
Abstract
We introduce visual graphs as an intermediate repre-

sentation between concrete visual syntax and abstract
graph syntax. In a visual graph some nodes are shown as
geometric figures, and some edges are represented by geo-
metric relationships between these figures. By carefully
designing visual graphs and corresponding mappings to
abstract syntax graphs, semantics definitions can, at least
partially, employ a visual notation while still based on
abstract syntax. Visual semantics thus offers the “best of
both worlds” by integrating abstract syntax and visual
notation. These concepts can also be used to give visual
semantics for traditional textual formalisms. As an exam-
ple we provide a visual definition of Turing machines.

1: Intr oduction
Language semantics are conveniently expressed based

on abstract syntax. This allows to abstract from details of
concrete syntax and leads to more succinct semantics defi-
nitions, and in some cases it makes semantics definitions
even tractable at all. In [5] we have presented a framework
for defining semantics of visual languages. The approach
is fundamentally based on an abstract graph syntax for vi-
sual languages. Thus, it is essentially a textual formalism
which is unfortunate (to a certain degree) for two reasons:
first, visual relationships, such asinside or adjacent, are
represented in a topological way by appropriately labeled
edges. By this transition from a visual to a textual repre-
sentation, many characteristics of the visual language un-
der consideration are difficult to grasp in the abstract
representation, they might even get lost. Second, the tex-
tual treatment of a visual language presents in a sense a
“modality mismatch”, more precisely, it means a retrogres-
sion from visual to textual. This might cause psychologi-
cally grounded reluctances to using the formalism – just
because it is not visual.

These drawbacks might be obstacles for a wide-spread
use of the formalism in the VL community. Therefore, we
extend the semantics formalism to stay, to a large degree,
with visual notation when defining semantics. The main
idea is to re-visualize some relationships of abstract syntax
that have been translated more or less directly from geo-
metric relationships. This means that some nodes are visu-
alized as geometric figures, and some of the edges between
these nodes are represented by relationships that hold be-
tween the figures. Since this will not cover, in general, all
relationships, we arrive at a semi-visual notation, that is, a
mixture of graphs and pictures, calledvisual graphs, in

which complex relationships are still shown as edges be-
tween nodes. The goal is then to use visual graphs in se-
mantics definitions. Therefore, we need a mapping from
visualizations back to abstract graph syntax. This is
achieved by typed graph rewriting systems.

A further application of visual graphs and visual se-
mantics is to give visual semantics definitions for tradition-
ally non-visual formal systems. It seems that this means
just to define a visualization for such a formalism. How-
ever, only defining a mapping from the mathematical
structures to a visual domain is not enough. To have a truly
visual semantics we again need a mapping from the visual
representation back to the formal structures. Thus, visual
semantics in that application domain means to formally
define a (semi-) visual language for that application.

Hence the paper has the following contributions: First
of all, we provide a more intuitive notation for semantics
definitions of visual languages. In addition, we offer a
framework for defining (semi-) visual languages for formal
systems, and by that we disclose a further application area
for visual languages that has not been investigated so far.

In the next section we illustrate the approach by giving
a visual semantics for traditional, textual formalism.

2: A visual semantics for turing machines
Let Q denote a set of states (F ⊆ Q is the set of final

states), and letS denote a set of symbols. The (partial)
function δ : Q×S→ Q×S×{ L, R} defines the state transi-
tions of a Turing machine. We will represent a Turing ma-
chine bytwo graphs. By this we can avoid complex graph
pattern matching and keep the definition quite simple. This
also illustrates that our basic graph formalism is more ver-
satile than graph grammars which work on just one single
graph. The ability to use more than one graph offers some
kind of modularity in semantics definitions.

We represent theδ function as a (∅, S×S×{ L, R})-
graph, that is, we useQ as node identifiers (needing no
node labels), and each edge (v, w) is labeled by a triple
“X→Yd” expressing that on readingX in statev the Turing
machine printsY, moves its head according tod, and enters
statew. For example, the Turing machine accepting the
language {anbn | n > 1} is shown in Figure 1. This abstract
graph representation of a Turing machine program nicely
follows the graph representation of finite automata.

The tape of the Turing machine is given by another,
now visual, graph in which cells are represented by adja-
cent rectangles. This is mapped to an abstract graph repre-
sentation in which nodes are connected bynext-edges. The
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representation of Turing machines as abstract syntax
graphs is defined by a graph rewrite systemρTM:

ρ1 = →

ρ2 = →

Note thatρ2 is needed to ensure relabeling of (the final)
node of a rewriting chain that has no incident edges any-
more.

A configuration (q, h, t, δ) of the Turing machine is
represented by two graphs (the tapet and the transition
functionδ) and two nodes defining the current state (q) and
the tape cell currently seen (h).

The semantics of the Turing machine can now be
given by defining a state transition function by just three
simple equations:

(q, h, t, δ) = t if q ∈ F

(q, h, , ) =

(p, r, , )

(q, h, , ) =

(p, l, , )

The first equation gives the terminating case: ifq is a final
state, we simply return the tape as a result. Otherwise, we
match the current head nodeh in the tape graph, retrieve its
label X, and find that outgoing edge (q, p) of the current
stateq in theδ graph that consistsX as its first label com-

ponent. If the last label component isR, we continue with
the next statep and the right neighbor ofh as the new head.
In addition, we overwrite the label ofh (that is, re-insert
nodeh) with the new labelY, and we also have to re-insert
the matched (and removed) edge (q, p). The case forL is
analogous.

In the full paper [6] we give a detailed description of
visual graphs and their translation to abstract syntax
graphs by typed graph rewriting.

3: Related work
Visual semantics in the sense of pure visual rewriting

has received considerable attention [1, 2, 3, 7, 8, 9]. All
these approaches do not specify relationships to a mathe-
matical domain (which when well-understood can serve as
a profound explanation of the defined language) which
means a complete devotion to operational descriptions.
The purely visual treatment is very attractive, but seman-
tics are sometimes difficult to apply and to deal with in
proofs. It should also be noted that the semantics defini-
tions must always be changed when the syntax of the lan-
guage changes. A visual Turing machine description, quite
different from ours, is also given in ChemTrains [1].

4: Conclusions
We have introduced the notion of visual graphs as a

model for semi-abstract visual syntax. By defining special-
ized visual rewrite systems the use of visual graphs in se-
mantics definitions becomes possible. Together with a
structured processing of graphs that is offered by the un-
derlying inductive graph definition [4] we are able to de-
fine precise semantics of visual languages in an intuitive
and easily understandable way. This should make visual
language semantics accessible to a broader audience, not
least because the application of semantics definitions is
greatly simplified.
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Figure 1: Turing Machine accepting anbn
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