
36 | the world today | october & november 2017

Algorithms

to how genes represent proteins. Since
genes can be copied, they can be put to use
in many cells in parallel and at different
times. It is imperative that an algorithm
can solve a class of related problems and
accept different inputs.

Consider, for example, an algorithm for
sorting a deck of cards. It should work for
any deck, no matter how many cards it con-
tains and in what order.

A method that could multiply only two
specific numbers or find the shortest path
between two specific locations would be
useless as an algorithm because the result
could simply be remembered and stored,
and there would be no need to ever execute
the algorithm again.

Note that this requirement does not ap-
ply to algorithms that produce transient ob-
jects. Even if a chocolate cake recipe pro-
duces only one specific kind of cake, it is
useful to execute it many times because the

Algorithms are everywhere, and they affect
everyone. As well as the obvious places −
computers, smart phones, cars and appli-
ances − they also occur outside of machines.
A recipe is an example of such a machine-
transcending algorithm. So are pieces of
music, evacuation plans, the instructions
on how to assemble furniture, card tricks
and many other activities. If general inter-
est in science and technology is not a suf-
ficient reason to learn about them, maybe
their omnipresence will persuade you.

Some may think that algorithms are
complicated and only for the initiated few,
an impression reinforced by stereotypes
that plague computer science in the public
imagination − think of Dennis from Juras-
sic Park or the Warlock from Die Hard 4. In
films like these, computer science is a black
art performed by nerdy guys. While this
picture may contain an element of truth, it
gives the false impression that computing is
only for nerds and nothing could be further
from the truth.

Algorithms were with us long before
modern technology started to amplify
their impact. They are simply methods for
solving problems, and the need for solving
problems is as old as humanity. Algorithms
are independent of machines and can often
be described in natural language or even
pictures, which offers an opportunity for
making algorithms accessible to a wider
audience. In particular, we don’t need to
master a programming language to engage
with this subject − just as we can explore
music and learn an instrument without first
having learnt music notation.

To understand algorithms, how they
function, and why they have so much
impact, it is helpful to know about the
relationship between algorithms and com-
putation, the need for using representa-
tions and expressing algorithms in some
language, the requirement for algorithms

to work for varying inputs, the questions of
algorithmic correctness and efficiency and
the limitations of algorithms.

Since an algorithm is just a plan for solv-
ing problems, it needs to be executed by
an agent, be it a machine or a human, to
exert its effect. When executed, an algo-
rithm takes as input a representation of a
problem and produces a solution. This pro-
cess is called computation.

The use of a representation is crucial for
an algorithm’s ability to solve problems.
Consider, for example, the string ‘10’,
which when interpreted as a decimal num-
ber represents the number ten, but when
interpreted as a binary number represents
the number two.

The transformation that adds a ‘0’ at the
right end means ‘multiplying by ten’ in
the decimal representation, since ‘100’ is
the decimal representation of the number
one hundred, whereas it means ‘multiply-
ing by two’ in the binary representation,
since ‘100’ is the binary representation of
the number four.

The separation of the symbols that are
manipulated by a computer from their
meaning is what ultimately enables prob-
lem-solving through computation, since
it allows the encoding of problems in a
form that is amenable to formal symbol
transformation.

The separation of a computation from its
description makes it possible to execute an
algorithm by many different computers at
different times and at different places. For
this to work, however, an algorithm must
be expressed in a language that is under-
stood by the executing computer.

This separation of algorithm and com-
putation makes algorithms independent
of particular computers and allows them
to endure over time and space. Whereas
an individual computation is transient, an
algorithm is eternal. This duality is similar

The real ghost
in the machine
Martin Erwig introduces the algorithm,
the sets of instructions that decide how we live

Tech Algorithms 07.indd 36 26/09/2017 00:23

the world today | october & november 2017 | 37

Algorithms

cake gets eaten. This is different for abstract
results such as numbers or paths, for which
we can have our cake and eat it. Thus an
algorithm must be able to process different
inputs and solve different problems.

Two major challenges for algorithms are
correctness and efficiency. It is not easy to get
an algorithm to work correctly.

Consider the following algorithm for
helping Hansel and Gretel find their way
back home from the forest: ‘Locate the clos-
est pebble until you are home.’

This method sounds reasonable, but
observe what happens after they have
located the first pebble. One would
assume that they should move on to the sec-
ond pebble. However, if we interpret the
instruction accurately, Hansel and Gretel
should not move at all, since the closest
pebble is the pebble they are currently at.
The method takes for granted that previous
pebbles won’t be located again, but that is

not specified in the algorithm. An algorithm
must be unambiguous and must not rely on
smart interpretations by the computer that
executes it. This algorithm is not correct,
because it does not terminate.

Algorithms require time to exe-
cute and space to store data. The run-
time of algorithms is not measured
in time but is given as a function that
indicates how the number of required
steps grows for a change in the size of its
input. For example, the runtime of a linear
algorithm grows proportionally with the
size of the input, which is quite good. The
runtime of a quadratic algorithm grows
with the square of the input size, which is
still fast enough in many cases but can be
too slow in others.

On the other hand, algorithms with
exponential runtime are practically unus-
able because their runtime doubles when-
ever the size of the input grows by a small
constant. To get a sense of how bad expo-
nential runtime is, consider the following
fact. Linear, quadratic and exponential
algorithms complete their work instanta-
neously for inputs of size 30. For inputs of
size 100 the runtime of linear and quadratic
algorithms is still not noticeable while an
exponential algorithm would take about
nine times the age of our universe to
complete.

Exponential runtime is one major limita-
tion of algorithms because it renders such
algorithms unusable for all but small inputs.

For many optimization problems only
exponential algorithms are known, which
means that these problems can only be
solved through approximations. It gets
worse: many problems cannot be solved by
algorithms at all. For example, the question
of whether an algorithm terminates cannot
be answered by an algorithm.

Algorithms are ubiquitous, and it is
impossible to avoid them. Once developed,
an algorithm is an intellectual contribution
that can continually provide benefit, but
only if it is correct and efficient.

A basic understanding of algorithms
empowers us to better judge their risks
and opportunities. For example, concerns
about the loss of privacy in the face of
Google and Facebook should not be attrib-
uted to an algorithm but rather raise ques-
tions about what data users disclose and
what data those companies accumulate.

On the other hand, algorithms are
increasingly employed in making decisions
that have a huge impact on people’s lives,
such as approving loans or determining the
length of prison sentences.

 Recently, Ben Shneiderman, of the Uni-
versity of Maryland, has argued for the cre-
ation of a National Algorithm Safety Board
to hold algorithms accountable and provide
transparency to the public.

To understand reports and recommenda-
tions issued by such an agency one needs to
have a basic understanding of algorithms.
Knowledge of algorithms, their features as
well as limitation, is necessary to appreciate
their impact on the world.

Martin Erwig is Professor of Computer
Science at Oregon State University and
author of the book ‘Once Upon an
Algorithm: How Stories Explain
Computing’

ENIAC, the Electronic Numerical Integrator
and Computer, developed at the University of
Pennsylvania in 1946

g
e

t
t

y
 im

a
g

e
s

Tech Algorithms 07.indd 37 26/09/2017 00:23

