Abstract Visual Syntax

Martin Erwig

FernUnversitat Hagen, Praktische Informatik 1V
D-58084 Hagen, Germgn
erwig@fernuni-hagen.de

Abstract. We propose a separation of visual syntax into concrete and abstract
syntax, much lik it is often done for #tual languages. Here the focus is on visual
programming languages; the impact on visual languages in general is not clear by
now. We suggest to use unstructured labeled multi-graphs as abstract visual syn-
tax and she how this facilitates semantics deftions and transformations of vi-

sual languages. In particulatisregarding structural constraints on the abstract
syntax leel males such manipulations simple andveoful. Moreaver, we dem-
onstrate that — in contrast to the traditional monolithic grapmitdefi — an in-
ductive view of graphs preides a ery cowvenient vay to mee in a structured

(and declarate) way through graph#\gain this supports the simplicity of de-
scriptions for transformations and semantics.

1. What is Abstract Visual Syntax?

To specify (the syntax of) a visual language one can choose amoyg asldety of
formalisms, for a comparison, see [MM98]l these approaches are concerned with
the concrete syntax of visual languages, and there are only autbors gplicitly
mentioning abstract visual syntax [AER96, RS95, RSB is surprising since avk
on textual programming languages has demonstrated that the use of abstract syntax can
be \ery helpful in may different areas, forxample, speciéiation of type systems,
compiler construction, program transformations, and semanticstidefi One reason
for this situation might be that the righté of abstractness has not been ideadifiet:
we beliee that abstract visual syntax must be “more abstract” than intivalease.
We eplain this by a simplexample. Consider the folldng (textual) grammar
describing part of a concrete syntax fgpeessions.

expr = n-expr | b-expr | if-expr
n-expr ::=term|n-expr +term
term ::=factor |term * factor
factor ::=id| (n-expr)

b-expr ::=id | b-expr Ob-expr | ...
if-expr ::=if b-expr then expr elseexpr

A corresponding abstract syntaxowd ignore may details, such as the choice @&k

words, grammar rules for defihg associatity of operators, or rules restricting the
typing of operations (see also [M0s90]):

expr::=id | expr op expr |if (expr, expr, expr)
op =+|*|0O]...

This grammar is much more concise. It does not introduce nonterminabgpfese

sions of diferent types, and it also ignores assouwigtiof operators. (Omitting theel

words from the conditional does not meathe grammar essentially simpler in this
example.) Further operations on sentences of the language can rely on syntax being
already cheadd by a parser and can thusriwwith the simpler abstract syntax.

In a similar vay, the abstract syntax of visual languages need not be concerned with
all the details that a concrete syntax speaifon has to care abodthis means we can
abstract from the choice of icons or symbols (comparable to the choiegwbids in
the textual case) and from geometric details such as size and position of objects (at
least up to topological equalence, that is, as long as relat relationships between
objects are not &dcted).We can also ignore associdties used to resobvambiguous
situations during parsing much dikn the tetual example. Morewer, typings of rela-
tionships that restrict relationships to specsiibsets of symbols can be omitt€bis
corresponds to grouping operations, such asl4; ander one nonterminal.

But we can doen more — and this is the point where abstract visual syntax gets
more abstract than in thextaal case: the alve abstract syntax foxpressions is still
given by a grammar and thus retains some structural information about the language.
This is absolutely adequate since the descriptiorng simple and can be easily used
when defining, for ekample, an interpreter forxpressions. Hweever, to do so for a
visual language requires, in most cases, soifioet ef the consideration of conte
information which unnecessarily complicates wi¢ifins of transformationsThere-
fore, we suggest to fget about this structural information, too, and to consider a pic-
ture just as a directed, labeled multi-graph where the nodes represent objects and the
edges represent relationships between objacttass of graphs is then justvgn by
two types defiing node and edge labels, that is, the types of objects and relationships
in the abstractly represented visual language.

Definition 1. A directed labeled multi-graph of type (a, B) is a quintupleG =
(M, E, 1, v, €) consisting of a set of nod¥sand a set of edg&swherel:E - VxVis a
total mapping defiing for each edge the nodes it connettse (partial) mappings
v:V 5 a ande:E - B defne the node and edge labels.

For a graphG, V(G) andE(G) denote the set of nodes and edgeS.alVheneer G is
fixed, we also might simply uséandE. For brevity, we sometimes denote a node or
edgex together with its labdlsimply byx:l.

The source of an edgee [0 E with 1(e) = (v, w) is defned aso(e) = v, and thearget
of eis defned as(e) =w. A path in a graphG is an alternating sequence of nodes and
edgesp = [Vq, e, Vo, €, ..., Vi, € Vel (With g O E(G), 1<i<n) such that for all
1<i<n: o(g) = v; andt(g) = vi41. In particular an empty path is a sequenegg con-
taining just a single nod&/hen no ambiguities can arise, that is, if egdb uniquely
determined by; andvi,4, we also denote a path more concisely\gy\p, ..., V41l

We ectend the defiition of o andt to paths byo(p) = v; andt(p) = v+1. P(G) denotes
the set of all paths is. Note thatP(G) does not just include simple pathsit lalso
cycles and paths in which edges might occur multiple times.

The label types andf3 might just be sets of symbols, oryhean be complestruc-
tures to enable the labeling with terms or semaraiices, sayThe set of all graphs of
type @, B) is denoted by (a, B).

Definition 2. A visual language of type (a, B) is a set of graphéL O ' (a, B).

In the sequel we will look at visual languages on tleig/\abstract Meel, that is, the
abstract syntax of a visual language is spegtifis a set of graphs of a spediipe.

Of course, structural information has to bglered in some ay when defiing
transformations or semanticgjttwith the presented approach this happens through a
specift kind of pattern matching so that cotitis explored only asdr as really needed
for a particular tasklThis pattern matching pvades an inductie viev on graphs which
facilitates the analysis and transformation of graphs iryreitumations.

The abstractness of representationsfescédd by yet anotheaétor: the choice of
relationshipsA representation based on elementary relationships, suduchss or
inside, gets much layer than a graph whose edges denote relationshg&alik con-
nected by an arm labeledx”. We will illustrate this point further in Sectich Before
that we compare our approach with otherkvin Section2. Graph pattern matching
and the inductie graph vie is described in Sectich) and applications of the abstract
syntax representation are ghoin Sectiorb. Conclusions foller in Sectiong.

2. RelatedWork

Using graphs to describe pictures is a common and wide-spread approaeheiio
general models that apply to a broad range of visual languagesvatexéamples are
Harel's higraphs [Har88] and the theory of graph grammars [Cou90].

Higraphs are a combination of hierarchical graphs and Eelen/\diagrams and
provide a perfect representation for those visual languagesxhettyefit that model.
However, since higraphs a a fked structure, their applicability is restricted, and
only a certain class of visual languages canXpeessed in terms of them. Moxen
higraphs do not &r an inductre vienv of graphs which mas some specifation or
transformation tasks more fildult, if not impossible.

Graph grammars, on the other handyjte a &irly general model of visual lan-
guages. Graph grammars aerw paverful, and thg have been eensvely used to
describe graph transformations. Graph grammarsyemjtage body of theoretical
results, and thealso preide, in a certain sense, an induetviev of graphs. So wh
should we need yet another graph modelnajor difficulty with graph grammars is
that the consider the graphs theperate on as globabsiables that can be updated
destructvely. This means that changes performed by grammar rules are implicitly
propagted, and thus a declaratitreatment of graphs is prohibitéithings are com-
plicated by thedct that the semantics of graph grammars themsétwather compie
due to adanced embedding rules and nondeterminism. In contrast, the iredgaph
view to be presented in Sectidns quite simple, and it treats graphs mglieit param-

eters of transformations.

Apart from graph representations, the speaifon of visual language syntax has
been addressed in algebraic frameks [WL93] and by seeral logical formalisms, for
an o/erview, see [MMW96]. In the formalism of [WL93] a picture is represented by
the set of terms generated from a sub-signature of the signatuiegléie visual lan-
guage Actually, this representation is noemy different from the logical approach in
which a picture is represented by setauft§. It is interesting to note that these formal-
isms alvays deal with concrete syntax, although éuwd be possible, in principal, to
derive more abstract representations by appropriate predicatéide§i. In ay case, it
is possible to transform a logical description into a graph and gisavSo wi prefer
graphs wer logical representationd® some dgree, it might be a matter of tastetb
the applications of abstract visual syntax often require the decomposition of graphs
performed in specifiorder and for that graphs seem to be moreveaient.

Finally, the notion of abstract visual syntax gkcitly mentioned in [AER96,
RS95, RS96]Although the authors recognize the need to separate concrete and
abstract syntax of visual languagesytie not really achiee this separation since for
their applications a one-to-one correspondence between beth ik required.

3. Examples: State Diagrams an&/EX

Consider a visual language for state diagrams. Our goal is te @e$iemantics for this
visual language by specifying which set of strings is accepted by the corresponding
finite (nondeterministic) automaton.

In a state diagram, circles represent states and/amepresent state transitions.
One arrav is labeled with a special symbatédrt” and is only connected with its head
to a circle.This circle represents the initial state of the automa#&twther arravs are
connected with their head and tail to circles and are labeled by a set of symbvals dra
from some alphabek or by the symbod denoting the empty evrd. Final states are
represented by double circles.

The picture in Figurd denotes an automaton accepting stringsfad 8 con-
taining two consecutie as or bs:

start

Figure 1. Finite Automaton for the Language{&)*(aalbb)(aJb)*

What is the general structure of state diagrafnstate diagram consists of the follo

ing objects: Circles, double circles, symbols (from an alph@bhetrravs, and the spe-
cial symbolstart. Thus the type of node labels i©{ ©), -, start} 0 A. Relevant
relationships are: Connection of am®to (double) circles and attachment of symbols

to arravs. We therefore hze the type of edge labels {src, tgt, lab} where “src” (“tgt”)
labels edges that represent the connection of aw aorits source (tget) and “lab”
labels edges that represent the attachment of labels tosaiithe abstract syntax
graph for the abge automaton is sk in Figure2.

lab

Figure 2. Abstract Syntax Graph for tiheutomaton

Since we ignore structural constraints, it is clear that the visual languageddefi
graphs of type (©, ©), -, start, 0} O A, {src, tgt, lab}) is actually a proper superset
of correctly formed state diagrams.

It is interesting that — at least for graphs representing syntactically correct state dia-
grams — some objects and relationshipsagb occur in fed confgurations. Br
example, all- -nodes (gcept one) hee two outgoing edges connected to circles, one
labeled “src” and the other labeled “tgt”, and one incoming edge labeled “lab” which
comes from a symbol-node, that is, from a node with a [@l#eD {0}. Now we can
safely replace (that is, without loosing essential picture information) such a subgraph
representing aXed confguration of objects and relationships by a more abstract rela-
tionship, that is, by just one edge going from thgetof the “src”-edge to the Bt of
the “tgt”-edge labeled li& the source of the “lab”-edgeeMare to decide what to do
with arrows that are labeled by more than one symbmi.dérvenience we introduce a
different edge for each lab@lfter this translation we can drop all symbol-nodes since
they are isolated and do not &part in ag relationship. Finallywe can get rid of the
path :start, v », w: O] by marking the last node as a start node. Since this can, in
general, also be anfal node, we hae three kinds of node labels: Just a start nSije (
just a fhal node F), or a start andrial node §). All other nodes can be left unla-
beled. Nov we hae a much more succinct abstract representation of state diagrams
given by ({S F, SF}, A0 {0})-graphs, see Figurg.

The similarity of this representation to the original visual language is purely acci-
dental. In general, higher abstractiondls cause the representations tdedigignifi
cantly from the visual original.

To give an @ample, consider the languagg&X, which offers a visual notation for
the lambda calculus [CHZ95]: empty circles represent idergjfinon-empty circles

b
Figure 3. More Abstract Syntax Graph for taitomaton

denote abstractions, and an application is depicted byetternally tangent circles

with an arrev at the tangent point leading from the function to tlyeierent. Each cir

cle representing an idenéfiis connected by a straight line to a so-called root node,
which is either internally tangent to an abstraction circle and represents then the
parameter of the abstraction or which lies outsideadimer circle and then represents a
free variable. Figurel shavs theVEX expression for the lambda terky.((AX.yx)2).

Figure 4. A simpleVEX picture

We can, agin, give abstract syntax on ifent levels of abstractness. First, we can
stay in a representation rather close to the original by simply replacing lines amsl arro
by def- andapply-labeled edges and replacing theide- andinternally-touches-rela-
tionships bybody- andpar-edges, respeetly. We do not need node labels at all since
abstraction nodes can be distinguished framable nodes by looking at the incident
edges.Thus the abstract syntax foifEX can be gien by graphs of typell { def,
apply, par, body}). The abstract syntax for ttMEX example is shen in the left part of
Figure5.

On the other hand, we can represéBKX pictures by [AGs to fcilitate concise
semantics ddifitions, see [Erw97b] for details. Such a representation consists of appli-
cation-, abstraction- andakiable-nodes with corrpending node labels: @\, O
(unlabeled)An @-node has an outgoirfign-edge and an outgoirayg-edge that lead
to the function to be applied and thguamnent, respectely. A A-node is connected by
an outgoingpar-edge to its parameter and by an outgdiody-edge to the node repre-
senting its bodyHence, this abstract syntax fdEX uses graphs of type ({@},

{fun, arg, par, body}). This abstract syntaxevsion is shan in the right part of Figure
5.

par%iiy
@
A

Figure 5. AbstractVEX syntax

fun

4. Inductive GraphView

We can vigv a graph in the style of algebraic data types found in functional program-
ming languages: a graph is either empiyit is constructed by a graghand a ne
nodev together with edges fromto its successors mand edges from its predecessors
in g leading tov. This way we can construct graphs with a constant constréotpty

and a constructoN taking as aguments a triplepfed-spec, node-spec, succ-spec),
callednode context, and the graph to be e&tended. Herenode-spec is a node identi-

fier not already contained @possibly follaved by a label (for>ample,v:S or y:F),

and pred-spec (succ-spec) denotes a list of predecessor (successor) nodes possibly
extended by labels for the edges that come from (lead to) the nanlésstance,}a,

w>b] denotes a list of tavpredecessor nodegsandw where the edges coming fram
andw have the respeate labels “a” and “b”. Similarly[ay, b>y] denotes a single suc-
cessol that is reached via wdifferently labeled edge$he graph from Figur8, for
example, is gien by the follving expression:

(N ([xa,wb], v:S, [aw, bxx])
(N ([, w, [20y]) (N ([, x, [ooy]) (N([I, y:F, [0y, by]) Empty)))

Herev, w, x, andy are arbitrary node idengfis that are pairwise distinct. In the sequel
we male use of tw abbreiations: (1) empty sequences can be omitted, and (2) a cas-
cade ofN-constructors is replaced by a sinfjfeconstructor So the abee term can be
simplified to:

N* ([xa,wb], v:S, [aw, bxX]) (w, [a>y]) (X, [bsy]) (V:F, [y, bsy]) Empty

Graph @pressions are by no means unique, in partictier order in which nodes
appear in a constructing term can be arbitrarily changed. (Of course, the predecessor
and successor speciitions hge to be adjusted accordinglyt should be clear that
ary labeled multi-graph can be represented by a graptessionA proof for this can
be found in [Erw97a]There we also ge a formal semantics for graph types and graph
constructors.

The main use of graph constructors in the cdndé this work is not to bild nev
graphs ht to tale part in pattern matching on graphs. Especially useful for graphs is

the concept oéctive patterns [Erw96]: as knan from pattern matching on data types,
matching a pattern I&N (p, v:l, s) g to a graphxpression binds the last inserted node
contt to p, v, I, ands and the remaining graph ¢ However, in order to mae in a
controlled vay through the graph, it is necessary to match the xioofea specif
node.This is possible it is already bound to the node to be matchiéen the conte
of vis bound to the remainingriables. Br example, matching the pattelh(p, y:1, 9)

g aquinst the abee graph pression results in the folleng bindings:

p - [wa,xb],l - F, s [ay, by], g - “rest-graph”

whererest-graph is an arbitrary representation of the matched graph without ynode
and its incident edges, foxample,

N* ([xa,wb], v:S, [aw, bxX]) (w) (X) Empty

We can restrict patterns further by adding labels that must be present or by replacing
list variables lile s or p by more concrete lists patterngrexample,x::l matches an
nonempty list and bindsto its head antto its tail. It is also possible to match lists of

a specift length, and we can also ignore bindings altogether by simply omitting the
corresponding parts of the patteror Fhstance, we can match nodbkinding the “a’-

and “b"-successor nodes tanablesi andj, respectiely, by using the patterm (v,

[avi, b>j]) g. Then,i andj will be bound to the nodegandx, respectiely. Since we did

not specify aything for the predecessor list, no binding will be produced. If aeted

to ensure that the matched node has no predecessorsudehare used the patteix

(1, v, [adi, b»j]) g insteadThis, havever, fails to match ourxemple graph. In casesdik

this, the ngt pattern (in a function defition) is tried.

Matching a cascading patteii ¢, C, ... C, g against a graply’ works as follovs:
let g4, ..., gy be auxiliary wariables to be bound to intermediate decomposed graphs.
Now first, N c; g; is matched agjinstg’, and the bindings produced by this match,
especially the node bindings 1y and the rest grapb;, are then used to match
N* ¢, ... ¢, 0 aquinstg,, that is,N c, g, is matched amnstg;, N c3 g3 is matched
againstg,, and so on, untiN ¢, g, is matched agjnstg,,.1. Theng is bound tagy,. In
this way, N* patterns can actually be used towemently fnd paths (of fied length) in
the graph.

We also shall use an additional edge constrie(sl>w) g which simply inserts an
edge with labell between the tavnodess andw (v andw must be already presentgh
Strictly, theE constructor is not needed, it can Bpressed in terms &f by, for exam-
ple, matchings and re-inserting with I>w as an additional successor:

E (wbw) (N (p, v:m, s) @) :=N (p, vim, (bw)::s) g

In some casels is much more corenient to use than nested applicationbl.of

5. Abstract Visual Syntax inAction

In this section we fst demonstrate moto defne semantics for state diagrams using
the second gen abstract visual syntakhen we she how the inductve graph viey

can be used to map betweenfati&nt abstract syntaxJels. The use of inducte
graphs in semantics deitions is illustrated in further detail in [Erw97b].

5.1 Path Semantics or State Diagrams

The semantics defition maps paths of the abstract syntax graph dodsv wer A.
Actually, this happens in twsteps: First, we dei the set of paths of the state diagram
that correspond to trails in the automatoretalvhen a wrd is acceptedhese are all
finite (simple and nonsimple) paths for which the source node is léb&edF) and
the taget node is labelel (or SF). Then the set of accepteamds is obtained by con-
catenating the labels along each such pHiis concatenation is degéd by an aggre-
gation function wer paths:

agg (f,u) [v] :=u
agg (f, u) [y, eq, Vo, ..., Vaua] i= T (e(e0), @gg (F, U) [Va, .., Vieal)

This means that an empty path is mapped #nd a nonempty path is aggated by
combining the label of therfit edge with the aggyation of the rest path Hy (agg is
actually thefold/reduce operator found in functional languages.vNite word repre-
sented by a path in an automaton can be obtained bygatiggethe path witlu being
the empty werd andf defining the concatenation of a charaaen front of a vord s.
This is usually denoted s whered-s=s¢ =s.

Hence the semantics of an automaton represented by an abstract syntacgraph
be simply defied as:

Sl :={agg (,0) p|p U P(g) Ov(a(p) U {S SF}0v(1(p) U{F, S}
5.2 SyntaxTransformations

We have seen that the abstract visual syntax can beatkfin quite dférent levels of
abstraction. On the one hand, the syntactic description casrypéne-grained refict-

ing more or less thexact spatial syntaxThis representation Vel is suitable, for
instance, for a parsédn the other hand, the syntax might abstract fromyrgaomet-

ric details using achnced relationships between objects that are representedveer a lo
level by seeral elementary relationship$his representation is often much better
suited for semantics daftions and for compiling purposes. Wdaving formally
defined mappings between thesdetiént levels we can on the one hand tie the seman-
tics of the abstract Vel to the concrete visual appearance of the language, on the other
hand we can join a parsing front end with a compiling back enddimg a complete
compiler/interpreter for a visual languagdéis supports the modular design of visual
language implementations.

As an &le we shw how to transform the ffst automaton syntax into the sec-
ond. The main verk is to replace- -nodes with incident edges bywedgesThis is
done by the functionepl which consists of three cases.

The frst line applies when a nodewith label - exists that has at least one prede-
cessorxX) and tw successory @ndw) connected tal by a “src”-, respectely, “tgt”-
edge. In that case an edge frarto w with labell is inserted into the grapfhis is

done with the edge constructér Here,| is obtained by matchingafteru in the cas-
cade pattern. Note thgt(wI>w) is not just applied tg, the decomposed graph without

u andx. Instead, fistrepl is applied recursely to g into whichx andu have been re-
inserted.The re-insertion ok is necessary since it might be used to label other edges,
and the re-insertion afwith all remaining predecessqrss needed to enable the edge
insertion for possibly other labels ygh byp). The second case simply deletes
nodes which ha no labels amrmore, and the third case is for termination.

repl (N* (x::p, u: —, [srew, tgtw]) (xiI, S) @) =

E (whw) (repl (N* (p, u: -, [srcw, tgtw]) (x:1, s) g))
repl (N ([, u:-) g) :=repl g
replg:=g

Deleting isolated label nodes is done by the funadsn

del (N([l, v, [) g) :=del g
delg:=g

Finally, the replacement of thatart-node and the relabeling ofél states is accom-
plished by the functionelab. The frst pattern determines the path from $teet-node
via the - -nodeu to the actual start nodeof the automaton.

relab (N* (u:start, [v]) (v, [w]) (w:l,) g) := N (u:if I=©) then SF elseS, s) (relab g)
relab (N (p, v:©), 9) g) :=N (p, V:F, 5) (relab g)
relabg:=g

Finally, the complete transformation is simplye by:

transformg :=relab (dédl (repl g))

6. Conclusions

We have shavn haw graphs can seevas an abstract representation of visual languages.
Taking graphsvithout structural constraints alls to easily switch between fifent
representations for the same language and to choose the abstraeticuited best

for a particular task. Moreer, adopting an induatée graph vier facilitates mapping
between dierent representations of the same visual language which might be helpful
in combining diferent phases of language elaboration.

References

[AER96] Andries, M., Engels, G. & Reks, J.: Hw to Represent ®isual Program?\brk-
shop on Theory of Visual Languages, 1996.

[CHZ95] Citrin, W., Hall, R. & Zorn, B.: Programming witfisual ExpressiondEEE Symp.
on Visual Languages, pp. 294-301, 1995.

[Cou90] Courcelle, B.: Graph Reiting: An Algebraic and Logi@pproach, in J. an Leeu-
wen (ed.)Handbook of Theoretical Computer Science, Vol. B, Elsevier, pp. 193-242,
1990.

—-10-—

[Erw96]
[Erw97al
[Erwa7b]
[Harsg]
[MM96]
[MMW96]
[Mos90]
[RS95]
[RS96]

[WL93]

Erwig, M.: Active Ratternsgth Int. Workshop on Implementation of Functional Lan-
guages, LNCS 1268, pp. 21-40, 1996.

Erwig, M.: Functional Programming with Grap2ed ACM SIGPLAN Int. Conf. on
Functional Programming, pp. 52-65, 1997.

Erwig, M.: Semantics dfisual LanguagedsEEE Symp. on Visual Languages, 1997.
http://voss.fernuni-hagen.de/pi4/erwig/abstracts.html#VL97

Harel, D.: OnVisual Formalisms,Communications of the ACM, Vol. 31, No. 5, pp.
514-530, 1988.

Marriott, K., Meyer, B. & Wittenhurg, K.: A Suney of Visual Language Speaifi-
tion and Recognitior\orkshop on Theory of Visual Languages, 1996.

Marriott, K. & Meyer, B.: Towards a Hierarghof Visual Language$EEE Symp. on
Visual Languages, 1996.

Mosses, B.: Denotational Semantics, in &rvLeeuwen (ed.}4andbook of Theo-
retical Computer Science, Vol. B, Elsevier, pp. 575-631, 1990.

Relers, J. & SchirrA.: A Graph GrammaApproach to Graphical &sing,|EEE
Symp. on Visual Languages, pp. 195-202, 1995.

Relers, J. & SchurA.: A Graph Based Fram@rk for the Implementation &isual
Environments|EEE Symp. on Visual Languages, 1996.

Wang, D. & Lee, J.RVisual Reasoning: itsdfmal Semantics anépplications,
Journal of Visual Languages and Computing 4, pp. 327-356, 1993.

—-11-—

