
Joint Factor Analysis and Latent Clustering
Bo Yang

Dept. ECE, Univ. Minnesota
Minneapolis, MN 55455

Email: yang4173@umn.edu

Xiao Fu
Dept. ECE, Univ. Minnesota

Minneapolis, MN 55455
Email: xfu@umn.edu

Nicholas D. Sidiropoulos
Dept. ECE, Univ. Minnesota

Minneapolis, MN 55455
Email: nikos@umn.edu

Abstract—Many real-life datasets exhibit structure in the form
of physically meaningful clusters - e.g., news documents can be
categorized as sports, politics, entertainment, and so on. Taking
these clusters into account together with low-rank structure may
yield parsimonious matrix and tensor factorization models and
more powerful data analytics. Prior works made use of data-
domain similarity to improve nonnegative matrix factorization.
Here we are instead interested in joint low-rank factorization and
latent-domain clustering; that is, in clustering the latent reduced-
dimension representations of the observed entities. A unified
algorithmic framework that can deal with both matrix and tensor
factorization and latent clustering is proposed. Numerical results
obtained from synthetic and real document data show that the
proposed approach can significantly improve factor analysis and
clustering accuracy.

I. INTRODUCTION

Factoring a data matrix or tensor (a dataset indexed by more
than two indices) into a sum of (typically few) rank-one factors
is often referred to as factor analysis. Factor analysis finds
numerous applications in signal processing, machine learning,
and data mining – where it is often used for dimensionality
reduction. The singular value decomposition (SVD) is the
most widely used tool for dimensionality reduction and latent
semantic indexing, but other types of factor analysis have
also become popular in recent years – such as nonnegative
matrix factorization (NMF). Whereas for matrices constraints
such as orthogonality (used in SVD) and nonnegativity are
crucial for unique decomposition [1], low-rank structure alone
is enough to ensure uniqueness of tensor decomposition, under
fairly mild conditions [2]. Such uniqueness is important for
latent cluster analysis, for otherwise the latent dimensions
may be meaningless from the viewpoint of clustering and
interpretation.

Factor analysis lies at the confluence of linear algebra and
optimization, and finds numerous applications in quantitative
sciences ranging from econometrics and psychometrics to
chemometrics. As a result, theoretical aspects such as unique-
ness and practical issues such as factorization algorithms have
been well-investigated for many commonly used types of
factor analysis. Beyond uniqueness (identifiability), additional
problem-specific regularization and constraints on the model
parameters are often very useful to further overdetermine
the problem, thereby ensuring more accurate estimates. This
observation is not surprising, since real data always contain
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various types of modeling errors, such as outliers, missing
values, and measurement noise, to name a few.

Different kinds of constraints can be imposed on the
loadings and scores (i.e., the coefficients associated with the
loadings) when factoring a matrix or a tensor, depending on
what is known and meaningful for a given application. For
example, sparsity and nonnegativity have been used for social
network co-clustering [3]; total variation has been used for
hyperspectral unmixing [4]; and data (row) similarity has been
used for document clustering [5].

In this paper, we propose to employ another type of prior
information for factor analysis. Specifically, our interest lies
in imposing cluster structure on the latent representations of
the entities associated with the rows (and/or columns) of the
matrix or tensor to be factored. If one interprets these reduced-
dimension latent representations as the underlying generative
model of the observed data, then it is natural to think about
spotting similarities and differences in latent space, i.e., in
what one could call latent data mining. For example, in the
Enron email data [6], senders and receivers belong to different
working groups, such as the legal group and the executive
group. Another example is the Reuters news document dataset,
where the news stories can be classified as sports, economy,
politics, culture, etc. Prior works have shown that the latent
representations of these datasets exhibit cluster structures [6],
[7], but this has merely been observed a posteriori, instead of
being exploited a priori to help with factorization.

Some prior work, e.g., [7], [8] made use of data-domain
clustering to improve the performance of NMF, by imposing
latent similarity according to data similarity. This is funda-
mentally different from latent-domain clustering, which has
not been explored, to the best of our knowledge. The reason
for this is that, due to multilinearity, two entities that are close
in latent space may be far in data space and vice versa. In
other words, if we compare two entities in the same mode,
the other mode acts as a distance-weighting factor that distorts
the geometry. To see this clearly, let X = AB

T , and consider
the squared distance between the first two columns of X,
i.e., ||X(:, 1) − X(:, 2)||2 = ||A(B(1, :) − B(2, :))T ||2 =
(B(1, :)−B(2, :))AT

A(B(1, :)−B(2, :))T , where : stands for
all values of the respective argument. Notice how the matrix
A

T
A weights the latent-domain distance to produce the data-

domain distance, distorting the geometry.
In this work, we aim at taking advantage of the latent cluster

structures when factoring a matrix or tensor. Unlike [7], [8],



our method does not depend on data similarity, but rather aims
to model and learn the latent cluster structure directly. Our
formulation balances data fidelity and the latent cluster struc-
ture, which can hopefully yield more accurate loading factors
as well as cleaner clusters – iterating between factorization
and clustering may be mutually beneficial for both tasks. An
alternating optimization algorithm that guarantees monotonic
decrease of the cost function is proposed. Numerical results
using synthetic and real data are presented to showcase the
effectiveness of the proposed approach.

II. PROBLEM FORMULATION

We first consider a simple nonnegative matrix factoriza-
tion (NMF) model. The development can be generalized to
other structured matrix and tensor factorization models in a
straightforward manner (cf. Remark 1). The following NMF
formulation is commonly adopted in the literature for factoring
a data matrix X ∈ R

I×J :

min
W∈RI×F ,H∈RF×J

‖X−WH‖
2
F

s.t. W ≥ 0, H ≥ 0.
(1)

where “≥” denotes the element-wise inequality and 0 is an all-
zero matrix with proper size. Although NMF is identifiable
under certain conditions [1], incorporating additional prior
information in the form of regularization can still be very
useful in terms of anchoring the solution and fending against
modeling errors. We focus on using latent cluster structure-
based regularization. To formulate the problem of interest, let
us consider the case where {X(i, :)}Ii=1 have latent represen-
tations drawn from K clusters, i.e., the rows of W can be
divided into K clusters. A penalized NMF formulation would
then naturally be as follows:

min
W,H,S,M

‖X−WH‖
2
F + λ ‖W − SM‖

2
F (2a)

s.t. W ≥ 0, H ≥ 0 (2b)
‖S(i, :)‖0 = 1, S(i, k) ∈ {0, 1}, ∀i, k, (2c)

where ‖·‖0 denotes the �0 quasi-norm, λ ≥ 0 is a pre-specified
regularization parameter, and S ∈ R

I×K and M ∈ R
K×F

denote the cluster membership indicator matrix and the cen-
troid matrix, respectively. Specifically, S(i, k) = 1 means that
W(i, :) belongs to cluster k, whose centroid is M(k, :). Notice
that minS,M ‖W − SM‖

2
F together with (2c) is nothing

but a K-means problem on the rows of W. Also note that
we can interpret the cost in (2) as a log-MAP (maximum a
posteriori) criterion, where the data fidelity term comes from
the conditional likelihood, and the penalty term from the prior
density. In our context, the prior is a balanced mixture of
uncorrelated Gaussians with different mean vectors (the cluster
centroids) and equal variances.

Direct use of (2) does not yield ‘correct’ results, due to the
scaling ambiguity of matrix/tensor factorization (i.e., ρW(:, f)
and 1

ρ
H(:, f) yield the same ‖X−WH‖2F , ∀ρ > 0), but such

arbitrary scaling of the columns of W can have significant
impact on the clustering of its rows, obviously. Also note that

the K-means part in (2) uses Euclidean distance for clustering,
which may not be suitable for certain kinds of data. For
example, it has been observed that a better clustering metric for
document and web data is correlation or cosine similarity [9],
[10]. For data-domain K-means, computing cosine similarity
and correlation of the data points can be easily done by
normalizing the rows of X in advance. In our context, however,
a naive adoption of the cosine similarity for the clustering part
can complicate things, since W changes in every iteration. To
accommodate this, we reformulate the problem as follows.

min
W,H

S,M,{di}
I

i=1

‖X−DWH‖
2
F + λ ‖W − SM‖

2
F + η‖H‖2F

s.t. W ≥ 0, H ≥ 0, ‖W(i, :)‖2 = 1, ∀i,

D = Diag(d1, . . . , dI),

‖S(i, :)‖0 = 1, S(i, k) ∈ {0, 1}, ∀i, k,
(3)

where η ≥ 0 is a regularization parameter. Introducing the
diagonal matrix D is crucial: It allows us to fix the rows of
W onto the unit 2-norm ball without loss of generality of the
factorization model. Notice that we restrict W(i, :) to have
unit-norm for i = 1, . . . , I so that the Euclidean distance-based
K-means clustering on the unit 2-norm ball is equivalent to
correlation-based clustering. The last term in the cost function
is added to prevent H from “absorbing” all the energy into
it by arbitrarily scaling up its columns; i.e., η‖H‖2F has been
added to automatically control the scaling ambiguity.

Remark 1 The formulation in (3) is flexible and easily gen-
eralizable to other low-rank matrix and tensor factorization
models. Consider a three-way tensor X ∈ R

L×M×N with
nonnegative loading factors A ∈ R

L×F , B ∈ R
M×F ,

C ∈ R
N×F . If we know that the rows of A can be clustered

into K groups, we can formulate the joint nonnegative tensor
factorization (NTF) and latent clustering problem as

min
A,B,C

S,M,{d�}
L

�=1

∥∥∥X(1) −DA(C�B)T
∥∥∥
2

F
+ λ ‖A− SM‖

2
F

+ η‖B‖2F + η‖C‖2F

s.t. A,B,C ≥ 0, ‖A(�, :)‖2 = 1, ∀�,

D = Diag(d1, . . . , dL),

‖S(i, :)‖0 = 1, S(�, k) ∈ {0, 1}, ∀�, k,
(4)

where X
(1) ∈ R

L×MN is the first-mode matrix unfolding of
X [11], [12], “�” denotes the Khatri-Rao product, S ∈ R

L×K

and M ∈ R
K×F are defined as before, and the regularization

terms ‖B‖2F and ‖C‖2F are there to control scaling. If one
believes that each loading matrix has a latent cluster structure,
clustering-based regularization on B and C can also be
incorporated.

III. OPTIMIZATION VIA VARIABLE SPLITTING

In this section, we propose a unified algorithmic framework
for tackling problems (3) and (4). For ease of exposition, we



use problem (3) as a working example. Generalization to prob-
lem (4) is straightforward. Our basic strategy is to alternate
between updating W, H, S, M, and {di}

I
i=1 one at a time,

while fixing the others. The difficulty of implementing this
strategy lies in the partial optimizations with respect to (w.r.t.)
W and S, which are nonconvex. For the subproblems w.r.t. S
and M, we propose to use the corresponding (alternating) steps
of classical K-means [13]. The partial minimization w.r.t. W
needs more effort, due to the unit row-norm and nonegativity
constraints. Here, we propose to employ a variable-splitting
strategy. Specifically, we consider the following optimization
surrogate:

min
W,H,Z,S,M,{di}I

i=1

‖X−DWH‖
2
F + λ ‖W − SM‖

2
F

+ η‖H‖2F + μ‖W − Z‖2F

s.t. W ≥ 0, H ≥ 0, ‖Z(i, :)‖2 = 1, ∀i,

D = Diag(d1, . . . , dI),

‖S(i, :)‖0 = 1, S(i, k) ∈ {0, 1}, ∀i, k,

(5)

where μ ≥ 0 and Z is a slack variable. Note that Z is
introduced to ‘split’ the effort of dealing with W ≥ 0 and
‖W(i, :)‖2 = 1 in two different subproblems. Notice that
when μ = +∞, (5) is equivalent to (3); in practice, a large μ
can be employed to enforce W ≈ Z.

Problem (5) can be handled as follows. First, W can be
updated by solving

W := arg min
W≥0

‖X−DWH‖
2
F + λ ‖W − SM‖

2
F

+ μ‖W − Z‖2F ,

which can be easily converted to a nonnegative least squares
(NLS) problem, and solved to optimality. The update of H,
i.e.,

H := arg min
H≥0

‖X−DWH‖
2
F + η‖H‖2F ,

is also an NLS problem. The subproblem w.r.t. di for i =
1, . . . , I can be written as

di := argmin
di

‖X(i, :)− diW(i, :)H‖22,

which admits a simple closed-form solution, i.e., di = X(i, :
)bi/(b

T
i bi), where b

T
i = W(i, :)H. To update Z, we aim at

solving the following projection problem:

Z := arg min
‖Z(:,f)‖2=1, ∀f

‖Z−W‖2F ,

which can be done by normalization: Z(:, f) := W(:,f)
‖W(:,f)‖2

,
for f = 1, . . . , F . Finally, the update w.r.t. M and S can be
carried out by applying the K-means algorithm. We update
each of W, H, Z, {di}Ii=1 and (S,M) cyclically. Since each
update does not increase the cost function, the value of the
cost function will eventually converge. We should mention
that, when applying the described algorithmic structure to
solving Problem (4), the only change is that an additional
partial minimization using NLS is needed, since the tensor
model has three latent factors.

IV. NUMERICAL RESULTS

In this section, we use both synthetic and real data to show-
case the effectiveness of the proposed approach. We generate
a three-way tensor X ∈ R

L×M×N with L = M = N = 30
and loading factors A ∈ R

L×F , B ∈ R
M×F , C ∈ R

N×F . To
obtain A with a cluster structure on its rows, we first generate
a matrix Ã(i, :) for i = 1, . . . , I from K structures by letting
Ã(i, :) = M(k, :)+ 10−2

N(i, :) if mod(i,K) = k, where the
elements of N are drawn from the zero-mean i.i.d. normal
distribution, and M(k, :) = 2eTk + 1

T for k = 1, . . . ,K,
in which ek denotes the unit vector with the kth elements
being one. By the above, the rows of Ã randomly scatter
around the rows of M. We then let A = DÃ, where D

is a diagonal matrix whose diagonal elements are uniformly
distributed between zero and three. Note that we deliberately
multiply D to Ã so that the rows of A belonging to the
same clusters could have different scalings, which is usually
the case in practice. B and C are randomly drawn from an
i.i.d. uniform distribution between zero and one. Nonnegative
noise following the same uniform distribution is added to
the obtained tensor. To create more severe modeling error so
that the situation is more realistic, we finally replace eight
slabs (i.e., X(:, :, i)’s) with elements uniformly distributed
between zero and one; these slabs mimic outlying data that
are commonly seen in data analytics.

We apply the tensor version of the formulation in (5) to
factor the synthesized tensors for F = K = 5. We run 100
independent trials with different randomly generated tensors.
Fig. 1 shows the averaged mean-squared-error (MSE) between
A and its estimate Â under various λ when μ and η are fixed to
100 and 10−3, respectively. The plain NTF algorithm (without
latent clustering) is employed as a baseline. Here

MSE = min
π∈Π,

c1,...,cF∈{±1}

1

F

F∑

f=1

∥∥∥∥∥
A(:, f)

‖A(:, f)‖2
− cf

Â(:, πf )

‖Â(:, πf )‖2

∥∥∥∥∥

2

2

,

where πf denotes the matched index with f and cf is
introduced for fixing the inherent scaling ambiguity. One can
see that the proposed approach consistently yields lower MSEs
for Â than plain NTF, for all λ, and the difference is 4
dB for λ ≥ 5 × 103. Similar results can be seen in Fig. 2,
where we fix λ = 6 × 103 and vary F . The advantage
of the proposed method is even more obvious when dealing
with real data. Here, we present experimental results using
the Reuters document corpus1. We use a subset of the full
corpus as in [7], which contains 8,213 documents from 41
clusters. Following standard pre-processing, the stop words are
removed, each document is represented as a term-frequency-
inverse-document-frequency (tf-idf) vector, and normalized cut
weighting is applied; see [14], [15] for details. We apply the
formulation in (5) to the pre-processed data, and we use the
obtained S to indicate the cluster labels of the documents. A
regularized NMF-based approach, namely, locally consistent

1Available online: http://www.daviddlewis.com/resources/testcollections/
reuters21578/
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Fig. 1. The MSEs of the algorithms under various λ; F = K = 5.
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Fig. 2. The MSEs of the algorithms under various F ; F = K.

concept factorization (LCCF) [7] is employed as the baseline.
LCCF is considered state-of-the-art for clustering the Reuters
corpus; it makes use of data-domain similarity to enforce latent
similarity, and it demonstrates superior performance compared
to other algorithms on several document clustering tasks. We
apply the proposed approach and LCCF on the Reuters data
for various K (number of clusters) and use F = K for both
methods. For each K, we perform 50 Monte-Carlo trials by
randomly selecting K clusters out of the total 41 clusters,
and report the performance by comparing the results with the
ground truth. Performance is measured by a commonly used
metric called clustering accuracy, whose detailed definition
can be found in [7]. Simply speaking, the clustering accuracy
ranges from 0 to 1, and higher accuracies indicate better
performances. Table I presents the results averaged from the
50 trials. The proposed approach consistently exhibits higher
accuracy than LCCF, and for K ≥ 7 we get about 10%
improvement, which is significant.

V. CONCLUSION

We proposed a simultaneous factor analysis and latent
clustering framework, which can be applied for latent data
mining of matrix and tensor data. The idea is to make use
of the cluster structure in the latent space to help dimen-
sionality reduction, and vice-versa. A variable-splitting based

TABLE I
CLUSTERING ACCURACIES OF THE ALGORITHMS ON THE REUTERS TEXT

CORPUS UNDER VARIOUS NUMBER OF CLUSTERS.

K 2 3 4 5 6
LCCF [7] 0.888 0.839 0.811 0.74 0.742
Proposed 0.930 0.858 0.851 0.781 0.777

K 7 8 9 10 –
LCCF [7] 0.713 0.682 0.649 0.633 –
Proposed 0.770 0.751 0.744 0.686 –

alternating optimization algorithm was derived to deal with the
proposed problem formulations. Both simulations and real data
experiments on the Reuters documents corpus showed that the
proposed approach is effective in enhancing the performance
of NMF and NTF in critical situations, e.g., when the data
contains severe modeling errors. The proposed framework can
also be potentially combined with other factor analysis models,
which will be discussed in the follow-up journal version.
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