MutOps

ChangeInf

TestGen

Compare

Corrected Uncorrected

Apply

Figure 5. Evaluation setup

Table 2. Sheet details

Sheet Cells Sheet Cells
Fml Total Fml Total

Microgen 2 12 GradesNew 8 26
FitMachine 6 18 Digits 6 14
NetPay 6 18 Purchase 15 50
RandJury 21 58 Sales 16 29
Solution 3 12 Budget 6 24
MBTI 28 83 NewClock 10 24
GradesBig 21 48 Harvest 9 26
Payroll 54 100

original spreadsheets using the mutation operators given in
Table 1. The mutation operators have been designed to re-
flect errors reported in spreadsheet literature, and they are
also based off of mutation operators developed for general-
purpose programming languages. We did not use the FDL
(formula-deletion) and FRC (formula replace with constant)
since it is unrealistic to expect the system magically to sug-
gest a formula for an empty cell or a cell with constant.

Test inputs that satisfy the du-adequacy criterion are
then generated for each of the mutant spreadsheets using
AutoTest. The outputs to these test input values from the
original spreadsheets is assumed to be the expected/correct
output. In cases where the output from the original spread-
sheets differ from those computed by the mutant spread-
sheets, the values from the original spreadsheets are treated
as the user expectations. These are then used by the change-
inference mechanism of GoalDebug to generate change
suggestions. The generated change suggestions are applied
to the mutant spreadsheets. These sheets are then compared
with the original spreadsheets to determine if the change
suggestions have been successful at correcting the seeded
faults.

We evaluated the performance of the framework under
the following three configurations:

1. GoalDebug only: This configuration was used in the
evaluation described in [2]. Basically, it involves test-
ing each of the spreadsheet formulas with a single
set of input values, and triggering change suggestions
from the cells in which failures are observed.

2. Test-driven debugging (F): In this configuration, the
spreadsheet is tested with a test suite that satisfies
100% du-adequacy. The test suite is generated from
the first solvable constraint set for each feasible du pair.

3. Test-driven debugging (R): In this configuration,
AutoTest picks a solvable constraint set at random
from those available for each feasible du pair. As in the
previous configuration, the spreadsheet is tested with a
test suite that satisfies 100% du adequacy in this case
as well.

For each of the configurations, we collected the follow-
ing information.

1. The number of generated irreversible mutants (Irrev.).

These mutant formulas evaluate to the same value as
the original formula for the test inputs and thus cannot
produce failures that could be identified by the user.
These faults are therefore undetected, and GoalDebug
is inapplicable in these cases since the computed out-
put agrees with the expected output.

2. The number of generated reversible mutants (Rev.).
These mutant formulas manifest as failures for at least
one set of test inputs. GoalDebug can therefore be in-
voked on those cells.

3. The number of reversible mutants that were corrected
(Corr.). The seeded fault in these formulas were cor-
rected by one of the change suggestions generated by
GoalDebug. This group of mutants were the ones
GoalDebug was effective against.

4.2 Results

The data collected for various configurations of
GoalDebug for first-order mutants is shown in Table 3. In
the “GoalDebug only” configuration, only 53.17% of the
first-order mutants were detected. 97.11% of the detected
mutants were corrected by GoalDebug. The percentage
of detected mutants went up to 80.55% under the “Test-
driven debugging (F)” configuration. 94.37% of these de-
tected mutants were corrected by the system. Under the
“Test-driven debugging (R)” configuration, 92.97% of the
first-order mutants that were detected by the system, out of
which, 95.14% were corrected by GoalDebug.

It is not surprising that additional test cases expose more
mutants. Under the “Test-driven debugging (F)” configura-
tion, the du-adequate test suite is generated by solving the
first constraint for each feasible du pair, whereas, under the
“Test-driven debugging (R)” configuration, the du-adequate
test suite is generated from a constraint set picked at random
from those available for a du pair. We have selected the ran-
dom strategy because we have observed from the empiri-
cal evaluation of the mutation adequacy of du-adequate test
suites described in [4] that random selection of constraints
detects more mutants than selecting the first solvable con-
straint for test case generation.

The performance of the test-driven debugging frame-
work under different configurations for spreadsheets seeded
with two faults each is shown in Table 4. As can be seen
from the table, the number of mutants generated is consid-
erably higher in this case. In the “Test-driven debugging
(F)” configuration, the system detects 82.41% of the gen-
erated mutants, out of which 99.35% are corrected by the
generated change suggestions. Along similar lines to the
case of first-order mutants, the system in the “Test-driven
debugging (R)” configuration detects 98.36% of the gen-
erated mutants, out of which 99.44% are corrected by the
changes generated by the system.

4.3 Discussion

RQ1: As can be seen from the data collected from the
evaluation, the additional test cases dramatically improve

the number of faults detected and corrected by the system.
Further analyses of the spreadsheets and surviving mutants
showed that the benefit of having additional test cases is
more obvious in spreadsheets whose formulas have branch-
ing. This result is as expected since more targeted testing is
required to expose faults in branches of formulas.

RQ2: In addition to the high percentage of second-
order mutants detected by the new system, we also see
that 97.81% of these detected faults are corrected by the
change suggestions generated by the system. Therefore,
the change-inference mechanism of GoalDebug is effective
against second-order mutants.

The evaluation has shown that integration of the test-
ing framework with GoalDebug has huge potential benefits,
both, at exposing more faults, and at generating effective
change suggestions to correct them.

5. Related Work
The WYSIWYT framework has an automatic test case

generator called “Help Me Test” (HMT) to help end users
develop effective test cases [14]. The framework is geared
towards fault detection through testing. Empirical studies
have shown that users are able to detect and, in many cases,
correct seeded faults in spreadsheets using these systems
[22]. However, the WYSIWYT framework itself does not
have any mechanism to help users correct detected faults.
It would be beneficial to integrate the approach described
in this paper within the WYSIWYT framework. When the
users observe faults within the spreadsheets, they can place
7 marks in the cells and specify the expected output. In
these cases, the expected output could be converted to con-
straints for the given set of inputs. In cells where the output
matches the users’ expectations, they can place X marks. In
these cases, the computed output in the cell could be con-
verted to a constraint for the given set of inputs. The X
and 7 marks would help the fault localization mechanism
of WYSIWYT, and the generated constraints would be in-
puts to GoalDebug for change inference.

The WHYLINE system uses static and dynamic analy-
ses of programs developed in the Alice environment to help
users isolate faults [17]. The system allows users to ask
“Why...?” and “Why didn’t...?” questions to express their
expectations about program behavior. The approach is sim-
ilar to GoalDebug except that it does not generate change
suggestions. Empirical studies have shown that WHYLINE
helps users debug errors up to 8 times faster in the Alice
environment.

Other approaches and techniques, like code inspection
[20], auditing [18, 25], and adoption of good spreadsheet
design practices [16,23,28], from traditional software engi-
neering have also been studied to minimize the occurrence
of faults in spreadsheets. None of these approaches guaran-
tee correctness. Moreover, they do not help the user debug
faults either.

The idea of mutation testing for general-purpose pro-
gramming languages was proposed in [12, 15]. The suite of

Table 3. Fault detection under various GoalDebug configurations (single fault)

Sheet Total GoalDebug only Test-driven debugging (F) Test-driven debugging (R)
Mutants Irrev. Rev. Corr. Irrev. Rev. Corr. Irrev. Rev. Corr.

Microgen 176 143 33 33 123 53 42 19 157 144
GradesNew 338 157 181 181 36 302 295 36 302 295
FitMachine 440 366 74 72 43 397 297 14 426 350
Digits 465 172 293 293 13 452 379 13 452 379
NetPay 108 61 47 47 0 108 97 0 108 97
Purchase 325 172 153 153 7 318 289 0 325 302
RandJury 886 578 308 308 506 380 362 0 886 864
Sales 338 0 338 338 0 338 338 0 338 338
Solution 235 119 116 116 0 235 227 0 235 227
Budget 158 46 112 112 41 117 114 11 147 140
MBTI 1145 902 243 243 405 740 717 270 875 844
NewClock 321 156 165 164 61 260 251 44 277 263
GradesBig 930 283 647 545 195 735 697 95 835 791
Harvest 231 10 221 211 10 221 211 10 221 211
Payroll 1404 347 1057 1057 19 1385 1385 15 1389 1389
Total 7500 3512 3988 3873 1459 6041 5701 527 6973 6634

mutation operators used in the evaluation described in this
paper was proposed by us in [4]. They have been designed
to reflect errors reported in spreadsheet literature [7, 21]
and also include mutation operators originally proposed for
general-purpose programming languages [19].

6. Conclusions and Future Work
We have demonstrated that automatic test-case genera-

tion can be successfully integrated into a spreadsheet debug-
ger to significantly increase the number of faults that can
be detected. Whereas the old version of the system could
only detect 53.17% of the seeded faults, the new version de-
tects up to 92.97% of the first-order mutants (and 98.36% of
second-order mutants). The improvement in fault-detection
capability has had a corresponding improvement on fault-
correction capabilities of the system. The old version of
the system could only correct 51.64% of the seeded faults,
whereas, the new version of the system corrects 88.45% of
the first-order mutants and 97.81% of the second-order mu-
tants.

Test cases have two roles in the framework we have de-
scribed in this paper. Firstly, they have the “traditional” role
of helping to identify faults within the spreadsheet. Sec-
ondly, the test cases—especially the expected output com-
ponent of the test cases—provide GoalDebug additional
constraints that help refine the change suggestions. There-
fore it is important to determine which test cases provide
maximum benefit to help with GoalDebug so that this in-
formation can be used for test selection. In future work, we
plan to study this aspect as a test-selection criterion.

In the evaluation described in this paper, the user feed-
back has been simulated and is assumed to be accurate. In
future work, we would like to investigate the impact of er-
rors in user feedback on goal-directed debugging. User er-
rors can occur at various stages in the process and their im-

pact needs to be explored. For example, users might make
mistakes when specifying test cases, or while specifying
value expectations on cell output. Moreover, expectations
specified upstream or at sinks might be more accurate than
those specified at intermediate points, especially those that
are further downstream. Since data about these error fre-
quencies is not available, we would need to carry out user
studies to evaluate their impact. User studies would also be
helpful in determining if actual end users can use the differ-
ent components of the framework effectively.

References
[1] R. Abraham and M. Erwig. AutoTest: A Tool for Automatic

Test Case Generation in Spreadsheets. IEEE Int. Symp. on
Visual Languages and Human-Centric Computing, pp. 43–
50, 2006.

[2] R. Abraham and M. Erwig. GoalDebug: A Spreadsheet De-
bugger for End Users. 29th IEEE Int. Conf. on Software En-
gineering, pp. 251–260, 2007.

[3] R. Abraham and M. Erwig. UCheck: A Spreadsheet Unit
Checker for End Users. Journal of Visual Languages and
Computing, 18(1):71–95, 2007.

[4] R. Abraham and M. Erwig. Mutation Operators for Spread-
sheets. IEEE Trans. on Software Engineering, 2008. To ap-
pear.

[5] R. Abraham, M. Erwig, and S. Andrew. A Type System
Based on End-User Vocabulary. IEEE Int. Symp. on Vi-
sual Languages and Human-Centric Computing, pp. 215–
222, 2007.

[6] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
18th IEEE Int. Conf. on Automated Software Engineering,
pp. 174–183, 2003.

[7] C. Allwood. Error Detection Processes in Statistical Problem
Solving. Cognitive Science, 8(4):413–437, 1984.

Table 4. Fault detection under various GoalDebug configurations (two faults)

Sheet Total Test-driven debugging (F) Test-driven debugging (R)
Mutants Irrev. Rev. Corr. Irrev. Rev. Corr.

Microgen 7303 3626 3677 3251 15 7288 7145
GradesNew 48350 0 48350 48157 0 48350 48157
FitMachine 75949 36508 39441 36249 3138 72811 70221
Digits 85849 5612 80237 79513 72 85777 79513
NetPay 4504 0 4504 4479 0 4504 4479
Purchase 48575 544 48031 47501 320 48255 47881
RandJury 370078 240744 129334 129110 166 369912 369821
Sales 53147 171 52976 52976 171 52976 52976
Solution 18403 8 18395 18117 8 18395 18117
Budget 9327 590 8737 8711 16 9311 9291
MBTI 631681 119388 512293 511013 2655 629026 628854
NewClock 44665 4644 40021 39914 183 44482 44336
GradesBig 383161 53190 329971 322451 27400 355761 351128
Harvest 15932 715 15217 15009 715 15217 15009
Payroll 948221 17200 931021 931021 10030 938191 938191
Total 2745145 482940 2262205 2247472 44889 2700256 2685119

[8] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth,
and M. Felleisen. Validating the Unit Correctness of Spread-
sheet Programs. 26th IEEE Int. Conf. on Software Engineer-
ing, pp. 439–448, 2004.

[9] M. M. Burnett, C. Cook, J. Summet, G. Rothermel, and
C. Wallace. End-User Software Engineering with Assertions.
25thIEEE Int. Conf. on Software Engineering, pp. 93–103,
2003.

[10] M. J. Coblenz, A. J. Ko, and B. A. Myers. Using Objects
of Measurement to Detect Spreadsheet Errors. IEEE Int.
Symp. on Visual Languages and Human-Centric Computing,
pp. 314–316, 2005.

[11] G. J. Croll. The Importance and Criticality of Spreadsheets
in the City of London. Symp. of European Spreadsheet Risks
Interest Group (EuSpRIG), 2005.

[12] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
Test Data Selection: Help For the Practicing Programmer.
IEEE Computer, 11(4):34–41, 1978.

[13] EuSpRIG. European Spreadsheet Risks Interest Group.
http://www.eusprig.org/.

[14] M. Fisher II, G. Rothermel, D. Brown, M. Cao, C. Cook,
and B. Burnett. Integrating Automated Test Generation into
the WYSIWYT Spreadsheet Testing Methodology. ACM
Trans. on Software Engineering and Methodology, 15:150–
194, 2006.

[15] R. G. Hamlet. Testing Programs With the Aid of a Compiler.
IEEE Transactions on Software Engineering, 3(4):279–290,
July 1977.

[16] T. Isakowitz, S. Schocken, and H. C. Lucas, Jr. Toward a
Logical/Physical Theory of Spreadsheet Modelling. ACM
Transactions on Information Systems, 13(1):1–37, 1995.

[17] A. J. Ko and B. A. Myers. Designing the Whyline: A De-
bugging Interface for Asking Questions about Program Be-
havior. Int. Conf. on Human Factors in Computing Systems,
pp. 151–158, 2004.

[18] R. Mittermeir and M. Clermont. Finding High-Level Struc-
tures in Spreadsheet Programs. 9th Working Conference on
Reverse Engineering, pp. 221–232, 2002.

[19] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An Experimental Determination Of Sufficient Mutant Oper-
ators. ACM Trans. on Software Engineering and Methodol-
ogy, 5(2):99–118, 1996.

[20] R. R. Panko. Applying Code Inspection to Spreadsheet
Testing. Journal of Management Information Systems,
16(2):159–176, 1999.

[21] R. R. Panko. Spreadsheet Errors: What We Know. What We
Think We Can Do. Symp. of the European Spreadsheet Risks
Interest Group (EuSpRIG), 2000.

[22] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick, M. Main,
M. Durham, and M. Burnett. Strategies and Behaviors of
End-User Programmers with Interactive Fault Localization.
IEEE Int. Symp. on Human-Centric Computing Languages
and Environments, pp. 203–210, 2003.

[23] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards.
Quality Control in Spreadsheets: A Software Engineering-
Based Approach to Spreadsheet Development. 33rd Hawaii
Int. Conf. on System Sciences, pp. 1–9, 2000.

[24] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets. ACM
Transactions on Software Engineering and Methodology, pp.
110–147, 2001.

[25] J. Sajaniemi. Modeling Spreadsheet Audit: A Rigorous Ap-
proach to Automatic Visualization. Journal of Visual Lan-
guages and Computing, 11:49–82, 2000.

[26] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers
of End Users and End User Programmers. IEEE Symp. on
Visual Languages and Human-Centric Computing, pp. 207–
214, 2005.

[27] G. Tassey. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing. National Institute of Standards
and Technology, RTI Project Number 7007.011, 2002.

[28] A. G. Yoder and D. L. Cohn. Real Spreadsheets for Real
Programmers. Int. Conf. on Computer Languages, pp. 20–
30, 1994.

