

– 1 –

Abstract Visual Syntax

Martin Erwig

FernUniversität Hagen, Praktische Informatik IV
D-58084 Hagen, Germany
erwig@fernuni-hagen.de

Abstract.

 We propose a separation of visual syntax into concrete and abstract
syntax, much like it is often done for textual languages. Here the focus is on visual
programming languages; the impact on visual languages in general is not clear by
now. We suggest to use unstructured labeled multi-graphs as abstract visual syn-
tax and show how this facilitates semantics definitions and transformations of vi-
sual languages. In particular, disregarding structural constraints on the abstract
syntax level makes such manipulations simple and powerful. Moreover, we dem-
onstrate that – in contrast to the traditional monolithic graph definition – an in-
ductive view of graphs provides a very convenient way to move in a structured
(and declarative) way through graphs. Again this supports the simplicity of de-
scriptions for transformations and semantics.

1. What is Abstract Visual Syntax?

To specify (the syntax of) a visual language one can choose among a large variety of
formalisms, for a comparison, see [MM96]. All these approaches are concerned with
the concrete syntax of visual languages, and there are only a few authors explicitly
mentioning abstract visual syntax [AER96, RS95, RS96]. This is surprising since work
on textual programming languages has demonstrated that the use of abstract syntax can
be very helpful in many different areas, for example, specification of type systems,
compiler construction, program transformations, and semantics definition. One reason
for this situation might be that the right level of abstractness has not been identified yet:
we believe that abstract visual syntax must be “more abstract” than in the textual case.

We explain this by a simple example. Consider the following (textual) grammar
describing part of a concrete syntax for expressions.

expr

::=

n-expr

 |

b-expr

 |

if-expr
n-expr

::=

term

 |

n-expr

 +

term
term

::=

factor

 |

term

 *

factor
factor

::=

id

 | (

n-expr

)

b-expr

::=

id

 |

b-expr

∨

b-expr

 | …

if-expr

::=

if

 b-expr

then

expr

else

expr

A corresponding abstract syntax would ignore many details, such as the choice of key

– 2 –

words, grammar rules for defining associativity of operators, or rules restricting the
typing of operations (see also [Mos90]):

expr

::=

id

 |

expr

op

expr

 |

if

 (

expr

,

expr

,

expr

)

op

::= + | * |

∨

 | …

This grammar is much more concise. It does not introduce nonterminals for expres-
sions of different types, and it also ignores associativity of operators. (Omitting the key
words from the conditional does not make the grammar essentially simpler in this
example.) Further operations on sentences of the language can rely on syntax being
already checked by a parser and can thus work with the simpler abstract syntax.

In a similar way, the abstract syntax of visual languages need not be concerned with
all the details that a concrete syntax specification has to care about. This means we can
abstract from the choice of icons or symbols (comparable to the choice of key words in
the textual case) and from geometric details such as size and position of objects (at
least up to topological equivalence, that is, as long as relevant relationships between
objects are not affected). We can also ignore associativities used to resolve ambiguous
situations during parsing much like in the textual example. Moreover, typings of rela-
tionships that restrict relationships to specific subsets of symbols can be omitted. This
corresponds to grouping operations, such as + or

∨

, under one nonterminal.
But we can do even more – and this is the point where abstract visual syntax gets

more abstract than in the textual case: the above abstract syntax for expressions is still
given by a grammar and thus retains some structural information about the language.
This is absolutely adequate since the description is very simple and can be easily used
when defining, for example, an interpreter for expressions. However, to do so for a
visual language requires, in most cases, some effort in the consideration of context
information which unnecessarily complicates definitions of transformations. There-
fore, we suggest to forget about this structural information, too, and to consider a pic-
ture just as a directed, labeled multi-graph where the nodes represent objects and the
edges represent relationships between objects. A class of graphs is then just given by
two types defining node and edge labels, that is, the types of objects and relationships
in the abstractly represented visual language.

Definition 1.

A

directed labeled multi-graph of type

 (

α

,

β

) is a quintuple

G

 =
(

V

,

E

,

ι

,

ν

,

ε

) consisting of a set of nodes

V

 and a set of edges

E

 where

ι

:

E

→

V

×

V

 is a
total mapping defining for each edge the nodes it connects. The (partial) mappings

ν

:

V

→

α

 and

ε

:

E

→

β

 define the node and edge labels.

For a graph

G

,

V

(

G

) and

E

(

G

) denote the set of nodes and edges of

G

. Whenever

G

 is
fixed, we also might simply use

V

 and

E

. For brevity, we sometimes denote a node or
edge

x

 together with its label

l

 simply by

x

:

l

.
The

source

 of an edge

e

∈

E

 with

ι

(

e

) = (

v

,

w

) is defined as

σ

(

e

) =

v

, and the

target

of

e

 is defined as

τ

(

e

) =

w

. A

path

 in a graph

G

 is an alternating sequence of nodes and
edges

p

 = [

v

1

,

e

1

,

v

2

,

e

2

, …,

v

n

,

e

n

,

v

n

+1

] (with

e

i

∈

E

(

G

), 1

≤

i

≤

n

) such that for all
1

≤

i

≤

n

:

σ

(

e

i

) =

v

i

 and

τ

(

e

i

) =

v

i

+1

. In particular, an empty path is a sequence [

v

1

] con-
taining just a single node. When no ambiguities can arise, that is, if each

e

i

 is uniquely
determined by

v

i

 and

v

i

+1

, we also denote a path more concisely by [

v

1

,

v

2

, …,

v

n

+1

].

– 3 –

We extend the definition of

σ

 and

τ

 to paths by:

σ

(

p

) =

v

1

 and

τ

(

p

) =

v

n

+1

.

P

(

G

) denotes
the set of all paths in

G

. Note that

P

(

G

) does not just include simple paths, but also
cycles and paths in which edges might occur multiple times.

The label types

α

 and

β

 might just be sets of symbols, or they can be complex struc-
tures to enable the labeling with terms or semantic values, say. The set of all graphs of
type (

α

,

β

) is denoted by

Γ

(

α

,

β

).

Definition 2.

A

visual language of type

 (

α

,

β

) is a set of graphs

VL

⊆

Γ

(

α

,

β

).

In the sequel we will look at visual languages on this very abstract level, that is, the
abstract syntax of a visual language is specified as a set of graphs of a specific type.

Of course, structural information has to be explored in some way when defining
transformations or semantics, but with the presented approach this happens through a
specific kind of pattern matching so that context is explored only as far as really needed
for a particular task. This pattern matching provides an inductive view on graphs which
facilitates the analysis and transformation of graphs in many situations.

The abstractness of representations is affected by yet another factor: the choice of
relationships. A representation based on elementary relationships, such as

touches

 or

inside

, gets much larger than a graph whose edges denote relationships like “are con-
nected by an arrow labeled

x

”. We will illustrate this point further in Section 2. Before
that we compare our approach with other work in Section 2. Graph pattern matching
and the inductive graph view is described in Section 4, and applications of the abstract
syntax representation are shown in Section 5. Conclusions follow in Section 6.

2. Related Work

Using graphs to describe pictures is a common and wide-spread approach. However,
general models that apply to a broad range of visual languages are few. Examples are
Harel’s higraphs [Har88] and the theory of graph grammars [Cou90].

Higraphs are a combination of hierarchical graphs and Euler/Venn diagrams and
provide a perfect representation for those visual languages that exactly fit that model.
However, since higraphs have a fixed structure, their applicability is restricted, and
only a certain class of visual languages can be expressed in terms of them. Moreover,
higraphs do not offer an inductive view of graphs which makes some specification or
transformation tasks more difficult, if not impossible.

Graph grammars, on the other hand, provide a fairly general model of visual lan-
guages. Graph grammars are very powerful, and they have been extensively used to
describe graph transformations. Graph grammars enjoy a large body of theoretical
results, and they also provide, in a certain sense, an inductive view of graphs. So why
should we need yet another graph model? A major difficulty with graph grammars is
that they consider the graphs they operate on as global variables that can be updated
destructively. This means that changes performed by grammar rules are implicitly
propagated, and thus a declarative treatment of graphs is prohibited. Things are com-
plicated by the fact that the semantics of graph grammars themselves is rather complex
due to advanced embedding rules and nondeterminism. In contrast, the inductive graph
view to be presented in Section 4 is quite simple, and it treats graphs as explicit param-

– 4 –

eters of transformations.
Apart from graph representations, the specification of visual language syntax has

been addressed in algebraic frameworks [WL93] and by several logical formalisms, for
an overview, see [MMW96]. In the formalism of [WL93] a picture is represented by
the set of terms generated from a sub-signature of the signature defining the visual lan-
guage. Actually, this representation is not very different from the logical approach in
which a picture is represented by set of facts. It is interesting to note that these formal-
isms always deal with concrete syntax, although it would be possible, in principal, to
derive more abstract representations by appropriate predicate definitions. In any case, it
is possible to transform a logical description into a graph and vice versa. So why prefer
graphs over logical representations? To some degree, it might be a matter of taste, but
the applications of abstract visual syntax often require the decomposition of graphs
performed in specific order, and for that graphs seem to be more convenient.

Finally, the notion of abstract visual syntax is explicitly mentioned in [AER96,
RS95, RS96]. Although the authors recognize the need to separate concrete and
abstract syntax of visual languages, they do not really achieve this separation since for
their applications a one-to-one correspondence between both levels is required.

3. Examples: State Diagrams and VEX

Consider a visual language for state diagrams. Our goal is to define a semantics for this
visual language by specifying which set of strings is accepted by the corresponding
finite (nondeterministic) automaton.

In a state diagram, circles represent states and arrows represent state transitions.
One arrow is labeled with a special symbol “

start

” and is only connected with its head
to a circle. This circle represents the initial state of the automaton. All other arrows are
connected with their head and tail to circles and are labeled by a set of symbols drawn
from some alphabet

A

 or by the symbol

◊

 denoting the empty word. Final states are
represented by double circles.

The picture in Figure 1 denotes an automaton accepting strings of a’s and b’s con-
taining two consecutive a’s or b’s:

What is the general structure of state diagrams? A state diagram consists of the follow-
ing objects: Circles, double circles, symbols (from an alphabet

A

), arrows, and the spe-
cial symbol

start

. Thus the type of node labels is {, ,

→

,

start

}

∪

A

. Relevant
relationships are: Connection of arrows to (double) circles and attachment of symbols

a

a

b

b a
b

a

start

b

Figure 1.

Finite Automaton for the Language (a

∪

b)*(aa

∪

bb)(a

∪

b)*

– 5 –

to arrows. We therefore have the type of edge labels {src, tgt, lab} where “src” (“tgt”)
labels edges that represent the connection of an arrow to its source (target) and “lab”
labels edges that represent the attachment of labels to arrows. The abstract syntax
graph for the above automaton is shown in Figure 2.

Since we ignore structural constraints, it is clear that the visual language defined by
graphs of type ({ , ,

→

,

start

,

◊

}

∪

A

, {src, tgt, lab}) is actually a proper superset
of correctly formed state diagrams.

It is interesting that – at least for graphs representing syntactically correct state dia-
grams – some objects and relationships always occur in fixed configurations. For
example, all

→

-nodes (except one) have two outgoing edges connected to circles, one
labeled “src” and the other labeled “tgt”, and one incoming edge labeled “lab” which
comes from a symbol-node, that is, from a node with a label

∈

A

∪

 {

◊

}. Now we can
safely replace (that is, without loosing essential picture information) such a subgraph
representing a fixed configuration of objects and relationships by a more abstract rela-
tionship, that is, by just one edge going from the target of the “src”-edge to the target of
the “tgt”-edge labeled like the source of the “lab”-edge.We have to decide what to do
with arrows that are labeled by more than one symbol. For convenience we introduce a
different edge for each label. After this translation we can drop all symbol-nodes since
they are isolated and do not take part in any relationship. Finally, we can get rid of the
path [

u

:

start

,

v

:

→

,

w

:] by marking the last node as a start node. Since this can, in
general, also be a final node, we have three kinds of node labels: Just a start node (

S

),
just a final node (

F

), or a start and final node (

SF

). All other nodes can be left unla-
beled. Now we have a much more succinct abstract representation of state diagrams
given by ({

S

,

F

,

SF

},

A

∪

 {

◊

})-graphs, see Figure 3.
The similarity of this representation to the original visual language is purely acci-

dental. In general, higher abstraction levels cause the representations to differ signifi-
cantly from the visual original.

To give an example, consider the language VEX, which offers a visual notation for
the lambda calculus [CHZ95]: empty circles represent identifiers, non-empty circles

Figure 2.

Abstract Syntax Graph for the Automaton

a

b

→

start

→

→ →
→

→

→

→

src

src

tgt

tgt

tgt

tgt

src

src

src

src

tgt

tgt

tgt

src
tgt

lab

lab

lab

lab

lab
lab

lab

lab

lab

– 6 –

denote abstractions, and an application is depicted by two externally tangent circles
with an arrow at the tangent point leading from the function to the argument. Each cir-
cle representing an identifier is connected by a straight line to a so-called root node,
which is either internally tangent to an abstraction circle and represents then the
parameter of the abstraction or which lies outside any other circle and then represents a
free variable. Figure 4 shows the VEX expression for the lambda term

λ

y

.((

λ

x

.

yx

)

z

).

We can, again, give abstract syntax on different levels of abstractness. First, we can
stay in a representation rather close to the original by simply replacing lines and arrows
by

def

- and

apply

-labeled edges and replacing the

inside

- and

internally-touches

-rela-
tionships by

body

- and

par

-edges, respectively. We do not need node labels at all since
abstraction nodes can be distinguished from variable nodes by looking at the incident
edges. Thus the abstract syntax for VEX can be given by graphs of type (

∅

, {

def

,

apply

,

par

,

body

}). The abstract syntax for the VEX example is shown in the left part of
Figure 5.

On the other hand, we can represent VEX pictures by DAGs to facilitate concise
semantics definitions, see [Erw97b] for details. Such a representation consists of appli-
cation-, abstraction- and variable-nodes with corresponding node labels: @,

λ

,
(unlabeled). An @-node has an outgoing

fun

-edge and an outgoing

arg

-edge that lead
to the function to be applied and the argument, respectively. A

λ

-node is connected by
an outgoing

par

-edge to its parameter and by an outgoing

body

-edge to the node repre-
senting its body. Hence, this abstract syntax for VEX uses graphs of type ({@,

λ

},
{

fun

,

arg

,

par

,

body

}). This abstract syntax version is shown in the right part of Figure
5.

a

a

b

b a
b

a

S

b

Figure 3.

More Abstract Syntax Graph for the Automaton

F

Figure 4.

A simple VEX picture

– 7 –

4. Inducti ve Graph View

We can view a graph in the style of algebraic data types found in functional program-
ming languages: a graph is either empty, or it is constructed by a graph

g

 and a new
node

v

 together with edges from

v

 to its successors in

g

 and edges from its predecessors
in

g

 leading to

v

. This way we can construct graphs with a constant constructor

Empty

and a constructor

N

 taking as arguments a triple (

pred-spec

,

node-spec

,

succ-spec

),
called

node context

, and the graph

g

 to be extended. Here,

node-spec

 is a node identi-
fier not already contained in

g

 possibly followed by a label (for example,

v

:

S

 or

y

:

F

),
and

pred-spec

 (

succ-spec

) denotes a list of predecessor (successor) nodes possibly
extended by labels for the edges that come from (lead to) the nodes. For instance, [

x

›a,

w

›b] denotes a list of two predecessor nodes

x

 and

w

 where the edges coming from

x

and

w

 have the respective labels “a” and “b”. Similarly, [a›

y

, b›

y

] denotes a single suc-
cessor

y

 that is reached via two differently labeled edges. The graph from Figure 3, for
example, is given by the following expression:

(

N

 ([

x

›a,

w

›b],

v

:

S

, [a›

w

, b›

x

])
(

N

 ([],

w

, [a›

y

]) (

N

 ([],

x

, [b›

y

]) (

N

 ([],

y

:

F

, [a›

y

, b›

y

])

Empty

)))

Here

v

,

w

,

x

, and

y

 are arbitrary node identifiers that are pairwise distinct. In the sequel
we make use of two abbreviations: (1) empty sequences can be omitted, and (2) a cas-
cade of

N

-constructors is replaced by a single

N

*-constructor. So the above term can be
simplified to:

N

* ([

x

›a,

w

›b],

v

:

S

, [a›

w

, b›

x

]) (

w

, [a›

y

]) (

x

, [b›

y

]) (

y

:

F

, [a›

y

, b›

y

])

Empty

Graph expressions are by no means unique, in particular, the order in which nodes
appear in a constructing term can be arbitrarily changed. (Of course, the predecessor
and successor specifications have to be adjusted accordingly.) It should be clear that
any labeled multi-graph can be represented by a graph expression. A proof for this can
be found in [Erw97a]. There we also give a formal semantics for graph types and graph
constructors.

The main use of graph constructors in the context of this work is not to build new
graphs but to take part in pattern matching on graphs. Especially useful for graphs is

par

def

apply
def

apply

def

body

par

body

body

body

Figure 5.

Abstract VEX syntax

fun arg

@

par body

λ

parbody

λ

@

fun
arg

– 8 –

the concept of

active patterns

 [Erw96]: as known from pattern matching on data types,
matching a pattern like

N

 (

p

,

v

:

l

,

s

)

g

 to a graph expression binds the last inserted node
context to

p

,

v

,

l

, and

s

 and the remaining graph to

g

. However, in order to move in a
controlled way through the graph, it is necessary to match the context of a specific
node. This is possible if

v

 is already bound to the node to be matched. Then the context
of

v

 is bound to the remaining variables. For example, matching the pattern

N

 (

p

,

y

:

l

,

s

)

g

 against the above graph expression results in the following bindings:

p

→

 [

w

›a,

x

›b],

l

→

F

,

s

→

 [a›

y

, b›

y

],

g

→

 “

rest-graph

”

where

rest-graph

 is an arbitrary representation of the matched graph without node

y

and its incident edges, for example,

N

* ([

x

›a,

w

›b],

v

:

S

, [a›

w

, b›

x

]) (

w

) (

x

)

Empty

We can restrict patterns further by adding labels that must be present or by replacing
list variables like

s

 or

p

 by more concrete lists patterns. For example,

x

::

l

 matches any
nonempty list and binds

x

 to its head and

l

 to its tail. It is also possible to match lists of
a specific length, and we can also ignore bindings altogether by simply omitting the
corresponding parts of the pattern. For instance, we can match node

v

 binding the “a”-
and “b”-successor nodes to variables

i

 and

j

, respectively, by using the pattern:

N

 (

v

,
[a›

i

, b›

j

])

g

. Then,

i

 and

j

 will be bound to the nodes

w

 and

x

, respectively. Since we did
not specify anything for the predecessor list, no binding will be produced. If we wanted
to ensure that the matched node has no predecessors, we would have used the pattern

N

([],

v

, [a›

i

, b›

j

])

g

 instead. This, however, fails to match our example graph. In cases like
this, the next pattern (in a function definition) is tried.

Matching a cascading pattern

N

*

c

1

c

2

 …

c

n

g

 against a graph

g

’ works as follows:
let

g

1

, …,

g

n

 be auxiliary variables to be bound to intermediate decomposed graphs.
Now first,

N

c

1

g

1

 is matched against

g

’, and the bindings produced by this match,
especially the node bindings in

c

1

 and the rest graph

g

1

, are then used to match

N

*

c

2

 …

c

n

g

 against

g

1

, that is,

N

c

2

g

2

 is matched against

g

1

,

N

c

3

g

3

 is matched
against

g

2

, and so on, until

N

c

n

g

n

 is matched against

g

n

-1

. Then

g

 is bound to

g

n

. In
this way,

N

* patterns can actually be used to conveniently find paths (of fixed length) in
the graph.

We also shall use an additional edge constructor

 E

 (

v

›

l

›

w

)

g

 which simply inserts an
edge with label

l

 between the two nodes

v

 and

w

 (

v

 and

w

 must be already present in

g

).
Strictly, the

E

 constructor is not needed, it can be expressed in terms of

N

 by, for exam-
ple, matching

v

 and re-inserting

v

 with

l

›

w

 as an additional successor:

E

 (

v

›

l

›

w

) (

N

 (

p

,

v

:

m

,

s

)

g

) :=

N

 (

p

,

v

:

m

, (

l

›

w

)::

s

)

g

In some cases

E

 is much more convenient to use than nested applications of

N

.

5. Abstract Visual Syntax in Action

In this section we first demonstrate how to define semantics for state diagrams using
the second given abstract visual syntax. Then we show how the inductive graph view

– 9 –

can be used to map between different abstract syntax levels. The use of inductive
graphs in semantics definitions is illustrated in further detail in [Erw97b].

5.1 Path Semantics for State Diagrams

The semantics definition maps paths of the abstract syntax graph to words over

A

.
Actually, this happens in two steps: First, we define the set of paths of the state diagram
that correspond to trails in the automaton taken when a word is accepted. These are all
finite (simple and nonsimple) paths for which the source node is labeled

S

 (or

SF

) and
the target node is labeled

F

 (or

SF

). Then the set of accepted words is obtained by con-
catenating the labels along each such path. This concatenation is defined by an aggre-
gation function over paths:

agg

(

f

,

 u

)

[

v

] :=

u
agg

 (

f

,

u

)

[

v

1

,

e

1

,

v

2

, …,

v

n

+1

] :=

f

(

ε

(

e

1

),

agg

(

f

,

 u

)

[

v

2

, …,

v

n

+1

])

This means that an empty path is mapped to

u

, and a nonempty path is aggregated by
combining the label of the first edge with the aggregation of the rest path by

f

. (

agg

 is
actually the

fold

/

reduce

 operator found in functional languages.) Now the word repre-
sented by a path in an automaton can be obtained by aggregating the path with

u

 being
the empty word and

f

 defining the concatenation of a character

a

 in front of a word

s

.
This is usually denoted by

a

·

s

 where

◊

·

s

 =

s

·

◊

 =

s

.
Hence the semantics of an automaton represented by an abstract syntax graph

g

 can
be simply defined as:

S

[[

g

]]

 := {

agg

(·,

◊

)

p

|

 p

∈

P

(

g

)

∧

ν

(

σ

(

p

))

∈

 {

S

,

SF

}

∧

ν

(

τ

(

p

))

∈

 {

F

,

SF

}}

5.2 Syntax Transformations

We have seen that the abstract visual syntax can be defined on quite different levels of
abstraction. On the one hand, the syntactic description can be very fine-grained reflect-
ing more or less the exact spatial syntax. This representation level is suitable, for
instance, for a parser. On the other hand, the syntax might abstract from many geomet-
ric details using advanced relationships between objects that are represented on a lower
level by several elementary relationships. This representation is often much better
suited for semantics definitions and for compiling purposes. Now having formally
defined mappings between these different levels we can on the one hand tie the seman-
tics of the abstract level to the concrete visual appearance of the language, on the other
hand we can join a parsing front end with a compiling back end providing a complete
compiler/interpreter for a visual language. This supports the modular design of visual
language implementations.

As an example we show how to transform the first automaton syntax into the sec-
ond. The main work is to replace

→

-nodes with incident edges by new edges. This is
done by the function

repl

 which consists of three cases.
The first line applies when a node

u

 with label

→

 exists that has at least one prede-
cessor (

x

) and two successors (

v

 and

w

) connected to

u

 by a “src”-, respectively, “tgt”-
edge. In that case an edge from

v

 to

w

 with label

l

 is inserted into the graph. This is

– 10 –

done with the edge constructor

E

. Here,

l

 is obtained by matching

x

 after

u

 in the cas-
cade pattern. Note that

E

 (

v

›

l

›

w

) is not just applied to

g

, the decomposed graph without

u

 and

x

. Instead, first

repl

 is applied recursively to

g

 into which

x

 and

u

 have been re-
inserted. The re-insertion of

x

 is necessary since it might be used to label other edges,
and the re-insertion of

u

 with all remaining predecessors

p

 is needed to enable the edge
insertion for possibly other labels (given by

p

). The second case simply deletes

→

-
nodes which have no labels anymore, and the third case is for termination.

repl

 (

N

* (

x

::

p

,

u

:

→

, [src›

v

, tgt›

w

]) (

x

:

l

,

s

)

g

) :=

E

 (

v

›

l

›

w

) (

repl

 (

N*

 (

p

,

u

:

→

, [src›

v

, tgt›

w

]) (

x

:

l

,

s

)

g

))

repl

 (

N

 ([],

u

:

→

)

g

) :=

repl

g
repl

g

 :=

g

Deleting isolated label nodes is done by the function

del

:

del

 (

N

 ([],

v

, [])

g

) :=

del g
del g

 :=

g

Finally, the replacement of the

start

-node and the relabeling of final states is accom-
plished by the function

relab

. The first pattern determines the path from the

start

-node
via the

→

-node

u

 to the actual start node

w

 of the automaton.

relab

 (

N

* (

u

:

start

, [

v

]) (

v

, [

w

]) (

w

:

l

,

s

)

g

) :=

 N

(

u

:

if

l

=

then

SF

else

 S

,

s

) (

relab g

)

relab

 (

N

 (

p

,

v

: ,

s

)

g

) :=

N

(

p, v

:

F

,

s

) (

relab

g

)

relab g

 :=

g

Finally, the complete transformation is simply given by:

transform g

 :=

relab

 (

del

 (

repl

g

))

6. Conclusions

We have shown how graphs can serve as an abstract representation of visual languages.
Taking graphs

without

 structural constraints allows to easily switch between different
representations for the same language and to choose the abstraction level suited best
for a particular task. Moreover, adopting an inductive graph view facilitates mapping
between different representations of the same visual language which might be helpful
in combining different phases of language elaboration.

References

[AER96] Andries, M., Engels, G. & Rekers, J.: How to Represent a Visual Program?,

Work-
shop on Theory of Visual Languages

, 1996.

[CHZ95] Citrin, W., Hall, R. & Zorn, B.: Programming with Visual Expressions,

IEEE Symp.
on Visual Languages

, pp. 294-301, 1995.

[Cou90] Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach, in J. van Leeu-
wen (ed.):

Handbook of Theoretical Computer Science, Vol. B

, Elsevier, pp. 193-242,
1990.

– 11 –

[Erw96] Erwig, M.: Active Patterns,

 8th Int. Workshop on Implementation of Functional Lan-
guages

, LNCS 1268, pp. 21-40, 1996.

[Erw97a] Erwig, M.: Functional Programming with Graphs,

2nd ACM SIGPLAN Int. Conf. on
Functional Programming

, pp. 52-65, 1997.

[Erw97b] Erwig, M.: Semantics of Visual Languages,

IEEE Symp. on Visual Languages

, 1997.

http://voss.fernuni-hagen.de/pi4/erwig/abstracts.html#VL97

[Har88] Harel, D.: On Visual Formalisms,

Communications of the ACM, Vol. 31

, No. 5, pp.
514-530, 1988.

[MM96] Marriott, K., Meyer, B. & Wittenburg, K.: A Survey of Visual Language Specifica-
tion and Recognition,

Workshop on Theory of Visual Languages

, 1996.

[MMW96] Marriott, K. & Meyer, B.: Towards a Hierarchy of Visual Languages,

IEEE Symp. on
Visual Languages

, 1996.

[Mos90] Mosses, P.D.: Denotational Semantics, in J. van Leeuwen (ed.):

Handbook of Theo-
retical Computer Science, Vol. B

, Elsevier, pp. 575-631, 1990.

[RS95] Rekers, J. & Schürr, A.: A Graph Grammar Approach to Graphical Parsing,

IEEE
Symp. on Visual Languages

, pp. 195-202, 1995.

[RS96] Rekers, J. & Schürr, A.: A Graph Based Framework for the Implementation of Visual
Environments,

IEEE Symp. on Visual Languages

, 1996.

[WL93] Wang, D. & Lee, J.R.: Visual Reasoning: its Formal Semantics and Applications,

Journal of Visual Languages and Computing 4

, pp. 327-356, 1993.

