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Abstract. The choice calculus provides a language for representing and trans-
forming variation in software and other structured documents. Variability is cap-
tured in localized choices between alternatives. The space of all variations is
organized by dimensions, which provide scoping and structure to choices. The
variation space can be reduced through a process of selection, which eliminates
a dimension and resolves all of its associated choices by replacing each with one
of their alternatives. The choice calculus also allows the definition of arbitrary
functions for the flexible construction and transformation of all kinds of variation
structures. In this tutorial we will first present the motivation, general ideas, and
principles that underlie the choice calculus. This is followed by a closer look at
the semantics. We will then present practical applications based on several small
example scenarios and consider the concepts of ”variation programming” and
”variation querying”. The practical applications involve work with a Haskell li-
brary that supports variation programming and experimentation with the choice
calculus.

1 Introduction

Creating and maintaining software often requires mechanisms for representing varia-
tion. Such representations are used to solve a diverse set of problems, such as manag-
ing revisions over time, implementing optional features, or managing several software
configurations. Traditionally, research in each of these areas has worked with differ-
ent variation representations, obfuscating their similarities and making the sharing of
results difficult. The choice calculus [12] solves this by providing a formal model for
representing and reasoning about variation that can serve as an underlying foundation
for all kinds of research on the topic [10].

More specifically and relevant to the central topics of this summer school, the choice
calculus supports both generative and transformational techniques in the area of soft-
ware engineering. The generative aspect is obvious: The representation of variation in
software supports, through a process of selection, the generation of specific variants of
that software.

How a variation representations can support transformations may be less obvious.
To explain the relationship, we first point out that transformations can be distinguished
into two kinds: (A) simple and automatic transformations, and (B) complicated and (at
least partially) manual transformations. The first kind of transformation is the one we
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love: We have a representation of the transformation that we can apply as often as we
want to produce some desired output from all kinds of inputs in an instant.

However, the second kind of transformation is also ubiquitous in software engineer-
ing. Consider, for example, the editing of software in response to changed requirements
or bug reports. Such a transformation often requires many changes in different parts of
a software system and involves the creation of a network of interdependent changes.
If not done carefully, inconsistencies and other errors can be introduced, which may
necessitate further costly and time-consuming editing. This kind of transformation is
much more arduous than the automatic kind, but is nevertheless quite common. More-
over, since it is so complicated to deal with, it is even more deserving of attention.

A structured variation representation can support complicated transformations as fol-
lows. First, we can embed variation in the software artifact at all those places where
changes are required. By creating a new variant we keep the original version and so
always have a consistent version to fall back on. This benefit is also provided by tradi-
tional version control systems. However, usually the representation provided by these
tools are quite impoverished (line-based patches), making it difficult to view multiple
independent changes in context or apply changes in different orders.

Second, a structured variation representation supports exploratory editing of software
artifacts. Whenever a particular change can be applied in several different ways, we
can represent several alternatives and delay a decision, which might depend on other
changes not even made at this point.

Ultimately, a variation representation supports the integrated representation of a set
of closely related programs, a concept we have identified as program fields [11]. Pro-
gram fields are essentially an extensional representation of a set of programs together
with a set of direct transformations between them. Under this view, applying trans-
formations is expressed by trading decisions about which changes to apply. We will
illustrate this aspect later with examples.

We will start the tutorial in Section 2 by discussing the requirements of a variation
representation and then illustrating how these requirements are realized in the choice
calculus, which provides a generic annotation language that can be applied to arbitrary
object languages. Specifically, we will demonstrate how we can synchronize variation
in different parts of an object program through the concept of choices that are bound by
dimensions. We will also show how this representation supports modularity as well as
dependent variation. In addition, we will discuss the need for a construct to explicitly
represent the sharing of common parts in a variation representation. The behavior of the
sharing construct introduced by the choice calculus poses some challenges for the trans-
formation of variational artifacts. We will therefore ignore the sharing representation in
the later parts of the tutorial that are concerned with variation programming.

The most basic operation on a variation representation is the selection of a partic-
ular variant. In Section 3 we will define the semantics of the choice calculus, which
essentially defines a mapping from decisions to plain object programs. The semantics
is also implemented as part of the domain-specific language that we use for variation
programming and often serves a useful tool to understand variation representations.

The semantics is essentially based on a function for eliminating dimensions and as-
sociated choices. And even though choice elimination is an essential component of
the choice calculus, it is only one very simple example from a set of many interesting
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operations on variation structures. More sophisticated operations can be defined once
we integrate the choice calculus representation into an appropriate metaprogramming
environment. We will present such an integration of the choice calculus into Haskell
in Section 4. We will discuss several different approaches to such an integration and
choose one that is simple but powerful.

This integration provides the basis for writing programs to query, manipulate, and
analyze variation structures. We call this form of writing programs that exploit varia-
tion structures variation programming. Variation programming embodies the transfor-
mational aspects of a static variation representation. We will introduce the basic el-
ements of variation programming with programs on variational lists in Section 5. We
will illustrate how to generalize “standard” list functions to work on variational lists and
also develop functions that manipulate the variational structure of lists in a purposeful
manner.

In Section 6 we consider the application of variation programming to variational
programs (the maintenance of variational software). We use an extremely simplified
version of Haskell for that purpose.

This tutorial is full of languages. Understanding which languages are involved, what
roles they play, and how they are related to one another is important to keep a clear
view of the different representations and their purpose and how variation programming
works in the different scenarios. Here is a brief summary of the languages involved.

– The choice calculus is a generic language that can be applied to, or instantiated by,
different object languages. Specifically, given an object language L, we write V (L)
for the result of L’s integration with the choice calculus.

– Object languages, such as list data structures or Haskell, are placed under variation
control by integrating their representation with the choice calculus.

– Variational languages are the result of the combination of an object language with
the choice calculus. We write VL for the variational version of the object language
L, that is, we have VL = V (L). For example, we have the variational languages
VList =V (List) and VHaskell =V (Haskell).

– We are using Haskell as a metalanguage to do variation programming, and we
represent the choice calculus, all object languages, and variational languages as
data types in Haskell to facilitate the writing of variation programs.

Finally, in this tutorial we assume some basic familiarity with Haskell, that is, knowl-
edge of functions and data types and how to represent languages as data types. Knowl-
edge of monads and type classes are useful, but not strictly required.

2 Elements of the Choice Calculus

In this section we will introduce and motivate the concepts and constructs of the choice
calculus. We use a running example of varying a simple program in the object language
of Haskell, but the choice calculus is generic in the sense that it can be applied to any
tree-structured document.

Consider the following four implementations of a Haskell function named twice that
returns twice the value of its argument.
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twice x = x+x twice y = y+y

twice x = 2*x twice y = 2*y

These definitions vary in two independent dimensions with two possibilities each. The
first dimension of variation is in the name of the function’s argument: those in the left
column use x and those in the right column use y. The second dimension of variation is
in the arithmetic operation used to implement the function: addition in the top row and
multiplication in the bottom.

We can represent all four implementations of twice in a single choice calculus ex-
pression, as shown below.

dim Par〈x,y〉 in
dim Impl〈plus, times〉 in
twice Par〈x,y〉 = Impl〈Par〈x,y〉+Par〈x,y〉,2*Par〈x,y〉〉

In this example, we begin by declaring the two dimensions of variation using the choice
calculus dim construct. For example, dim Par〈x,y〉 declares a new dimension Par with
tags x and y, representing the two possible parameter names. The in keyword denotes
the scope of the declaration, which extends to the end of the expression if not explicitly
indicated otherwise (for example, by parentheses).

We capture the variation between the different implementations in choices that are
bound by the declared dimensions. For example, Par〈x,y〉 is a choice bound by the
Par dimension with two alternatives, x and y. Note that x and y are terms in the object
language of Haskell (indicated by typewriter font), while the tags x and y are identifiers
in the metalanguage of choice calculus (indicated by italics).

Each dimension represents an incremental decision that must be made in order to re-
solve a choice calculus expression into a concrete program variant. The choices bound
to that dimension are synchronized with this decision. This incremental decision pro-
cess is called tag selection. When we select a tag from a dimension, the corresponding
alternative from every bound choice is also selected, and the dimension declaration it-
self is eliminated. For example, if we select the y tag from the Par dimension (Par.y),
we would produce the following choice calculus expression in which the Par dimension
has been eliminated and each of its choices has been replaced by its second alternative.

dim Impl〈plus, times〉 in
twice y = Impl〈y+y,2*y〉

If we then select Impl.times, we produce the variant of twice in the lower-right corner
of the above grid of variants.

In the above examples, the choice calculus notation is embedded within the syntax
of the object language. This embedding is not a textual embedding in the way that, for
example, the C Preprocessor’s #ifdef statements are integrated with program source
code. Instead, choices and dimensions operate on an abstract-syntax tree view of the
object language. This imposes constraints on the placement and structure of choices and
dimensions. For example, every alternative of a choice must be of the same syntactic
category. When it is necessary to do so, we represent the underlying tree structure of
the object language explicitly with Y-brackets. For example, we might render the AST
for twice x = x+x as =�twice,x,+�x,x��, that is, the definition is represented as a
tree that has the = operation at the root and three children, (1) the name of the function
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twice, (2) its parameter x, and (3) the RHS, which is represented by abother tree with
root + and two children that are both given by x. Usually we stick to concrete syntax,
however, for readability.

Returning to our choice calculus expression encoding all four variants of the
function twice, suppose we add a third option z in the parameter name dimen-
sion. We show this extension below, where newly added tags and alternatives are
underlined.

dim Par〈x,y,z〉 in
dim Impl〈plus, times〉 in
twice Par〈x,y,z〉 = Impl〈Par〈x,y,z〉+Par〈x,y,z〉,2*Par〈x,y,z〉〉

Exercise 1. How many variants does this choice calculus expression represent? Extend
the example to declare a new independent dimension, FunName that is used to vary the
name of the function between twice and double. Now how many variants are encoded?

As you can see, the above extension with tag z required making the same edit to sev-
eral identical choices. As programs get larger and more complex, such repetitive tasks
become increasingly prone to editing errors. Additionally, we often want to share a
subexpression between multiple alternatives of the same choice. For example, a pro-
gram that varies depending on the choice of operating system, say Windows, Mac, and
Linux, might have many choices in which the cases for Mac and Linux are the same
since they share a common heritage in Unix. It would be inconvenient, error prone, and
inefficient to duplicate the common code in each of these cases.

As a solution to both of these problems, the choice calculus provides a simple sharing
mechanism. Using this, we can equivalently write the above variational program as
follows.

dim Par〈x,y,z〉 in
dim Impl〈plus, times〉 in
share v = Par〈x,y,z〉 in
twice v = Impl〈v+v,2*v〉

Note that now we need only extend the dimension with the new tag z and add the
z alternative once. The choice calculus variable v stores the result of this choice and
is referenced in the definition of twice. Because sharing is expanded only after all
dimensions and choices have been resolved, the following expression encodes precisely
the same variants as the above.

dim Impl〈plus, times〉 in
share v = (dim Par〈x,y,z〉 in Par〈x,y,z〉) in
twice v = Impl〈v+v,2*v〉

This feature provides a convenient way to limit the scope of a dimension to a single
choice. We call such dimensions atomic, a concept that will be revisited in Section 4.



60 M. Erwig and E. Walkingshaw

Exercise 2. Extend the above choice calculus expression to include a second function
thrice that triples the value of its input, and that varies synchronously in the same
dimensions as twice. That is, a selection of Impl.plus and Par.x (followed by share-
variable expansion) should produce the following expression.

twice x = x+x

thrice x = x+x+x

Exercise 3. Modify the expression developed in Exercise 2 so that the implementation
methods of the two functions vary independently. (Hint: Since dimensions are locally
scoped, you can reuse the dimension name Impl.) Finally, extend thrice’s Impl dimen-
sion to include an option that implements thrice in terms of twice.

Dimensions can also be dependent on a decision in another dimension. For example,
consider the following three alternative implementations of twice, where those in the
top row implement the function with a lambda expression, while the one in the bottom
row use Haskell’s operator section notation to define the function in a pointfree way
(that is, without explicitly naming the variable).

twice = \x -> 2*x twice = \y -> 2*y

twice = (2*)

Again we have two dimensions of variation. We can choose a pointfree representation or
not, and we can again choose the parameter name. In this case, however, it doesn’t make
sense to select a parameter name if we choose the pointfree style, because there is no
parameter name! In other words, the parameter name dimension is only relevant if we
choose “no” in the pointfree dimension. In the choice calculus, a dependent dimensions
is realized by nesting it in an alternative of another choice, as demonstrated below.

dim Pointfree〈yes,no〉 in
twice v = Pointfree〈(2*),share v = (dim Par〈x,y〉 in Par〈x,y〉) in \v -> 2*v〉

If we select Pointfree.yes, we get the variant twice = (2*), with no more selections to
make. However, if we select Pointfree.no we must make a subsequent selection in the
Par dimension in order to fully resolve the choice calculus expression into a particular
variant.

Throughout this discussion we have implicitly taken the “meaning” of a choice cal-
culus expression to be the variants that it can produce. In the next section we formalize
this notion by presenting a formal semantics for choice calculus expressions.

3 Syntax and Semantics of the Choice Calculus

Although much of this tutorial will focus on a domain-specific embedded language
(DSEL) for variation research, one of the most important goals of the choice calculus
is to serve as a formal model of variation that can support a broad range of theoretical
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e ::= a�e, . . . ,e� Object Structure
| dim D〈t, . . . , t〉 in e Dimension
| D〈e, . . . ,e〉 Choice
| share v = e in e Sharing
| v Reference

Fig. 1. Choice calculus syntax

research. Before moving on, therefore, we will briefly discuss the formal syntax and
semantics of choice calculus expressions. Because the DSEL is based on the choice
calculus, these details will be helpful throughout the rest of this tutorial.

The syntax of choice calculus expressions follows from the discussion in the previ-
ous section and is provided explicitly in Figure 1. There are a few syntactic constraints
on choice calculus expression not expressed in the grammar. First, all tags in a single
dimension must be pairwise different so they can be uniquely referred to. Second, each
choice D〈en〉 must be within the static scope of a corresponding dimension declaration
dim D〈tn〉 in e. That is, the dimension D must be defined at the position of the choice,
and the dimension must have exactly as many tags as the choice has alternatives. Fi-
nally, each sharing variable reference v must be within scope of a corresponding share
expression defining v.

Exercise 4. Which of the following are syntactically valid choice calculus expressions?

(a) dim D〈t1, t2, t3〉 in (dim D〈t1, t2〉 in D〈e1,e2,e3〉)
(b) share v = D〈e1,e2〉 in (dim D〈t1, t2〉 in v)
(c) dim D〈t1, t2, t3〉 in (share v = D〈e1,e2,e3〉 in (dim D〈t1, t2〉 in v))

The object structure construct is used to represent the artifact that is being varied, for
example, the AST of a program. Therefore, a choice calculus expression that consists
only of structure expressions is just a regular, unvaried artifact in the object language.
We call such expressions plain. While the structure construct provides a generic tree
representation of an object language, we could imagine expanding this construct into
several constructs that more precisely capture the structure of a particular object lan-
guage. This idea is central to the implementation of our DSEL, as we’ll see in the next
section. Also, we often omit the brackets from the leaves of structure expressions. So
we write, for example, +�x,x� rather than +�x��,x��� to represent the structure of
the expression x+x explicitly.

In the previous section we introduced tag selection as a means to eliminate a di-
mension of variation. We write �e�D.t for the selection of tag t from dimension D in
expression e. Tag selection consists of (1) finding the first declaration dim D〈tn〉 in e′
in a preorder traversal of e, (2) replacing every choice bound by the dimension in e′ with
its ith alternative, where i is the index of t in tn, and (3) removing the dimension declara-
tion. Step (2) of this process is called choice elimination, written �e′�D.i (where the tag
name has been replaced by the relevant index), and defined formally in Figure 2. This
definition is mostly straightforward, replacing a matching choice with its ith alternative
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�a�e1, . . . ,en��D.i = a��e1�D.i, . . . ,�en�D.i�

�dim D′〈tn〉 in e�D.i =

{
dim D′〈tn〉 in e if D = D′
dim D′〈tn〉 in �e�D.i otherwise

�D′〈e1, . . . ,en〉�D.i =

{�ei�D.i if D = D′
D′〈�e1�D.i, . . . ,�en�D.i〉 otherwise

�share v = e in e′�D.i = share v = �e�D.i in �e′�D.i

�v�D.i = v

Fig. 2. Choice elimination

and otherwise propagating the elimination downward. Note, however, that propagation
also ceases when a dimension declaration of the same name is encountered—this main-
tains the static scoping of dimension names.

Exercise 5. Given e = dim A〈a1,a2〉 in A〈A〈1,2〉,3〉 what is the result of the selection
�e�A.a1? Is it possible to select the plain expression 2?

By repeatedly selecting tags from dimensions, we will eventually produce a plain ex-
pression. We call the selection of one or several tags collectively a decision, and a
decision that eliminates all dimensions (and choices) from an expression a complete
decision. Conceptually, a choice calculus expression then represents a set of plain ex-
pressions, where each is uniquely identified by the complete decision that must be made
in order to produce it. We therefore define the semantics domain of choice calculus ex-
pressions to be a mapping from complete decisions to plain expressions.

We write �e� to indicate the semantics of expression e. We represent the denota-
tion of e (that is, the mapping from decisions to plain expressions) as a set of pairs,
and we represent decisions as n-tuples of dimension-qualified tags. For simplicity and
conciseness, we enforce in the definition of the semantics that tags are selected from
dimensions in a fixed order, the order that the dimension declarations are encountered
in a preorder traversal of the expression (see [12] for a discussion of this design deci-
sion). For instance, in the following example, tags are always selected from dimension
A before dimension B.

�dim A〈a1,a2〉 in A〈1,dim B〈b1,b2〉 in B〈2,3〉〉� =
{(A.a1,1),((A.a2,B.b1),2),((A.a2,B.b2),3)}

Note that dimension B does not appear at all in the decision of the first entry in this
denotation since it is eliminated by the selection of the tag A.a.

Exercise 6. Write the semantics of the above expression if the tag ordering constraint
is removed.
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Vρ (a��) = {((),a��)}
Vρ (a�en

�) = {(δ n,a�e′n�) | (δ1,e
′
1) ∈Vρ (e1), . . . ,(δn,e

′
n) ∈Vρ (en)}

Vρ (dim D〈tn〉 in e) = {((D.ti,δ ),e′) | i ∈ {1, . . . ,n}, (δ ,e′) ∈Vρ (�e�D.i)}
Vρ (share v = e1 in e2) =

⋃
{{(δ1δ2,e

′
2) | (δ2,e

′
2) ∈Vρ⊕(v,e′1)(e2)} | (δ1,e

′
1) ∈Vρ (e1)}

Vρ (v) = {((),ρ(v))}

Fig. 3. Computing the semantics of a choice calculus expression e, �e� =V∅(e)

Finally, we provide a formal definition of the semantics of choice calculus expres-
sions in terms of a helper function V in Figure 3. The parameter to this function, ρ ,
is an environment, implemented as a stack, mapping share-variables to plain expres-
sions. The semantics of e is then defined as an application of V with an initially empty
environment, that is, �e� =V∅(e).

The definition of V relies on a somewhat dense notation, so we will briefly describe
the conventions, then explain each case below. We use δ to range over decisions, con-
catenate decisions δ1 and δ2 by writing δ1δ2, and use δ n to represent the concatenation
of decisions δ1, . . . ,δn. Similarly, lists of expressions en can be expanded to e1, . . . ,en,
and likewise for lists of tags tn. We associate v with e in environment ρ with the notation
ρ ⊕ (v,e), and lookup the most recent expression associated with v by ρ(v).

For structure expressions there are two sub-cases to consider. If the expression is a
leaf, then the expression is already plain, so the result is an empty decision (represented
by the nullary tuple ()) mapped to that leaf. Otherwise, we recursively compute the
semantics of each subexpression and, for each combination of entries (one from each
recursive result), concatenate the decisions and reconstruct the (now plain) structure
expression.

On a dimension declaration, we select each tag ti in turn, computing the semantics of
�e�D.i and prepending D.ti to the decision of each entry in the result. Note that there is
no case for choices in the definition of V . Since we assume that all choices are bound,
all choices will be eliminated by selections invoked at their binding dimension declara-
tions. In the event of an unbound choice, the semantics are undefined.

Exercise 7. Extend V to be robust with respect to unbound choices. That is, unbound
choices should be preserved in the semantics, as demonstrated in the following example.

�A〈dim B〈b1,b2〉 in B〈1,C〈2,3〉〉,4〉� =
{(B.b1,A〈1,4〉),(B.b2,A〈C〈2,3〉,4〉)}

The case for sharing computes the semantics of the bound expression e1, then computes
the semantics of the scope e2 with each variant e′1 of e1 added to the environment ρ ,
in turn. Each resulting expression e′2 is then associated with the combined decision
that produces it. References to share-bound variables simply lookup the corresponding
plain expression in ρ .
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In our work with the choice calculus, we have identified a set of semantics-preserving
transforming laws for choice calculus expressions and related notions of representative
normal forms with desirable properties (such as minimizing redundancy) [12]. This is
the theoretical groundwork for a comprehensive theory of variation that can be reused
by tool developers and other researchers. In the next section we switch gears by intro-
ducing a more exploratory thrust of this reasearch—a variation programming language,
based on the choice calculus, for representing and manipulating variation.

4 A Variation DSEL in Haskell

The choice calculus, as presented in the previous two sections, is an entirely static
representation. It allows us to precisely specify how a program varies, but we cannot
use the choice calculus itself to edit, analyze, or transform a variational program. In
the previous section we supplemented the choice calculus with mathematical notation
to define some such operations, for example, tag selection. In some regards, math is
an ideal metalanguage since it is infinitely extensible and extremely flexible—we can
define almost any operation we can imagine. However, it’s difficult to test an operation
defined in math or to apply it to several examples quickly to observe its effect. In other
words, it’s hard to play around with math. This is unfortunate, since playing around can
often lead to challenged assumptions, clever insights, and a deeper understanding of the
problem at hand.

In this section, we introduce a domain-specific embedded language (DSEL) in Haskell
for constructing and manipulating variational data structures. This DSEL is based on
the choice calculus, but is vastly more powerful since we have the full power of the
metalanguage of Haskell at our disposal. Using this DSEL, we can define all sorts of new
operations for querying and manipulating variation. Because the operations are defined
in Haskell, certain correctness guarantees are provided by the type system, and most
importantly, we can actually execute the operations and observe the outputs. Through
this DSEL we can support a hands-on, exploratory approach to variation research.

In the rest of this tutorial we will be exploring the interaction of variation represen-
tations and functional programming. Combining these ideas gives rise to the notion of
variation programming, an idea that is explored more thoroughly in Sections 5 and 6.

In the DSEL, both the variation representation and any particular object language
are represented as data types. The data type for the generic variation representation is
given below. As you can see, it adapts the dimension and choice constructs from the
choice calculus into Haskell data constructors, Dim and Chc. The Obj constructor will
be explained below. In this definition, the types Dim and Tag are both synonyms for the
predefined Haskell type String.

data V a = Obj a

| Dim Dim [Tag] (V a)

| Chc Dim [V a]

The type constructor name V is intended to be read as “variational”, and the type param-
eter a represents the object language to be varied. So, given a type Haskell representing
Haskell programs, the type V Haskell would represent variational Haskell programs
(see Section 6).
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The Obj constructor is roughly equivalent to the object structure construct from the
choice calculus. However, here we do not explicitly represent the structure as a tree, but
rather simply insert an object language value directly. An important feature of the DSEL
is that it is possible for the data type representing the object language to itself contain
variational types (created by applying the V type constructor to its argument types), and
operations written in the DSEL can query and manipulate these nested variational val-
ues generically. This is achieved through the use of the “scrap your boilerplate” (SYB)
library [19] which imposes a few constraints on the structure of a. These constraints
will be described in Section 5.1. In the meantime, we will only use the very simple
object language of integers, Int, which cannot contain nested variational values.

One of the advantages of using a metalanguage like Haskell is that we can define
functional shortcuts for common syntactic forms. In Haskell, these are often called
“smart constructors”. For example, we define the following function atomic for defining
atomic dimensions (a dimension with a single choice as an immediate subexpression).

atomic :: Dim -> [Tag] -> [V a] -> V a

atomic d ts cs = Dim d ts $ Chc d cs

Exercise 8. Define the following smart constructors:

(a) dimA :: V a -> V a, which declares a dimension A with tags a1 and a2

(b) chcA :: [V a] -> V a, which constructs a choice in dimension A

These smart constructors will be used in examples throughout this section.

Note that we have omitted the sharing-related constructs from the definition of V. This
decision was made primarily for two reasons. First, some of the sharing benefits of the
choice calculus share construct are provided by Haskell directly, for example, through
Haskell’s let and where constructs. In fact, sharing in Haskell is much more powerful
than in the choice calculus since we can also share values via functions. Second, the
inclusion of an explicit sharing construct greatly complicates some important results
later. In particular, we will show that V is a monad, while it is unclear whether this is
true when V contains explicit sharing constructs. Several other operations are also much
more difficult to define with explicit sharing.

There are, however, advantages to the more restricted and explicit form of sharing
provided by the choice calculus. The first is perhaps the most obvious—since sharing
is handled at the metalanguage level in the DSEL, it introduces redundancy when re-
solved into the variation representation (the V data type). This puts an additional burden
on users to not introduce update anomalies and makes operations on variational data
structures necessarily less efficient.

A more subtle implication of the metalanguage-level sharing offered by the DSEL
is that we lose the choice calculus’s property of static (syntactic) choice scoping. In
the choice calculus, the dimension that binds a choice can always be determined by
examining the context that the choice exists in; this is not the case in the DSEL. For
example, in the following choice calculus expression, the choice in A is unbound.

share v = A〈1,2〉 in dim A〈a1,a2〉 in v



66 M. Erwig and E. Walkingshaw

Meanwhile, in the corresponding DSEL expression, the choice in A is bound by the
dimension surrounding the variable reference. This is demonstrated by evaluating the
following DSEL expression (for example, in GHCi), and observing the pretty-printed
output.

> let v = chcA [Obj 1, Obj 2] in dimA v

dim A<a1,a2> in A<1,2>

In effect, in the choice calculus, sharing is expanded after dimensions and choices are
resolved, while in the DSEL sharing is expanded before.

Exercise 9. Compare the semantics of the following expression if we expand sharing
before dimensions and choices are resolved, with the semantics if we expand sharing
after dimensions and choices are resolved.

share v = (dim A〈a1,a2〉 in A〈1,2〉) in (v,v)

The result in either case is a mapping with pairs of integers such as (2,2) in its range.

The lack of static choice scoping, combined with the more unrestricted form of sharing
offered by Haskell functions, also opens up the possibility for choice capture. This is
where a choice intended to be bound by one dimension ends up being bound by another.
As an example, consider the following operation insertA that declares a dimension A,
then inserts a choice in A into some expression, according to the argument function.

insertA :: (V Int -> V Int) -> V Int

insertA f = dimA (f (chcA [Obj 1, Obj 2]))

The author of this operation probably expects that the inserted choice will be bound by
the dimension declared in this definition, but if the argument function also declares a
dimension A, the choice could be captured, as demonstrated below.

> insertA (\v -> Dim "A" ["a3","a4"] v)

dim A<a1,a2> in dim A<a3,a4> in A<1,2>

Now the choice is bound by the dimension in the argument, rather than the intended
dimension declared in the insertA function.

Despite all of these qualms, however, the additional power and simpler variation
model that results from the off-loading of sharing to the metalanguage makes possible
a huge variety of operations on variational expressions. Exploring these operations will
form the bulk of the remainder of this tutorial. Supporting this additional functionality
while maintaining the structure, safety, and efficiency of the choice calculus’s sharing
constructs remains an important open research problem.

An important feature of the V data type is that it is both a functor and a monad.
Functors and monads are two of the most commonly used abstractions in Haskell. By
making the variation representation an instance of Haskell’s Functor and Monad type
classes, we make a huge body of existing functions and knowledge instantly available
from within our DSEL, greatly extending its syntax. Functors are simpler than (and
indeed a subset of) monads, so we will present the Functor instance first, below. The
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Functor class contain one method, fmap, for mapping a function over a data structure
while preserving its structure.

fmap :: Functor f => (a -> b) -> f a -> f b

For V, this operation consists of applying the mapped function f to the values stored
at Obj nodes, and propagating the calls into the subexpressions of Dim and Chc

nodes.

instance Functor V where

fmap f (Obj a) = Obj (f a)

fmap f (Dim d ts v) = Dim d ts (fmap f v)

fmap f (Chc d vs) = Chc d (map (fmap f) vs)

Consider the following variational integer expression ab, where dimB and chcB are smart
constructors similar to dimA and chcA.

> let ab = dimA $ chcA [dimB $ chcB [Obj 1, Obj 2], Obj 3]

> ab

dim A<a1,a2> in A<dim B<b1,b2> in B<1,2>,3>

Using fmap, we can, for example, increment every object value in a variational integer
expression.

> fmap (+1) ab

dim A<a1,a2> in A<dim B<b1,b2> in B<2,3>,4>

Or we can map the function odd :: Int -> Bool over the structure, producing a vari-
ational boolean value of type V Bool.

> fmap odd ab

dim A<a1,a2> in A<dim B<b1,b2> in B<True,False>,True>

Exercise 10. Write an expression that maps every integer i in ab to a choice between i

and i+1. What is the type of the resulting value?

The definition of the Monad instance for V is similarly straightforward. The Monad type
class requires the implementation of two methods: return for injecting a value into
the monadic type, and >>= (pronounced “bind”) for sequentially composing a monadic
value with a function that produces another monadic value.

return :: Monad m => a -> m a

(>>=) :: Monad m => m a -> (a -> m b) -> m b

The monad instance definition for the variational type constructor V is as follows. The
return method is trivially implemented by the Obj data constructor. For >>=, at an Obj

node, we simply return the result of applying the function to the value stored at that
node. For dimensions and choices, we must again propagate the bind downward into
subexpressions.
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instance Monad V where

return = Obj

Obj a >>= f = f a

Dim d t v >>= f = Dim d t (v >>= f)

Chc d vs >>= f = Chc d (map (>>= f) vs)

The effect of a monadic bind is essentially to replace every value in the structure with
another monadic value (of a potentially different type) and then to flatten the results.
The concatMap function on lists is a classic example of this pattern (though the order
of arguments is reversed). In the context of variation representations, we can use this
operation to introduce new variation into a representation. For example, consider again
the expression ab. We can add a new dimension S, indicating whether or not we want to
square each value (the line break in the output was inserted manually).

> Dim "S" ["n","y"] $ ab >>= (\i -> Chc "S" [Obj i, Obj (i*i)])

dim S<y,n> in dim A<a1,a2> in

A<dim B<b1,b2> in B<S<1,1>,S<2,4>>,S<3,9>>

Each value in the original expression ab is expanded into a choice in dimension S. The
resulting expression remains of type V Int. Compare this to the result of Exercise 10.

Finally, the DSEL provides several functions for analyzing variational expressions.
For example, the function freeDims :: V a -> Set Dim returns a list of all free (un-
bound) dimensions in a given variational expression (without duplicates). Several other
basic static analyses are also provided. Significantly, a semantics function for variational
expressions, sem, is provided. This is based on the semantics of the choice calculus from
the previous section. Similarly, the semantics of a variational expression of type V a is
a mapping from decisions (lists of qualified tags) to plain expressions of type a. More
commonly, we use a function psem which computes the semantics of an expression and
pretty prints the results. For example, the pretty printed semantics of the expression ab

are shown below.

> psem ab

[A.a1,B.b1] => 1

[A.a1,B.b2] => 2

[A.a2] => 3

Each entry in the semantics is shown on a separate line, with a decision on the left of
each arrow and the resulting plain expression on the right.

While this section provided a brief introduction to some of the features provided
by the DSEL, the following sections on variational programming will introduce many
more. In particular, Section 5.1 will describe how to make a non-trivial data type vari-
ational, Section 5.2 and Section 5.3 will present a subset of the language designed for
the creation of complex editing operations on variational expressions.

5 Variational Lists

We start exploring the notion of variation programming with lists, which are a simple
but expressive and pervasive data structure. The familiarity with lists will help us to
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identify important patterns when we generalize traditional list functions to the case of
variational lists. The focus on a simple data structure will also help us point out the
added potential for variation programming. We present variation programming with
lists in several steps.

First, we explain the data type definition for variational lists and present several
examples together with some helper functions in Section 5.1. Second, we develop vari-
ational versions for a number of traditional list functions in Section 5.2. We can observe
that, depending on the types involved, certain patterns of recursion become apparent.
Specifically, we will see that dependent on the role variation plays in the types of the
defined functions, variational parts have to be processed using fmap, effectively treating
them in a functorial style, or using >>=, treating them as monadic values. In Section
5.3 we turn our attention to editing operations for variational lists. While the adapted
traditional list functions will naturally produce variational data structures (such as lists,
numbers, etc.), these are a result from already existing variations in the lists that were
given as arguments and thus result more as a kind of side effect. In contrast, list edit-
ing operations introduce or change variation structure purposefully. We will present
in Section 5.4 some comments and observations on the different programming styles
employed in the two subsections 5.2 and 5.3.

As a motivating example we consider how to represent menu preferences using
choices and dimensions. Suppose that we prefer to order meat or pasta as the main
course in a restaurant and that with meat we always order french fries on the side. Also,
if we order pasta, we may have cake for dessert. Using the choice calculus we can
represent these menu options as follows (here ε represents an empty token that, when
selected, does not appear in the list as an element but rather disappears).

dim Main〈meat,pasta〉 in
Main〈[Steak,Fries],[Pasta,dim Dessert〈yes,no〉 in Dessert〈Cake,ε〉]〉

Here we have used a simple list notation as an object language. This notation leaves
open many questions, such as how to nest lists and how to compose variational list and
a list without variations. We will look at these questions in more detail in the following.

5.1 Representing Variational Lists

Lists typically are represented using two constructors for empty lists and for adding
single elements to lists. Since lists are the most important data structures in functional
programming, they are predefined in Haskell and supported through special syntax.
While this is nice, it prevents us from changing the representation to variational lists.
Therefore, we have to define our own list representation first, which we then can extend
in a variety of ways to discus the transition to variational lists.

A standard definition of lists is as follows.

data List a = Cons a (List a)

| Empty

To create variational lists using the V data type, we have to apply V somewhere in
this definition. One possibility is to apply V to a thus making the elements in a list
variable.
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data List a = Cons (V a) (List a)

| Empty

While this definition is quite convenient1 as far as varying elements is concerned, it does
not allow us to vary lists themselves. For example, we cannot represent a list whose first
element is 1 and whose tail is a either [2] or [3,4].

This limitation results from the fact that we cannot have a choice (or any other vari-
ational constructs) in the second argument of Cons. This shortcoming can be addressed
by throwing in another V type constructor.

data List a = Cons (V a) (V (List a))

| Empty

This representation avoids the above problem and is indeed the most general representa-
tion imaginable. However, the problem with this representation is that it is too general.
There are two major drawbacks. First, the representation makes the definitions of func-
tions cumbersome since it requires to process two variational types for one constructor.
More importantly, the way our DSEL is implemented does not allow the application of
V to different types in the same data type, and thus cannot deal with the shown definition
of List. This limitation is a consequence of the employed SYB library [19].2

A drawback of either of the two previous two approaches is that changing the type
of existing constructors may break existing code. This aspect matters when variational
structure is added to existing data structures. In such a situation we would like to be
able to continue using existing functions without the need for any changes in existing
code.

Therefore, we choose the following representation in which we simply add a new
constructor, which serves as a hook for any form of variation to be introduced into lists.
This definition yields what we call an expanded list, where “expanded” means that it can
contain variational data. However, this expansion is not enough, we also need a type for
variational lists, that is, lists that are the object of the V type constructor. We introduce
a type abbreviation for this type. The two types List a and VList a for expanded and
variational lists, respectively, depend mutually on one another and together accomplish
through this recursion the lifting of the plain list data type into its fully variational
version.

type VList a = V (List a)

data List a = Cons a (List a)

| Empty

| VList (VList a)

We are using the convention to use the same name for the additional constructor as for
the variational type, in this case VList. This helps to keep the variational code more
organized, in particular, in situations where multiple variational data types are used.

1 Moreover, if this definition were all we needed, we could apply it directly to the predefined
Haskell lists.

2 It is possible to lift this constraint, but doing so requires rather complex generic programming
techniques that would make the library much more difficult to use.
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list :: List a -> VList a

list = Obj

single :: a -> List a

single a = Cons a Empty

many :: [a] -> List a

many = foldr Cons Empty

vempty :: VList a

vempty = list Empty

vsingle :: a -> VList a

vsingle = list . single

vcons :: a -> VList a -> VList a

vcons x = list . Cons x . VList

vlist :: [a] -> VList a

vlist = list . many

Fig. 4. Auxiliary functions for variational lists

With the chosen definition for the data type List we can represent the variational
list for representing our menu choices as follows. First, we introduce a data type for
representing food items.

data Food = Steak | Pasta | Fries | Cake

Note that for the above data type we also derive instances for Eq, Show, Data and
Typeable. Instances of Data and Typeable are required for the SYB library to work.
Every data type in this tutorial that will be used with the V type constructor also
derives instances for these classes, although we don’t show this explicitly each
time.

We also introduce a few auxiliary functions that help make the writing of variational
lists more concise, see Figure 4. For example, vempty represents an empty variational
list, vsingle constructs a variational list containing one element, and vcons takes an
element and adds it to the beginning of a variational list. The function vlist transforms
a regular Haskell list into a VList, which lets us reuse Haskell list notation in construct-
ing VLists. All three definitions are based on corresponding List versions and use the
synonym list for Obj, which lifts an object language expression into a variational ex-
pression. The function list is more concrete than Obj in the sense that it explicitly tells
us that a List value is lifted to the variational level. It can also be understood as indi-
cating, within a variational expression: “look, here comes an ordinary list value”. We
use similar synonyms for other object languages (for example, int or haskell), and we
will even use the synonym obj for generic values.

Exercise 11. The function vcons shown in Figure 4 adds a single (non-variational)
element to a variational list. Define a function vvcons that adds a choice (that is, a vari-
ational element) to a variational list. (Hint: Since you have to deal with two occurrences
of the V constructor, you might want to exploit the fact that V is a monad.)

Using these operations, we can give the following definition of the menu plan as a
variational list.
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type Menu = VList Food

dessert :: Menu

dessert = atomic "Dessert" ["yes","no"] [vsingle Cake,vempty]

menu :: Menu

menu = atomic "Main" ["meat","pasta"]

[vlist [Steak,Fries],Pasta ‘vcons‘ dessert]

We can examine the structure we have built by evaluating menu (again, the line break
was inserted manually).

> menu

dim Main<meat,pasta> in

Main<[Steak;Fries],[Pasta;dim Dessert<yes,no> in Dessert<[Cake],[]>]>

Note that we have defined the pretty printing for the List data type to be similar to
ordinary lists, except that we use ; to separate list elements. In this way we keep a
notation that is well established but also provides cues to differentiate between lists and
variational lists.

Since the presence of nested dimensions complicates the understanding of variational
structures, we can use the semantics of menu to clarify the represented lists.

> psem menu

[Main.meat] => [Steak;Fries]

[Main.pasta,Dessert.yes] => [Pasta;Cake]

[Main.pasta,Dessert.no] => [Pasta]

Exercise 12. Change the definition of menu so that we can choose dessert also for a meat
main course. There are two ways of achieving this change: (a) by copying the dessert

dimension expression into the other choice, or (b) by lifting the dimension declaration
out of the main choice.

Before we move on to discuss variational list programs, we show a couple of operations
to facilitate a more structured construction of variation lists. These operations are not
very interesting from a transformational point of view, but they can be helpful in decom-
posing the construction of complicated variational structures into an orderly sequence
of steps.

This doesn’t seem to be such a big deal, but if we take a closer look at the definition
of menu shown above, we can observe that we have employed in this simple exam-
ple alone five different operations to construct lists, namely, vsingle, vempty, vlist,
vcons, and []. To decide which operation to use where requires experience (or extensive
consultation with the Haskell type checker).

In the construction of menu we can identify two patterns that seem to warrant support
by specialized operations. First, the definition of dessert is an instance of a dimension
representing that something is optional. We can therefore define a function opt for
introducing an optional feature in a straightforward way as follows.
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opt :: Dim -> a -> VList a

opt d x = atomic d ["yes","no"] [vsingle x,vempty]

Second, the definition of menu was given by separating the tags and the lists they label.
A more modular definition can be given if we define the two different menu options
separately and the combine them to a menu. To do that we introduce some syntactic
sugar for defining tagged variational lists.

type Tagged a = (Tag,V a)

infixl 2 <:

(<:) :: Tag -> V a -> Tagged a

t <: v = (t,v)

Next we can define an operation alt for combining a list of tagged alternatives into a
dimension.

alt :: Dim -> [Tagged a] -> V a

alt d tvs = atomic d ts vs where (ts,vs) = unzip tvs

With the help of opt, <:, and alt we can thus give a the following, slightly more
modular definition of menu.

dessert = opt "Dessert" Cake

meat = "meat" <: vlist [Steak,Fries]

pasta = "pasta" <: Pasta ‘vcons‘ dessert

menu = alt "Main" [meat,pasta]

This definition produces exactly the same (syntactic) variational list as the definition
given above.

5.2 Standard Variational List Functions

Among the most common functions for lists are functions to transform lists or to ag-
gregate them. In the following we will illustrate first how to implement some of these
functions directly using pattern matching and recursion. We will later introduce more
general variational list functions, such as map and fold.

Let us start by implementing the function len to compute the length of a variational
list. The first thing to realize is that the return type of the function is not just Int but
rather V Int since the variation in a list may represent lists of different lengths. The
implementation can be performed by pattern matching: The length of an empty list is
zero. However, we must be careful here to not just return 0 since the return type of the
function requires a V Int value. We therefore have to lift the 0 into the V type using the
constructor Obj, for which we also provide the abbreviation int (see the discussion of
list above, and note that we could also use the return method from Monad for this).
The length of a non-empty list is given by the length of the tail plus one. Again, be-
cause of the structured return type of len we cannot simply add one to the result of the
recursive call. Since len xs can produce, in general, an arbitrarily complex variation
expression overs integers, we have to make sure to add one to all variants, which can
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be accomplished by the function fmap. Finally, to compute the length of a list whose
representation is distributed within a V structure, we have to carry the len computation
to all the lists in the V representation. One could think of doing that again using fmap.
However, looking at the involved types tells us that this is not the right approach, be-
cause one would end up with a bunch of V Int values scattered all over a V value. What
we need instead is a single V Int value. So we are given a V (List a) value vl and a
function len of type List a -> V Int to produce a value of type V Int. If we abstract
from the concrete types a little bit by replacing List a by a, V by m, and Int by b, we
see that to combine vl and len we need a function of the following type.

m a -> (a -> m b) -> m b

As we know (or otherwise could find out quickly using Hoogle [15]), this is exactly the
type of the monadic bind operation, which then tells us the implementation for the last
case. Thinking about it, applying len to vl using monadic bind makes a lot of sense
since our task in this case is to compute variational data in many places and then join or
merge them into the existing variational structure of vl.

len :: List a -> V Int

len Empty = int 0

len (Cons _ xs) = fmap (+1) (len xs)

len (VList vl) = vl >>= len

Now if we try to apply len to one of the variational lists defined in Section 5, we
find that the types do not match up. While len is a function that works for lists that
contain variational parts, it still expects an expanded list as its input. It seems we need
an additional function that can be applied to values of type V (List a).

In fact, we have defined such a function already in the third case of len, and we could
simply reuse that definition. Since it turns out that we need to perform such a lifting into
a V type quite often, we define a general function for that purpose.

liftV :: (a -> V b) -> V a -> V b

liftV = flip (>>=)

As is apparent from the type and implementation (and also from the discussion of the
third case of len), the liftV function is essentially the bind operation of the V monad.

With liftV we obtain the required additional version of the function len.

vlen :: VList a -> V Int

vlen = liftV len

We generally use the following naming convention for functions. Given a function f

whose input is of type T we use the name vf for its lifted version that works on values
of type V T.

We can now test the definition of vlen by applying it to the example list menu defined
in Section 5.1.

> vlen menu

dim Main<meat,pasta> in Main<2,dim Dessert<yes,no> in Dessert<2,1>>

As expected the result is a variational expression over integers. We can obtain a more
concise representation by computing the semantics of this expression.
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> psem $ vlen menu

[Main.meat] => 2

[Main.pasta,Dessert.yes] => 2

[Main.pasta,Dessert.no] => 1

Exercise 13. Implement the function sumL :: List Int -> V Int using pattern match-
ing and recursion. Then define the function vsum :: VList Int -> V Int.

We have explained the definition of len in some detail to illustrate the considerations
that led to the implementation. We have tried to emphasize that the generalization of a
function definition for ordinary lists to variational lists requires mostly a rigorous con-
sideration of the types involved. In other words, making existing implementations work
for variational data structures is an exercise in type-directed programming in which the
types dictate (to a large degree) the code [39].

Before moving on to defining more general functions on variational lists, we will
consider the definition of list concatenation as an example of another important list
function. This will highlight an important pattern in the generalization of list functions
to the variational case.

The definition for the Empty and Cons case are easy and follow the definition for
ordinary lists, that is, simply return the second list or recursively append it to the tail
of the first, respectively. However, the definition for a variational list is not so obvious.
If the first list is given by a variation expression, say vl, we have to make sure that we
append the second list to all lists that are represented in vl. In the discussion of the
implementation of len we have seen that we have, in principle, two options to do that,
namely fmap and >>=. Again, a sharp look at what happens to the involved types will
tell us what the correct choice is. For the concatenation of lists we can observe that the
result type stays the same, that is, it is still a value of type List a, which means that
we can traverse vl and apply the function cat with its second argument fixed to all lists
that we encounter. This can be accomplished by the function fmap. The situation for len
was different because its result was a variational type, which required the flattening of
the resulting cascading V structures through >>=.

cat :: List a -> List a -> List a

cat Empty r = r

cat (Cons a l) r = Cons a (l ‘cat‘ r)

cat (VList vl) r = VList (fmap (‘cat‘ r) vl)

As for len, we also need a version of cat that works for variational lists.3 A simple
solution is obtained by simply lifting the variational list arguments into the List type
using the VList constructor, which facilitates the application of cat.

vcat :: VList a -> VList a -> VList a

vcat l r = list $ cat (VList l) (VList r)

3 Remember that List a represents only the expanded list type and that VList a is the varia-
tional list type.
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To show vcat in action, assume that we extend Food by another constructor Sherry

which we use to define the following variational list representing a potential drink be-
fore the meal.

aperitif :: VList Food

aperitif = opt "Drink" Sherry

When we concatenate the two lists aperitif and menu, we obtain a variational list
that contains a total of six different variants. Since the evaluation of vcat duplicates
the dimensions in menu, the resuting term structure becomes quite difficult to read and
understand. We therefore show only the semantics of the result.

psem $ vcat aperitif menu

[Drink.yes,Main.meat] => [Sherry;Steak;Fries]

[Drink.yes,Main.pasta,Dessert.yes] => [Sherry;Pasta;Cake]

[Drink.yes,Main.pasta,Dessert.no] => [Sherry;Pasta]

[Drink.no,Main.meat] => [Steak;Fries]

[Drink.no,Main.pasta,Dessert.yes] => [Pasta;Cake]

[Drink.no,Main.pasta,Dessert.no] => [Pasta]

Exercise 14. Define the function rev for reversing expanded lists. You may want to use
the function cat in your definition. Also provide a definition of the function vrev for
reversing variational lists. Before testing your implementation, try to predict what the
result of the expression vrev menu should be.

All of the examples we have considered so far have lists as arguments. Of course,
the programming with variational lists should integrate smoothly with other, non-
variational types. To illustrate this, we present the definition of the functions nth and
vnth to compute the nth element of a variational list (recall that we use obj as a syn-
onym for Obj, to maintain letter-case consistency with list and int).

nth :: Int -> List a -> V a

nth _ Empty = undefined

nth 1 (Cons x _) = obj x

nth n (Cons _ xs) = nth (n-1) xs

nth n (VList vl) = vl >>= nth n

We can observe that the integer parameter is passed around unaffected through the
variational types. The lifting to variational lists is straightforward.

vnth :: Int -> VList a -> V a

vnth n = liftV (nth n)

We also observe that the computation of nth can fail. This might be more annoying than
for plain lists because in general the length of the list in a variational list expressions is
not obvious. Specifically, the length can vary! Therefore, it is not obvious what argu-
ment to call vnth with. For example, the following computation produces the expected
result that the first item in a menu list is either Steak or Pasta.
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> vnth 1 menu

dim Main<meat,pasta> in Main<Steak,Pasta>

However, since there is no second item for the Main.pasta, Dessert.no list, the com-
putation vnth 2 menu fails. This is a bit disappointing since for some variants a second
list element does exist. A definition for nth/vnth using a V (Maybe a) result type seems
to be more appropriate. We leave the definition of such a function as an exercise. As
another exercise consider the following task.

Exercise 15. Define the function filterL:: (a -> Bool) -> List a -> List a and
give a definition for the corresponding function vfilter that operates on variational
lists.

The final step in generalizing list functions is the definition of a fold operation (and
possibly other generic list processing operations) for variational lists. The definition
for fold can be easily obtained by taking the definition of len (or sum/sumList from
Exercise 13) and abstracting from the aggregating function +.

fold :: (a -> b -> b) -> b -> List a -> V b

fold _ b Empty = obj b

fold f b (Cons a l) = fmap (f a) (fold f b l)

fold f b (VList vl) = vl >>= fold f b

With fold we should be able to give more succinct definitions for functions, such as
len, which is indeed the case.

len :: List a -> V Int

len = fold (\_ s->succ s) 0

Finally, we could also consider recursion on multiple variational lists. We leave this as
an exercise.

Exercise 16. Implement the function zipL:: List a -> List b -> List (a,b) and
give a definition for the corresponding function vzip that operates on variational lists.

As an example application of vzip, consider the possible meals when two people
dine.

> psem $ vzip menu menu

[Main.meat,Main.meat] => [(Steak,Steak);(Fries,Fries)]

[Main.meat,Main.pasta,Dessert.yes] => [(Steak,Pasta);(Fries,Cake)]

[Main.meat,Main.pasta,Dessert.no] => [(Steak,Pasta)]

[Main.pasta,Main.meat,Dessert.yes] => [(Pasta,Steak);(Cake,Fries)]

[Main.pasta,Main.meat,Dessert.no] => [(Pasta,Steak)]

[Main.pasta,Main.pasta,Dessert.yes,Dessert.yes] => [(Pasta,Pasta);

(Cake,Cake)]

[Main.pasta,Main.pasta,Dessert.yes,Dessert.no] => [(Pasta,Pasta)]

[Main.pasta,Main.pasta,Dessert.no] => [(Pasta,Pasta)]
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Now, this looks a bit boring. Maybe we could consider filtering out some combinations
that are considered “bad” for some reason, for example, when somebody has dessert
while the other person is still having the main course. We might also consider a more
relaxed definition of vzip in which one person can have pasta and dessert and the other
person can have pasta and no dessert. Note that while we can select this possibility in
the above semantics, the corresponding variant does not reflect this since when two lists
of differing lengths are zipped, the additional elements of the longer list are discarded.

5.3 Edit Operations for Variational Lists

The menu example that we introduced in Section 5.1 was built in a rather ad hoc fashion
in one big step from scratch. More realistically, variational structures develop over time,
by dynamically adding and removing dimensions and choices in an expression, or by
extending or shrinking choices or dimensions. More generally, the rich set of laws that
exists for the choice calculus [12] suggest a number of operations to restructure vari-
ation expressions by moving around choices and dimensions. Specifically, operations
for the factoring of choices or the hoisting of dimensions reflect refactoring operations
(that is, they preserve the semantics of the transformed variation expression). These are
useful for bringing expressions into various normal forms.

In this section we will present several operations that can be used for the purpose of
evolving variation representations. Most of these operations will be generic in the sense
that they can be applied to other variational structures, and we will actually reuse some
of them in Section 6.

As a motivating example let us assume that we want, in our dinner decisions, to
think first about the dessert and not about the main course. To obtain an alternative
list representation with the Dessert dimension at the top we could, of course, build a
new representation from scratch. However, this approach does not scale very well, and
the effort becomes quickly prohibitive as the complexity of the variational structures
involved grow. An alternative, more flexible approach is to take an already existing
representation and transform it accordingly. In our example, we would like to split the
declaration part off of a dimension definition and move it to the top level. This amounts
to the repeated application of commutation rules for dimensions [12]. We can break
down this operation into several steps as follows. Assume e is the expression to be
rearranged and d is the name of the dimension declaration that is to be moved.

(1) Find the dimension d that is to be moved.
(2) If the first step is successful, cut out the found dimension expression Dim d ts e’

and remember its position, which can be done in a functional setting through the
use of a context c, that is, an expression with a hole that is conveniently represented
by a function.

(3) Keep the scope of the found dimension declaration, e’, at its old location, which
can be achieved by applying c to e’.

(4) Finally, move the declaration part of the dimension definition to the top level, which
is achieved by wrapping it around the already changed expression obtained in the
previous step; that is, we produce the expression Dim d ts (c e’).

To implement these steps we need to solve some technically challenging problems.
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For example, finding a subexpression in an arbitrary data type expression, removing
it, and replacing it with some other expression requires some advanced generic pro-
gramming techniques. To this end we have employed the SYB [19] and the “scrap your
zipper” [1] libraries for Haskell, which allow us to implement such generic transfor-
mation functions. Since a detailed explanation of these libraries and how the provided
functions work is beyond the scope of this tutorial, we will only briefly mention what
the functions will do as we encounter them. The approach is based on a type C a, which
represents a context in a type V a. Essentially, a value of type C a represents a pointer
to a subexpression of a value of type V a, which lets us extract the subexpression and
also replace it. A context is typically the result of an operation to locate a subexpression
with a particular property. We introduce the following type synonym for such functions.

type Locator a = V a -> Maybe (C a)

The Maybe type indicates that a search for a context may fail. As a generic function to
locate subexpressions and return a matching context, we provide the following function
find that locates the first occurrence of a subexpression that satisfies the given predi-
cate. A predicate in this context means a boolean function on variational expressions.

type Pred a = V a -> Bool

The function find performs a preorder traversal of the expression and thus locates the
topmost, leftmost subexpression that satisfies the predicate.

find :: Data a => Pred a -> Locator a

That Data class constraint is required for the underlying zipper machinery in the imple-
mentation of find. The function find already realizes the first step of the transformation
sequence needed for refactoring the representation of the variational list menu. All we
need is a predicate to identify a particular dimension d, which is quite straightforward
to define.

dimDef :: Dim -> Pred a

dimDef d (Dim d’ _ _) = d == d’

dimDef _ _ = False

The second step of cutting out the dimension is realized by the function extract, which
conveniently returns as a result a pair consisting of the context and the subexpression
sitting in the context. The function extract is an example of a class of functions that
split an expression into two parts, a context plus some additional information about the
expression in the hole. In the specific case of extract that information is simply the
expression itself. This level of generality is sufficient for this tutorial, and we therefore
represent this class of functions by the following type.

type Splitter a = V a -> Maybe (C a,V a)

The definition of extract uses find to locate the context and then simply extracts the
subexpression stored in the context using the predefined zipper function getHole.

extract :: Data a => Pred a -> Splitter a

extract p e = do c <- find p e

h <- getHole c

return (c,h)



80 M. Erwig and E. Walkingshaw

The third step of applying the context to the scope of the dimension expression requires
the function <@, whose definition is based on elementary zipper functions that we don’t
show here.

(<@) :: Data a => C a -> V a -> V a

The function <@ can also be understood as inserting the second argument into the hole
of the first.

Finally, we can combine all these functions and define a function hoist for hoisting
dimension declarations. To avoid having to deal with error handling when we call hoist
we return as a default expression the original expression in case the process of lifting
fails at some stage.

hoist :: Data a => Dim -> V a -> V a

hoist d e = withFallback e $ do

(c,Dim _ ts e’) <- extract (dimDef d) e

return (Dim d ts (c <@ e’))

Note that the function withFallback is simply a synonym for fromMaybe. We can apply
hoist to menu to obtain a different choice calculus representation, which produces the
expected result (the line break was manually inserted).

> hoist "Dessert" menu

dim Dessert<yes,no> in dim Main<meat,pasta> in

Main<[Steak;Fries],[Pasta;Dessert<[Cake],[]>]>

There are two obvious shortcomings of the current definition for hoist. One problem
is that moving the dimension might capture free Dessert choices.4 The other problem
is that the Dessert decision might be made for nothing since it does not have an effect
when the next decision in Main is to select meat.

The first problem can be easily addressed by extending the definition of hoist

by a check for capturing unbound Dessert choices that returns failure (that is,
Nothing) if d occurs free anywhere in e. This failure will be caught eventually by
the withFallback function that will ensure that the original expression e is returned
instead.

safeHoist :: Data a => Dim -> V a -> V a

safeHoist d e = withFallback e $ do

(c,Dim _ ts e’) <- extract (dimDef d) e

if d ‘Set.member‘ freeDims e

then Nothing

else return (Dim d ts (c <@ e’))

The function freeDims returns a set (as Haskell’s Data.Set) of the dimension names of
unbound choices, as described in Section 4.

4 Capturing free desserts sounds actually quite appealing from an application point of
view. :)
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Exercise 17. The implementation of safeHoist prevents the lifting of the dimension d

if this would cause the capture of d choices.

(a) What other condition could cause, at least in principle, the hoisting of a dimension
to be unsafe (in the sense of changing the semantics of the variational list)?

(b) Why don’t we have to check for this condition in the implementation of safeHoist?
(Hint: Revisit the description of how the function find works.)

The second problem with the definition of hoist can be seen if we compare the se-
mantics of the menu with the hoisted dimension with the semantics of the original
expression (shown in Section 5.1).

dMenu = hoist "Dessert" menu

> psem $ dMenu

[Dessert.yes,Main.meat] => [Steak;Fries]

[Dessert.yes,Main.pasta] => [Pasta;Cake]

[Dessert.no,Main.meat] => [Steak;Fries]

[Dessert.no,Main.pasta] => [Pasta]

It is clear that the Dessert decision has no effect if the Main decision is meat. The
reason for this is that the Dessert choice appears only in the pasta choice of the Main

dimension. We can fix this by moving the Main choice plus its dimension declaration
into the no alternative of the Dessert choice.

This modification is an instance of the following slightly more general transforma-
tion schema, which applies in situations in which a choice in dimension B is available
only in one of the alternatives of all choices in another dimension A. (Here we show
for simplicity the special case in which A has only one choice with two alternatives.)
Such an expression can be transformed so that the selection of b1 is guaranteed to have
an effect, that is, we effectively trigger the selection of a2 by copying the alternative,
because the selection of a1 would leave the decision to pick b1 without effect.

dim B〈b1,b2〉 in dim A〈a1,a2〉 in A〈[a1],[a2;B〈b1,b2〉]〉
� dim B〈b1,b2〉 in B〈[a2;b1],dim A〈a1,a2〉 in A〈[a1],[a2;b2]〉〉

Note that the selection of b2 does not have this effect since we can still select between
a1 and a2 in the transformed expression. This transformation makes the most sense in
the case when B represents an optional dimension, that is, b1 = yes, b2 = no, and b2= ε ,
because in this case the selection of b2 = no makes no difference, no matter whether we
choose a1 or a2.

This transformation can be extended to the case in which A has more than two alter-
natives and more than one choice, which requires, however, that each A choice contains
the B choice in the same alternative k.

We will next define a function that can perform the required transformation automat-
ically. For simplicity we assume that the choice in b to be prioritized (corresponding to
the choice in B above) is contained in the second alternative of the choice in a (which
corresponds to A above).
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prioritize :: Data a => Dim -> Dim -> V a -> V a

prioritize b a e = withFallback e $ do

(dA,ae) <- extract (dimDef a) e

(cA,Chc _ [a1,a2]) <- extract (chcIn a) ae

(cB,Chc _ [b1,b2]) <- extract (chcIn b) a2

return $ dA <@ (Chc b [cB <@ b1,cA <@ (Chc a [a1,cB <@ b2])])

The function works as follows. Much like most transformations, it will first decompose
the expression to be transformed into a collection of (nested) contexts and expressions,
which are then used to build the result expression. Specifically, we first find the location
of the dimension definition for a and remember it in the form of a context dA. Next,
we find the context cA of the a choice. Finally, we find the choice to be prioritized in
the second alternative of the a choice, a2. Both choices are found using the extract

function with the predicate chcFor that finds a particular choice, similar to the dimDef

predicate.

chcIn :: Dim -> Pred a

chcIn d (Chc d’ _) = d == d’

chcIn _ _ = False

Having thus isolated all the required subexpressions, we can assemble the result by
applying the contexts following the RHS of the above transformation schema.

Note that this transformation does not preserve the semantics; in fact, the reason for
applying it is that it makes the semantics more compact. The transformation is, however,
variant preserving; that is, no variants are added or removed, only the decisions to reach
the variants have changed. This can be best seen by comparing the semantics of dMenu
shown above with the semantics of dMenu with the Dessert choice prioritized over the
Main choice.

> psem $ prioritize "Dessert" "Main" dMenu

[Dessert.yes] => [Pasta;Cake]

[Dessert.no,Main.meat] => [Steak;Fries]

[Dessert.no,Main.pasta] => [Pasta]

The prioritization of the Dessert choice has removed the effectively unavailbale deci-
sion for meat in the case of yes for Dessert.

Exercise 18. The implementation of prioritize assumes that the choice to be lifted
is located in the second alternative of the choice in a. Generalize the implementation of
prioritize so that the choice in b can be lifted out of either alternative.

As a final example we illustrate how to combine the two previously defined transfor-
mations. In terms of the choice calculus, combining dimension hoisting and choice
prioritization leads to a transformation that we call dependency inversion.

dim A〈a1,a2〉 in A〈[a1],[a2;dim B〈b1,b2〉 in B〈b1,b2〉]〉
� dim B〈b1,b2〉 in B〈[a2;b1],dim A〈a1,a2〉 in A〈[a1],[a2;b2]〉〉

Reusing the definitions for hoist and prioritize, the definition of inversion is rather
straightforward.
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invert :: Data a => Dim -> Dim -> V a -> V a

invert b a = prioritize b a . hoist b

The definition of invert demonstrates that we can build more complicated variation
programs out of simpler components and thus illustrate the compositional nature of our
variation DSEL.

5.4 Variation Programming Modes

To close this section, we share a few thoughts on the nature of variation programming.
The two sections 5.2 and 5.3 have illustrated that making data structures variational
leads to two different programming modes or attitudes. On the one hand, the focus can
be on manipulating the data structure itself, in which case the variational parts are just
maintained but not essentially changed. This is what Section 5.2 was all about. On the
other hand, the focus can be on changing the variation in the data structure, in which
case the existing represented objects are kept mostly intact. This is what Section 5.3
was concerned with.

The different ways of processing edits to data structures have been classified under
the name of persistence [25]. Imperative languages typically support no persistence,
that is, edits to data structures are destructive and make old versions inaccessible. In
contrast, data structures in functional languages are by default fully persistent, that is,
old versions are in principle always accessible as long as a reference to them is kept.
(There are also the notions of partial persistence and confluent persistence that are not
of interest here.) Variational data structures add a new form of persistence that we call
controlled persistence because it gives programmers precise control over what versions
of a data structure to keep and how to refer to them. In contrast to all other forms of per-
sistence (or non-persistence), which happen rather automatically, controlled persistence
requires a conscious effort on part of the programmer to create and retrieve different
versions of a data structure, and it keeps information about the versions around for the
programmer to see and exploit.

6 Variational Software

The motivation for the choice calculus was the representation of variation in software,
and having uncovered some basic principles of variation programming in Section 5, we
are finally in a position to look at how we can put the choice calculus to work, through
variation programming, on variational software.

As a running example we pick up the twice example that was introduced earlier
in Section 2. We will introduce a representation of (a vastly simplified version of) the
object language Haskell in Section 6.1, together with a number of supporting functions.
After that we will consider in Section 6.2 several simple example transformations for
variational Haskell programs.

6.1 Representing Variational Haskell

Following the example given in Section 5.1 we will first introduce a data type definition
for representing Haskell programs and then extend it to allow for variations.
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Because of the limitations of our current library that are imposed by the use of the
SYB library [19], we have to make a number of simplifying assumptions and compro-
mises in our definition. One constraint is that within a data type definition the V type
constructor can be applied only on one type. This has several implications. First, we
cannot spread the definition of Haskell over several data types. We actually would have
liked to do that and have, for example, different data types for representing expressions
and declarations (for values, function, types, etc.). Since this is not possible, we are
forced to represent function definitions using a Fun constructor as part of the expression
data type. But this is not all. Ordinarily, we would represent parameters of a function
definition by simple strings. However, since we want to consider as an example the re-
naming of function parameters, we would have to represent variational parameters by a
type V String or so, which is unfortunately not possible since we have committed the
V type constructor to the expression data type already. The solution to this problem is
to represent function parameters also as expressions. Although we can ensure through
the use of smart constructors that we build only function definitions that use variable
names as parameters, this forced restriction on the representation is less than ideal.

Therefore, for the purpose of this tutorial, we will work with the following data type
for representing Haskell expressions and programs.

data Haskell = App Haskell Haskell

| Var Name

| Val Int

| Fun Name [Haskell] Haskell Haskell

...

As we did with lists, we can now add a constructor for introducing variational expres-
sions.

type VHaskell = V Haskell

data Haskell = App Haskell Haskell

| Var Name

| Val Int

| Fun Name [Haskell] Haskell Haskell

...

| VHaskell VHaskell

Before we construct the representation of the variational twice function, we introduce
a few more abbreviations and auxiliary functions to make the work with variational
Haskell programs more convenient.

First, we introduce a function that turns a string that represents a binary function into
a constructor for building expressions using that function. Consider, for example, the
following simple Haskell expression.

2*x

When we try to represent this expression with the above data type, we have quite some
work to do. First, we have to turn 2 and x into the Haskell expressions using the con-
structors Val and Var, respectively. Then we have to use the App constructor twice to
form the application. In other words, we have to write the following expression.
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haskell :: Haskell -> VHaskell

haskell = Obj

choice :: Dim -> [Haskell] -> Haskell

choice d = VHaskell.Chc d.map haskell

(.+) = op "+"

(.*) = op "*"

x,y,z :: Haskell

[x,y,z] = map Var ["x","y","z"]

Fig. 5. Auxiliary functions for variational Haskell programs

App (App (Var "*") (Val 2)) (Var x).

The function op defined below performs all the necessary wrapping for us automatically.
(Less importantly, it also adds enclosing parentheses around the function name, which
is exploited by the pretty printer to produce an infix representation.)

op :: Name -> Haskell -> Haskell -> Haskell

op f l r = App (App (Var ("(" ++ f ++ ")")) l) r

In Figure 5 we also define two infix operators that are defined as an abbreviation for a
call to the op function. These are not essential but will make the twice example look
even nicer. There we also introduce names for a few variable references. Moreover,
in addition to the haskell synonym for the Obj constructor we also provide a smart
constructor to build choices of Haskell expressions more directly.

Finally, we define a function fun, which provides an abbreviation for the Fun con-
structor.

fun :: Name -> [Haskell] -> Haskell -> VHaskell

fun n vs e = haskell $ Fun n vs e withoutScope

withoutScope :: Haskell

withoutScope = Var ""

In particular, fun constructs a function definition with an empty scope of the function
definition since in our example we are interested only in the definition of twice and not
its uses.

With all these preparations, we can now represent the variational definition of twice
in our DSEL as follows.

twice = Dim "Par" ["x","y"]

$ Dim "Impl" ["plus","times"]

$ fun "twice" [v] i

where v = choice "Par" [x,y]

i = choice "Impl" [v .+ v, Val 2 .* v]

For comparison here is again the definition given in Section 2..

dim Par〈x,y〉 in
dim Impl〈plus, times〉 in
twice Par〈x,y〉 = Impl〈Par〈x,y〉+Par〈x,y〉,2*Par〈x,y〉〉

To check that this definition mirrors the one given in Section 2, we can evaluate twice

(the line breaks were added manually).
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> twice

dim Par<x,y> in

dim Impl<plus,times> in

twice Par<x,y> = Impl<Par<x,y>+Par<x,y>,2*Par<x,y>>

To check that this definition actually represents the desired four different implementa-
tions of twice we can compute its semantics.

> psem twice

[Par.x,Impl.plus] => twice x = x+x

[Par.x,Impl.times] => twice x = 2*x

[Par.y,Impl.plus] => twice y = y+y

[Par.y,Impl.times] => twice y = 2*y

Looking back at the definition of twice, notice how we have used Haskell’s where

clause to factor out parts of the definition. Whereas the definition of i is not really
essential, the definition of v is, in fact, needed to avoid the copying of the parame-
ter choice. In Section 2 we have seen how the share construct of the choice calculus
facilitates the factorization of common subexpressions. We have earlier said that, for
technical reasons, the current realization of the choice calculus as a Haskell DSEL does
not support sharing, but we can see here that the situation is not completely dire since
we can simulate the missing sharing of the choice calculus (at least to some degree)
using Haskell’s let (or where) bindings. Here is a slightly changed definition of the
twice function that comes close to the example given in Section 2.

twice = Dim "Par" ["x","y"] $

Dim "Impl" ["plus","times"] $

let v = choice "Par" [x,y] in

fun "twice" [v] (choice "Impl" [v .+ v, Val 2 .* v])

But recall from Section 4 that there is an important difference between Haskell’s let

and the share construct of the choice calculus, and that is the time when bindings are
expanded. In the choice calculus shared expressions will be expanded only after all
dimensions have been eliminated using tag selection, whereas in Haskell the expansion
happens always before any selection.

6.2 Edit Operations for Variational Haskell

As an example for an editing operation we consider the task of turning a plain
function definition into a variational one. To this end, we start with the plain vari-
ant of twice with parameter name x and implemented by +, and add dimensions
to it.

xp = fun "twice" [x] (x .+ x)

Let us first consider the variation of the parameter name. In order to generalize the
current definition xp, we need to do the following two things.

(1) Add a dimension declaration for Par.
(2) Replace references to x by choices between x and y.
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The first step is easy and simply requires the addition of a dimension declaration (using
the Dim constructor). The second step requires a traversal of the abstract syntax tree rep-
resenting twice and the application of a transformation at all places where a variable x is
encountered. This can be accomplished by employing the everywhere traversal function
of the SYB library [19]. All we need is the definition of a transformation that identifies
the occurrence of x variables and replaces them by choices. Such a transformation is
indeed easy to define.5

addPar :: Haskell -> Haskell

addPar (Var "x") = choice "Par" [x,y]

addPar e = e

We can use this transformation as an argument for the everywhere traversal. Since
everywhere is a generic function that must be able to traverse arbitrary data types and
visit and inspect values of arbitrary types, the transformation passed to it as an argu-
ment must be a polymorphic function. The SYB library provides the function mkT that
performs this task; that is, it generalizes the type of a function into a polymorphic one.
We can therefore define the transformation to turn the fixed x variables in twice into
choices between x and y as follows.

varyPar :: VHaskell -> VHaskell

varyPar = Dim "Par" ["x","y"] . everywhere (mkT addPar)

We can confirm that varyPar has indeed the desired effect.

> varyPar xp

dim Par<x,y> in twice Par<x,y> = Par<x,y>+Par<x,y>

A limitation of the shown transformation is that it renames all found variable names
x and not just the parameter of twice. In this example, this works out well, but in
general we have to limit the scope of the transformation to the scope of the variable
declaration that is being varied. We can achieve this using the function inRange that we
will introduce later. See also Exercise 21.

The next step in generalizing the function definition is to replace the addition-
based implementation by a choice between addition and multiplication. This trans-
formation works in exactly the same way, except that the function for transforming
individual expressions has to do a more elaborate form of pattern matching on the
expressions.

addImpl :: Haskell -> Haskell

addImpl e@(App (App (Var "(+)") l) r)

| l == r = choice "Impl" [e, Val 2 .* r]

addImpl e = e

With addImpl we can define a transformation similar to varyPar that adds the variation
of the implementation method as a new dimension.

5 Here the fact that we have to represent parameters as expressions comes to our advantage since
we do not have to distinguish the different occurrences of variables (definition vs. use) and can
deal with both cases in one equation.



88 M. Erwig and E. Walkingshaw

varyImpl :: VHaskell -> VHaskell

varyImpl = Dim "Impl" ["plus","times"] . everywhere (mkT addImpl)

To verify the effect of varyImpl we can apply it directly to xp or to the variational
program we have already obtained through varyPar xp.

> varyImpl xp

dim Impl<plus,times> in twice x = Impl<x+x,2*x>

> varyImpl (varyPar xp)

dim Impl<plus,times> in

dim Par<x,y> in

twice Par<x,y> = Impl<Par<x,y>+Par<x,y>,2*Par<x,y>>

We can see that the latter expression is not the same as twice since the dimensions occur
in a different order. However, if we reverse the order of application for the two variation-
adding transformations, we can verify that they indeed produce the same result as the
hand-written definition for twice.

> varyPar (varyImpl xp) == twice

True

Exercise 19. One might think that even though the two expressions twice and
varyImpl (varyPar xp) are not syntactically equal, their semantics might be, because,
after all, they really represent the same variations. Explain why this is, in fact, not the
case.

As a final example we consider the task of extending the parameter dimension by an-
other option z, as we have illustrated in Section 2. This transformation involves the
following steps.

(1) Extend the tags of the dimension declaration for Par by a new tag z.
(2) Extend all Par choices that are bound by the dimension declaration by a new alter-

native z.

The first step is rather straightforward and can be implemented using a similar approach
to what we have done in Section 5.3, namely by extracting the definition, manipulating
it, and putting it back.

However, the change to all bound choices is more complicated. This is because it
is not sufficient to find one choice (or even a fixed number of choices), and we can’t
therefore simply reuse the extract function for this purpose. To deal with a variable
number of choices we define a function inRange that applies a transformation to selec-
tive parts of a variational expression. More specifically, inRange takes a transformation
f and two predicates on variational expressions, begin and end that mark regions of
the expression in which f is to be applied; that is, inRange effectively applies f to all
nodes in the expression that are “between” nodes for which begin is true and nodes for
which end is not true. The function works as follows. The expression to be transformed
is traversed until a node is encountered for which the begin predicate yields True. Then
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the traversal continues and the transformation f is applied to all nodes encountered on
the way until a node is found for which the predicate end yields True. In that case the
traversal continues, applying f to other siblings of the matching end node, but does
not descend beneath that node. When all descendants of a begin-matching node have
been transformed or terminated by an end-matching node, the traversal continues until
another node matching begin is found.

inRange :: Data a => (V a -> V a) -> (Pred a,Pred a) -> V a -> V a

Even though the implementation for inRange is quite elegant and not very complicated,
we do not show it here (as we did for find and <@) because it is based on navigational
functions from the underlying zipper library. The interested reader can find the defini-
tion in the accompanying source code.

With the help of the function inRange we can now implement the transformation for
extending a dimension. This function takes four parameters, the name of the dimension,
the new tag, a function to extend the bound choices, and the expression in which to per-
form the update. It works as follows. First, we locate the definition of the dimension d to
be extended and remember the position in the context c. We then perform the extension
of all choices bound by d by applying the function inRange to the scope of the found di-
mension, e. Finding all the relevant choices is accomplished by the two predicates that
are passed as arguments to inRange. The first, chcFor d, finds choices in the scope of
d, and the second dimDef d stops the transformation at places where another dimension
definition for d ends the scope. In this way the shadowing of dimension definitions is
respected. Finally, we construct the result by inserting a dimension declaration with the
new tag t and the changed expression e’ into the context c

extend :: Data a => Dim -> Tag -> (V a -> V a) -> V a -> V a

extend d t f e = withFallback e $ do

(c, Dim _ ts e) <- extract (dimDef d) e

let e’ = f ‘inRange‘ (chcFor d,dimDef d) $ e

return (c <@ Dim d (ts++[t]) e’)

All we need now for the extension of twice by a new option for z is a function for
extending choices by new expression alternatives. This can be easily done using the
following function addAlt.

addAlt :: V a -> V a -> V a

addAlt a (Chc d as) = Chc d (as ++ [a])

We can extend the variational expression twice as planned by employing extend and
addAlt.

twiceZ :: VHaskell

twiceZ = extend "Par" "z" (addAlt (haskell z)) twice

To check whether the function works as expected, we can evaluate twiceZ.

> twiceZ

dim Par<x,y,z> in

dim Impl<plus,times> in

twice Par<x,y,z> = Impl<Par<x,y,z>+Par<x,y,z>,2*Par<x,y,z>>
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Exercise 20. Define a function swapOptions that exchanges the two tags of a binary
dimension and the corresponding alternatives in all bound choices.

Exercise 21. Define a function renamePar that adds a choice of parameter names to the
definition of a specific function f by creating a dimension and corresponding choices
that store the existing parameter name and a newly given name. Be careful to extend
only those parameter names that are bound by f.

The function should be defined so that the expression renamePar xp "x" "y" pro-
duces the same result as varyPar xp.

The ability to programmatically edit variation representations is an important aspect of
variation programming and our DSEL that we have barely scratched the surface of in
this section. Identifying, characterizing, and implementing editing operations is also an
important area for future research since it directly supports the development of tools for
managing and manipulating variation.

7 Further Reading

In this section we provide some pointers to related work in the area of representing
and transforming software variation. The purpose of this section is not to discuss the
related work in depth or present a detailed comparison with the material presented in
this tutorial, but rather point to several important works in the literature concerning
variation representation.

In general, the field of of software configuration management (SCM) is concerned
with managing changes in software systems and associated documents [38]. It is a sub-
field of the more general area of configuration management [21], which encompasses
the theory, tools, and practices used to control the development of complex systems.
Among the differnt kinds of SCM tools, revision control systems [26] are probably
most widely used and manage changes to software and documents over time [37] and
as repositories to facilitate collaboration [5]. In the context of revision control systems,
the requirement to work on software in parallel with many developers leads to the prob-
lem of having to merge different versions of software [22]. As one interesting example
for the many approaches in this field, the Darcs versioning system [8] provides a for-
malized [30] merge operation that can combine patches from separate branches.

The field of feature-oriented software development (FOSD) [2] takes the view that
each piece of software offers a specific set of features and that these features can be
modeled and implemented, at least to some degree, independently of one another. The
goal is to represent features in such a way that allows software to be assembled mostly
automatically from these features. Features are a specific way of expressing variation in
software, and approaches to FOSD are thus relevant and an interesting source of ideas
for variation representation and transformation.

On a very high level, features and their relationships are described with the help of
feature models, which can be expressed as diagrams [16], algebras [14], propositional
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formulas [3] (and more). Feature models describe the structure of software product lines
(SPLs) [27, 29].

Approaches to the implementation of features can be categorized into roughly three
different kinds of approaches.

First, annotative approaches express variation through a separate language. The most
well-known annotative tool is the C Preprocessor (CPP) [13], which supports variation
through #ifdef annotations, macro-expansion, etc. [35]. Even though very popular, the
use of CPP often leads to code that is hard to understand [34]. A principal problem
of CPP is that it cannot provide any kind of syntactic correctness guarantees for the
represented variations, and consequently one can find many ill-formed variants in CPP-
annotated software [20]. Other annotative approaches that, unlike CPP, respect the ab-
stract syntax of the underlying object language and guarantee syntactic correctness of
software variants include the CIDE tool [17], the TaP (“tag and prune”) strategy [6],
and the choice calculus on which this tutorial is based.

Second, the probably most popular approach in the area of FOSD is the composi-
tional approach, in which features are implemented as separate building blocks that can
be composed into programs. By selecting different sets of features, different program
variants are created. This idea is often realized through extensions to object-oriented
languages, such as mixins [4, 7], aspects [9, 18, 23], or both [24].

Third, in the metaprogramming aproach, one encodes variability using metapro-
gramming features [31,32] of the object language itself. Typical examples can be found
in the realm of functional programming languages, such as MetaML [36], Template
Haskell [33], or Racket [28].

8 Concluding Remarks

In this tutorial we have presented both a formal model for representing variation and
a DSEL that both partially implements this model, and extends it to the new domain
of variation programming. We have illustrated variational programming with two ex-
tended examples of variational lists and variational Haskell programs. We would like to
conclude with two final, take-home points about the motivation behind this research.

First, variation is a fact of software engineering life, but the current tools for man-
aging this variation are often inadequate. We believe that the path to better support
for variation is through a better understanding of the problems and the development
of clear and reusable solutions. These things can only be achieved by establishing a
simple, sound, and formal foundation on which a general theory of variation can be
built. The choice calculus is a structured and flexible representation for variation that
can serve as this foundation.

Second, in addition to the simple selection of variants, a structured variation rep-
resentation offers many other opportunities for queries and transformations. In other
words, the potential exists for variation programming. By integrating the represen-
tation offered by the choice calculus into a programming environment, this can be
achieved. We have used Haskell for this purpose, but many other embeddings are
conceivable.
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Appendix: Solutions to Exercises

Exercise 1

The choice calculus expression represents all of the following definitions.

twice x = x+x twice y = y+y twice z = z+z

twice x = 2*x twice y = 2*y twice z = 2*z

This gives us six total variants. Adding another dimension with two tags for the function
name sproduces the following twelve variants.

twice x = x+x twice y = y+y twice z = z+z

twice x = 2*x twice y = 2*y twice z = 2*z

double x = x+x double y = y+y double z = z+z

double x = 2*x double y = 2*y double z = 2*z

racket-lang.org/new-name.html
web.cecs.pdx.edu/~sheard/staged.html
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Exercise 2

We can simply add the definition of thrice using an Impl choice for the implementation
method as follows.

dim Par〈x,y,z〉 in
dim Impl〈plus, times〉 in
share v = Par〈x,y,z〉 in
twice v = Impl〈v+v,2*v〉
thrice v = Impl〈v+v+v,3*v〉

Exercise 3

Here we create a second Impl dimension with three tags, and use a corresponding choice
with three alternatives in the definition of thrice.

dim Par〈x,y,z〉 in
dim Impl〈plus, times〉 in
share v = Par〈x,y,z〉 in
twice v = Impl〈v+v,2*v〉
dim Impl〈plus, times, twice〉 in
thrice v = Impl〈v+v+v,3*v,v+twice v〉

Exercise 4

(a) Invalid
(b) Invalid
(c) Valid

Exercise 5

The result is 1 since the selection recursively decends into the chosen alternative with
the same index, which is also the reason that it is not possible to select 2.

Exercise 6

When the ordering constraint is removed, we obtain an additional four entries for tuples
which have a B tag in their first component.

�dim A〈a1,a2〉 in A〈1,dim B〈b1,b2〉 in B〈2,3〉〉� =
{(A.a1,1),((A.a2,B.b1),2),((A.a2,B.b2),3),

((B.b1,A.a1),1),((B.b1,A.a2),2),((B.b2,A.a1),1),((B.b2,A.a2),3)}

We can observe that the selection of either B tag has no influence on the result when A.a1

is chosen as the second tag, which reflects the fact that the B dimension is dependent on
the selection of A.a2.
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Exercise 7

The definition of V for choices is very similar to the case for trees.

Vρ(D〈en〉) = {(δ n,D〈e′n〉) | (δ1,e
′
1) ∈Vρ(e1), . . . ,(δn,e

′
n) ∈Vρ(en)}

Exercise 8

The definitions can be obtained directly by partial application of the Dim and Chc con-
structors.

dimA = Dim "A" ["a1","a2"]

chcA = Chc "A"

Exercise 9

Expanding sharing before dimensions and choices are resolved duplicates the A dimen-
sion and will thus produce two independent decisions that result in a semantics with
four variants.

�share v = (dim A〈a1,a2〉 in A〈1,2〉) in (v,v)� =

{((A.a1,A.a1),(1,1)),((A.a1,A.a2),(1,2)),

((A.a2,A.a1),(2,1)),((A.a2,A.a2),(2,2))}
Conversely, if we expand sharing after dimensions and choices are resolved, we get
only one dimension, which leads to the following semantics.

�share v = (dim A〈a1,a2〉 in A〈1,2〉) in (v,v)� =

{(A.a1,(1,1)),(A.a2,(2,2))}

Exercise 10

The easiest solution is to employ the fmap function using an anonymous finction to map
an integer to a choice and apply it to ab.

> fmap (\i -> Chc "A" [Obj i, Obj (i+1)]) ab

dim A<a1,a2> in A<dim B<b1,b2> in B<A<1,2>,A<2,3>>,A<3,4>>

The type of the result is V (V Int).

Exercise 11

The monadic instance for V lets us combine the variational value and the variational list
using a standard monadic approach. Here we employ the do notation in the definition.

vvcons :: V a -> VList a -> VList a

vvcons vx vl = do {x <- vx; vcons x vl}
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Exercise 12

We show the code for approach (b). In out definition we can reuse the function vvcons

defined in exercise 11.

fullMenu :: Menu

fullMenu = Dim "Main" ["meat","pasta"] $

Dim "Desert" ["yes","no"] $

chc "Main" [Obj Steak,Obj Pasta] ‘vvcons‘

chc "Desert" [vsingle Cake,vempty]

Exercise 13

We can observe that the type of sumL is similar to that of len (it is an instance), which
indicates that the function definition will have the same structure.

sumL :: List Int -> V Int

sumL Empty = list 0

sumL (Cons x xs) = fmap (x+) (sumL xs)

sumL (VList vl) = vl >>= sumL

The definition for vsum is obtained through simple lifting.

vsum :: VList Int -> V Int

vsum = liftV sumL

Exercise 14

The type of rev indicates that it preserves the overall structure of the list values to be
processed. Therefore, the last case can be defined using fmap.

rev :: List a -> List a

rev Empty = Empty

rev (Cons x xs) = rev xs ‘cat‘ single x

rev (VList vl) = VList (fmap rev vl)

The definition for vrev can also use the fmap function.

vrev :: VList a -> VList a

vrev = fmap rev

Exercise 15

The definition for filterL has in principle the same type structure—at least as far the
transformed lists is concerned—and follows therefore the same pattern as the definition
for rev.

filterL :: (a -> Bool) -> List a -> List a

filterL p Empty = Empty

filterL p (Cons x xs) | p x = Cons x (filterL p xs)

| otherwise = filterL p xs

filterL p (VList vl) = VList (fmap (filterL p) vl)
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The definition for vfilter should be obvious given the solution for vrev.

vfilter :: (a -> Bool) -> VList a -> VList a

vfilter p = fmap (filterL p)

Exercise 16

The interesting cases in the definition for zipL are the last two where a partially applied
zipL to one list is distributed over the elements of the respective other list using fmap.

zipL :: List a -> List b -> List (a,b)

zipL Empty ys = Empty

zipL xs Empty = Empty

zipL (Cons x xs) (Cons y ys) = Cons (x,y) (zipL xs ys)

zipL (VList vl) ys = VList (fmap (‘zipL‘ ys) vl)

zipL xs (VList vl’) = VList (fmap (xs ‘zipL‘) vl’)

The definition for vzip simply injects the result of applying zipL, which is of type List

a, into the type VList a.

vzip :: VList a -> VList b -> VList (a,b)

vzip vl vl’ = list $ zipL (VList vl) (VList vl’)

Exercise 17

(a) Another potential problem for hoisting can the reordering of dimensions. Consider,
for example, the following variational list that contains two occurrences of an A

dimension.

> dimA $ chc’A [1,2] ‘vvcons‘ (dimA $ vsingle 9)

dim A<a1,a2> in A<[1;dim A<a1,a2> in [9]],[2;dim A<a1,a2> in [9]]>

The semantics reveals that the decision in the second, rightmost dimension does
not really have any effect on the plain results, which is not surprising since the
dimension binds no choice.

[A.a1,A.a1] => [1;9]

[A.a1,A.a2] => [1;9]

[A.a2,A.a1] => [2;9]

[A.a2,A.a2] => [2;9]

Now consider the following variation of the above expression in which the right-
most A dimension has been lifted to the top level.

> dimA $ dimA $ chc’A [1,2] ‘vvcons‘ (vsingle 9)

dim A<a1,a2> in dim A<a1,a2> in A<[1;9],[2;9]>

This expression can be the result of hoisting the rightmost occurrence of the A

dimension. This hoisting does not capture any free choices, but it does reorder the
two dimensions, which leads to a different semantics.
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[A.a1,A.a1] => [1;9]

[A.a1,A.a2] => [2;9]

[A.a2,A.a1] => [1;9]

[A.a2,A.a2] => [2;9]

(b) We don’t have to check for reordering since we always find the topmost, leftmost
dimension definition, which, when hoisted, cannot swap positions with other di-
mensions of the same name since there are non on the path from the root to the
topmost, leftmost dimension definition.

Exercise 18

Instead of extracting the choice in dimension b directly from a2, in prioritize’ we
attempt to extract it first from a1, then from a2. In order to make this definition more
concise, we introduce several helper functions in the body of prioritize’. The func-
tions fstAlt and sndAlt describe how to reassemble the alternatives if the choice in b

is found in the first or second alternative, respectively. The tryAlt function takes ones
of these functions as an argument, along with the corresponding alternative, and tries to
find a choice in dimension b. If it succeeds, it will return the reassembled expression,
otherwise it will return Nothing. Finally, in the last line of the function, we employ the
standard mplus function from the MonadPlus type class to combine the results of the two
applications of tryAlt. This will return the first of the two applications that succeeds,
or Nothing if neither succeeds (in which case, the fallback expression e will be returned
from prioritize’).

prioritize’ :: Data a => Dim -> Dim -> V a -> V a

prioritize’ b a e = withFallback e $ do

(dA,ae) <- extract (dimDef a) e

(cA,Chc _ [a1,a2]) <- extract (chcFor a) ae

let fstAlt cB b1 b2 = [cA <@ Chc a [cB <@ b1,a2],cB <@ b2]

let sndAlt cB b1 b2 = [cB <@ b1,cA <@ Chc a [a1,cB <@ b2]]

let tryAlt f ai = do

(cB,Chc _ [b1,b2]) <- extract (chcFor b) ai

return $ dA <@ Chc b (f cB b1 b2)

tryAlt fstAlt a1 ‘mplus‘ tryAlt sndAlt a2

Note that this function still makes a few assumptions, such as that the involved dimen-
sions are binary (contain two options), and that a choice in dimension b is contained in
only one of the two alternatives. Making this function more robust is left as an exercise
for the especially thorough reader.

Exercise 19

Even though the two expressions produce the same variants, the ordering of the tags
will be different in the decisions (the domain of the mapping yielded by the semantics).
That is, in the semantics of xp the tags in the Par dimension appear first in each decision,
while in varyImpl (varyPar xp) the Impl tags appear first.
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Exercise 20

This editing function can be defined in a similar way as extend. First we will find the
relevant dimension, then swap the alternatives of all bound choices. We again reuse
extract and inRange for these tasks.

swapOptions :: Data a => Dim -> V a -> V a

swapOptions d e = withFallback e $ do

(c, Dim _ [t,u] e) <- extract (dimDef d) e

let e’ = swapAlts ‘inRange‘ (chcFor d,dimDef d) $ e

return (c <@ Dim d [u,t] e’)

The helper function swapAlts, passed as the transformation function to inRange, ex-
changes the two alternatives of a binary choice.

swapAlts :: V a -> V a

swapAlts (Chc d [a,b]) = Chc d [b,a]

Note that these definitions assume that the dimension to be swapped is binary, and that
all bound choices have the appropriate number of tags. A pattern-matching error will
occur if these assumptions do not hold, though the solution can easily be made more
robust.

Exercise 21

The renamePar operation is similar to the addPar operation defined at the beginning of
6.2. The difference is that instead of replacing every variable x with a choice between
x and y, we want to find the first function definition in the expression, and apply our
changes to this definition only. The following helper function is used by extract to find
the first function definition in a VHaskell expression.

firstFun :: Pred Haskell

firstFun (Obj (Fun _ _ _ _)) = True

firstFun _ = False

A second helper function, renameRef, serves as a generalized version of addPar that
takes two variable names as parameters. The first is the name of the variable to change;
the second is the new variable name.

renameRef :: Name -> Name -> Haskell -> Haskell

renameRef x y (Var x’)

| x == x’ = choice "Par" [Var x,Var y]

| otherwise = Var x’

renameRef _ _ e = e

Finally, we are able to define renamePar as follows. After finding the first function
definition f, we apply the edit described by renameRef to the arguments and body of f.
We do not apply the changes to the scope of f, thereby isolating the change to the first
function definition only.
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renamePar :: VHaskell -> Name -> Name -> VHaskell

renamePar e x y = withFallback e $ do

(c, Obj (Fun f as b scope)) <- extract firstFun e

let as’ = everywhere (mkT (renameRef x y)) as

let b’ = everywhere (mkT (renameRef x y)) b

return (c <@ Dim "Par" [x,y] (Obj (Fun f as’ b’ scope)))

This function could be generalized in several ways, such as by introducing parameters
for the new dimension name or for the name of the function to apply the change to
(rather than just the first one found).
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