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ABSTRACT

We consider the scenario of an unknown overdetermined instanta-
neous mixture of quasi-stationary sources. Blind source separation
(BSS) under this scenario has drawn much attention, motivated by
applications such as speech and audio separation. The ideas in the
existing BSS works often focus on exploiting the time-varying statis-
tics characteristics of quasi-stationary sources, through various kinds
of formulations and optimization methods. In this paper, we are in-
terested in further assuming that the sources exhibit some form of
local sparsity, which is generally satisfied in speech. By exploiting
this additional assumption, we show that there is a simple closed-
form solution for the BSS problem. Simulation results based on
real speech show that the proposed closed-form algorithm is com-
putationally much lower than some existing BSS algorithms, while
delivering a promising mean-square-error performance.

Index Terms— blind source separation, quasi-stationary sources,
sparsity

1. INTRODUCTION

This paper focuses on the scope of blind source separation (BSS)
of quasi-stationary signals (BSS-QSS) [1]. This class of BSS tech-
niques assumes that sources exhibit time-varying second order statis-
tics (SOSs) characteristics, and exploit such phenomenon to blindly
identify the unknown mixing system, or its inverse. Speech and au-
dio sources, for instance, are found to show significant variations
of their statistical natures in time. In fact, an important application
of BSS-QSS is speech separation in microphone array systems [2,
3]. BSS-QSS can be treated using either the parallel factor analysis
(PARAFAC) framework [4] or the joint diagonalization (JD) frame-
work [1,5], both of which are recognized as key techniques for BSS,
with many interesting results. In this paper, we take a different ap-
proach, where we incorporate one more assumption with the source
characteristics, namely, local sparsity, and take advantage of it to
develop a simple alternative to BSS-QSS.

It is important for us to define local sparsity in the context of
this paper. We assume that among a collection of SOSs estimated
locally in time, there are particular time instants in which the SOSs
are dominated by one source. However, we do not know where these
locally dominant SOSs are, and the SOSs in the other time instants
are composed of multiple source components. We will call this as-
sumption the local dominance assumption in this paper, to distin-
guish it from some other sparsity assumptions, such as those based
on sparse signal representation and L1 minimization [6]. For speech
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signals, which often contain many unvoiced segments between ut-
terances, local dominance is generally an appropriate assumption. It
is interesting to note that local dominance is considered in several
BSS frameworks. In BSS using time-frequency distribution (TFD),
where the sources of interest are monocomponent or multicompo-
nent signals (e.g., a chirp), sources are assumed to be totally dis-
joint in the time frequency domain [7, 8]; see [9] for an extension
to the partially disjoint case. Exploitation of such disjointness, or
local dominance, is found to be helpful in BSS, even in the underde-
termined case. In BSS of non-negative signals, which recently finds
meaningful applications in biomedical imagery and hyperspectral re-
mote sensing [10, 11], there has been growing interest in using the
local dominance assumption, together with signal non-negativity, to
solve the BSS problems there. In particular, one major category of
BSS methods in hyperspectral remote sensing relies on the so-called
pure-pixel assumption [11], which is the same as local dominance.

The main contribution of this paper lies in exploiting the local
dominance assumption, together with the underlying problem struc-
tures in BSS-QSS, to come up with an algebraically simple BSS-
QSS algorithm. To be specific, we consider an overdetermined in-
stantaneous mixture of locally dominant quasi-stationary signals. In
this scenario, where one is permitted to apply prewhitening to or-
thonormalize the mixing system, we observe an interesting algebraic
property with the local SOSs. That property can be turned to a cri-
terion to identify locally dominant SOSs, consequently leading to
the proposed BSS-QSS algorithm. The criterion mentioned above is
easy to compute, as will be seen soon. Moreover, in our algorithm
development, we address a modeling error issue caused by source
correlations. A simple projection process is proposed to mitigate the
modeling errors, and the effectiveness of this process is supported
by analysis. We will demonstrate by simulations that the proposed
algorithm is much more effective than the clustering-based method-
ology commonly used in TFD-BSS [9], in terms of both estimation
performance and computational times.

2. PROBLEM FORMULATION

We follow a standard BSS-QSS formulation [1], wherein observed
signals are linear instantaneous mixtures of sources

x(t) =
K∑

k=1

aksk(t) = As(t), t = 1, 2, . . . , (1)

where x(t) ∈ R
N is the observed signal vector, sk(t) is the kth

source signal, s(t) = [ s1(t), . . . , sK(t) ]T ∈ R
K , ak ∈ R

N is the
system response vector of the kth source, A = [ a1, . . . , aK ] ∈
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R
N×K , and N and K are the number of sensors and sources, re-

spectively. The source signals sk(t) are assumed to be zero-mean
wide-sense quasi-stationary with frame length L; i.e.,

E{|sk(t)|2} = dk[m], for any (m − 1)L + 1 ≤ t ≤ mL, (2)

where m is the local time frame index. This means that the source
second order statistics remain constant within local time intervals,
and can change from one time frame to another. Let us define

R[m] = E{x(t)xT (t)}, for any (m − 1)L + 1 ≤ t ≤ mL,

to be the local covariance of the observed signal in frame m; such
local covariances are, in practice, acquired by local averaging, like
R[m] ≈ 1

L

∑mL

t=(m−1)L+1 x(t)xT (t). By further assuming that
sk(t) are mutually independent, one can deduce the following model

R[m] =
K∑

k=1

dk[m]aka
T
k , m = 1, . . . , M, (3)

where M is the number of available frames.
Consider the following assumption, the local dominance as-

sumption mentioned in the introduction:

A1) (local dominance [10]) For each source index k, there exists a
time frame, indexed by mk, such that dk[mk] > 0 and d�[mk] = 0
for all � �= k.

Physically, A1) means that the sources exhibit some form of spar-
sity in the local covariance domain, such that there exist local time
frames where only one source dominates. Hence, temporally sparse
source signals may satisfy A1) well. Assumption A1) is also consid-
ered reasonable for speech sources, since speech signals often con-
tain many unvoiced segments between utterances.

There is an intuitively simple way to exploit local dominance for
blind identification of A; the idea can be found in BSS-TFD [8, 9]
and here we will call it the clustering-based methodology for conve-
nience. Under A1), we have, at locally dominant points,

R[mk] = dk[mk]aka
T
k . (4)

Hence, if we know where the locally dominant points are, then ak’s
can be retrieved (up to a scaling factor) by obtaining the principal
eigenvector of the locally dominant R[m]. A practically working
clustering-based algorithm generally follows the following steps: i)
detect locally dominant points by evaluating the ranks of all R[m]’s;
ii) extract the principal eigenvector of each detected R[m]; iii) apply
a K-means clustering algorithm to the obtained principal eigenvec-
tors to construct the mixing matrix A.

In the next sections, we will explore a different approach for
blind identification of A.

3. THE PROPOSED ALGORITHM

The algorithm to be proposed also aims at finding the locally dom-
inant points. However, we do not use rank as in the clustering-
based methodology. Instead, we employ another idea that uses non-
negativity of the local source variances dk[m], together with the lo-
cally dominant assumption A1), to come up with an alternative so-
lution for identifying the locally dominant points. In addition, our
algorithm is based on a successive search strategy and does not re-
quire clustering. The proposed algorithm is shown in Algorithm 1.
As we can see, the arithmetic operations of this algorithm are simple,
involving 2-norm computations and linear projections mostly.

Algorithm 1:

input : R[1], . . . ,R[M ];
y[m] = vec(R[m]), z[m] = Tr(R[m]), m = 1, . . . , M ;1

ĥ1 = y[m̂1], where m̂1 ∈ arg max
m=1,...,M

‖y[m]‖2/z[m];
2

obtain â1 as the principal eigenvector of vec−1(ĥ1);3

for k = 2, . . . , K do4

ĥk = y[m̂k], where5

m̂k ∈ arg max
m=1,...,M

‖P⊥

Ĥ1:k−1

y[m]‖2/z[m];

obtain âk as the principal eigenvector of vec−1(ĥk).6

end7

output: Â = [ â1, . . . , âK ].

We concentrate on the overdetermined scenario; i.e, N > K. In
this scenario, we may assume that

A2) The mixing matrix A is orthonormal.

By using prewhitening [13], a popularized preprocessing procedure
in BSS, we can turn a general overdetermined mixing model (more
precisely, with a full-rank A) to an equivalent model whose A is
orthonormal. Now, from the local covariance model (3), let us apply
vectorization to obtain

y[m] � vec(Rm) =
K∑

k=1

dk[m]vec(aka
T
k ) = Hd[m] (5)

where H = [ h1, . . . ,hK ], d[m] = [ d1[m], . . . , dK [m] ]T , and
hk = vec(aka

T
k ) = ak ⊗ ak with ⊗ being the Kronecker product.

It can be easily shown that H is orthonormal, as far as A2) holds.
Hence, we have that

‖y[m]‖2 = ‖d[m]‖2 ≤ ‖d[m]‖1 (6)

where ‖ · ‖2 and ‖ · ‖1 are the 2-norm and 1-norm, respectively.
The inequality in (6) follows from the basic linear algebra result that
‖x‖2 ≤ ‖x‖1, with equality being satisfied if and only if x is a
scaled unit vector1 [12]. Moreover, we notice that

‖d1[m]‖1 =

K∑

k=1

dk[m] = Tr(R[m]) (7)

where, in the first equality above, we use the fact that dk[m] ≥ 0;
recall from Eq. (2) that dk[m] are modeled as local source variances
and thus must be non-negative. As for the second equality in (7),
it is obtained by using aT

k ak = 1, which is implied by A2). From
(6)-(7), we conclude that

‖y[m]‖2

Tr(R[m])
≤ 1 (8)

and equality holds if and only if d[m] is a scaled unit vector; i.e.,
y[m] is locally dominant, taking the form y[m] = dk[m]hk for
some k. As a consequence, any

m̂ ∈ arg max
m=1,...,M

‖y[m]‖2

Tr(R[m])
(9)

1To be specific, x takes the form x = αei for some α, i, where ei is a
unit vector with [ei]k = 1 for k = i and [ei]k = 0 for k �= i.
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corresponds to a locally dominant point. This result can be extended
to provide successive search of all hk. To describe it, suppose that
the first k − 1 columns of H have been obtained. Let H1:k−1 =
[ h1, . . . ,hk−1 ], and P⊥

X = I − X(XT X)†XT be the orthogonal
complement projector of its argument X. Following the derivations
above, we can show that

m̂ ∈ arg max
m=1,...,M

‖P⊥
H1:k−1

y[m]‖2

Tr(R[m])
, (10)

corresponds a locally dominant point of hk, hk+1, . . . , or hK , but
not the previously found. Based on these results, we obtain Algo-
rithm 1.

4. CROSS-CORRELATION EFFECTS AND REMEDY

There are practical situations where source signals may exhibit cross
correlations in some frames. Although such cross correlations are
often weak and intermittent, the subsequent modeling errors can re-
sult in performance deterioration. In the following, we will suggest
a procedure of mitigating the cross-correlation effects.

Assuming that sk(t) may be correlated at times, the local co-
variance model in (3) should be modified as

R[m] = AD[m]AT (11)

where D[m] = E{s(t)sT (t)} for (m − 1)L + 1 ≤ t ≤ mL, and
D[m] may contain non-zero off-diagonal elements. Let dk[m] =
[D[m]]kk as before. Also let ek�[m] = [D[m]]k�, k �= �, which rep-
resent the cross-correlation components. Consequently, the model of
y[m] in (5) is replaced by

y[m] = Hd[m] + Ge[m] (12)

where G = [ G1, . . . ,GK−1 ], Gk = [ gk,k+1, . . .gk,K ], gk,� =
ak⊗a� +a�⊗ak, e[m] = [ eT

1 [m], . . . , eT
K−1[m] ]T , and ek[m] =

[ ek,k+1[m], . . . , ek,K [m] ]T .
Our rationale of mitigating the cross-correlations term is to

project y[m] into a principal component subspace. Let

Ψ =
1

M

M∑

m=1

y[m]yT [m], (13)

and consider its eigen-decomposition Ψ = UΛUT , where U is the
(orthogonal) eigenvector matrix, and Λ is the (diagonal) eigenvalue
matrix in which the diagonal elements or eigenvalues are arranged
in descending order. We use the following projection process

ỹ[m] = U1:KU
T
1:Ky[m] (14)

to mitigate the undesired term Ge[m]. The intuition is that the main
term Hd[m] is often much stronger than the cross-correlations term
Ge[m] in practice, and therefore U1:K , which contains the first K
principal components of Ψ, should be dominated by Hd[m].

By simulations, we found that the projection process in (14) can
lead to significant performance improvements. Here, we intend to
establish a theoretical justification by modeling d[m] and e[m] as
random processes. Let us assume

A3) Each dk[m], k = 1, . . . , K is a wide-sense stationary (WSS)
random process, each ek,�[m], k = 1, . . . , K−1, � = k+1, . . . , K
is a zero-mean WSS random process, and all dk[m] and ek,�[m] are
statistically independent of one other.

In particular, we model the local source variances and cross correla-
tions as independent processes, which is arguably reasonable since
their physical behaviors are supposed to be different. We show that

Proposition 1 Suppose that A2)-A3) hold true, that M → ∞ such
that Ψ = E{y[m]yT [m]}, and that

min
k=1,...,K

var{dk[m]} > max
k �=�

E{|ek,�[m]|2}. (15)

Then, the projection process in (14) completely eliminates the cross-
correlations term and keeps the main term intact; i.e.,

ỹ[m] = Hd[m].

Proposition 1 implies that if the sources exhibit significant
frame-wise power variations and the cross correlations are weak,
then the projection process in (14) can eliminate the cross-correlations
term very substantially for sufficiently large M . The proof of Propo-
sition 1 is omitted here due to lack of space; the key insight behind
the proof is that under A2), [ H G ] is shown to be an orthogonal
matrix. As a result, we can derive a sufficient condition [i.e., (15)]
under which U1:K is aligned to the subspace spanned by H; such
an alignment also assures that U1:KUT

1:KG = 0.

5. SIMULATION RESULTS AND CONCLUSION

Simulations were conducted to demonstrate the performance of the
proposed algorithm.

Simulation Settings: The sources are real speech. At each simu-
lation trial, the sources are randomly chosen from a database of 32
recorded speech signals. They are sampled at 16kHz. The mixing
matrix is also randomly generated at each trial. The frame length is
set at L = 200. To get more frames, we employ 50%-overlapping
local averaging; i.e., R[m] = 1

L

∑0.5(m−1)L+L

0.5(m−1)L+1 x(t)xT (t). The
number of trials of the simulations is 1, 000.

Noisy observations are considered in the simulations. Specifi-
cally, we consider x(t) = As(t) + v(t), where v(t) is white Gaus-
sian with zero mean and variance σ2. Under such circumstances, the
local covariances should be modeled as

R[m] = AD[m]AT + σ2
I (16)

In the simulations we remove the noise term by a standard procedure,
where we first estimate σ2 by σ̂2 = minm=1,...,M λmin(R[m]),
in which λmin(·) denotes the smallest eigenvalue, and then obtain
R̃[m] = R[m] − σ̂2I as noise-removed local covariances.

We benchmark the proposed algorithm against the clustering-
based algorithm mentioned in Section 2, and FFDIAG [5]. FFDIAG
is a competitive BSS-QSS algorithm based on JD, which does not as-
sume local dominance. We run all the algorithms using the same set
of noise-removed local covariances {R̃[m]}M

m=1 described above.
Recall that the proposed algorithm requires prewhitening in

practice. The pre-whitener is obtained from the averaged covariance
1
M

∑M

m=1 R̃[m]. The procedure is standard; see [13] for example.

Simulation Results: Fig. 1 shows the mean square errors (MSEs)
of the estimated A yielded by the three algorithms, when N = 6,
K = 5, and the total signal length = 6 sec. We can see that
the proposed algorithm, with the projection process in Section 4,
achieves better MSEs than the other algorithms for SNR ≤ 22dB.
For SNR > 22dB, FFDIAG is better than the proposed algorithm by
about 2dB. Moreover, there is a significant performance gap between
the clustering-based algorithm and the proposed algorithm, despite
the fact that they both utilize local dominance. Our numerical ex-
perience is that the clustering-based algorithm may have sensitivity
issues with locally dominant points detection in the presence of noise
and modeling errors.
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Table 1: The MSEs and running times under various signal length. K = 5; N = 6; SNR=16dB.

�
�

�
�

�
�

�
�

�
��

Method
Source duration

2 sec. 3 sec. 4 sec. 5 sec. 6 sec.

MSE (dB) -31.0111 -33.4356 -34.7539 -35.9755 -36.7884
Proposed with projection

Time (sec.) 0.0021 0.0026 0.0033 0.0036 0.0042

MSE (dB) -14.7995 -16.5108 -17.2223 -18.2085 -18.8416Clustering-based method
Time (sec.) 0.0778 0.0934 0.1078 0.1233 0.1395

MSE (dB) -31.9315 -33.1174 -33.7476 -34.3641 -34.7653
FFDiag

Time (sec.) 0.0275 0.0404 0.0537 0.0666 0.0802

Table 2: The MSEs and running times under various numbers of users K. N = K + 1; signal length= 6sec.; SNR= 16dB.

�
�

�
�

�
�

��
Method

K
3 4 5 6 7 8

MSE (dB) -36.0243 -36.3974 -36.1934 -35.1247 -35.0058 -33.9706
Proposed with projection

Time (sec.) 0.0014 0.0026 0.0035 0.0053 0.0092 0.0155

MSE (dB) -23.3953 -21.1632 -19.0816 -16.8285 -14.7481 -12.8761
Clustering-based method

Time (sec.) 0.0754 0.1000 0.1212 0.1354 0.1465 0.1677

MSE (dB) -34.1806 -34.3838 -34.0448 -34.3268 -33.6833 -33.5266
FFDiag

Time (sec.) 0.0529 0.0553 0.0732 0.0790 0.1183 0.1318

Fig. 1 also shows the performance of the proposed algorithm
without using the projection process in Section 4, where we can see
performance loss relative to that with projection. This verifies that
modeling errors caused by source cross-correlations do exist in prac-
tice, and the projection proposed in Section 4 is useful in mitigating
the modeling error effects.

In Tables 1-2, we illustrate the MSEs and running times of the al-
gorithms under various settings. In general, the proposed algorithm
and FFDIAG are quite on a par in terms of MSE performance. How-
ever, the running times of the proposed algorithm are lower than FF-
DIAG, as well as the clustering-based algorithm, by at least 8 times.

In conclusion, we have developed a simple blind identification
algorithm for BSS of locally dominant quasi-stationary sources. The
simplicity of the proposed algorithm is made possible by utilizing
the local dominance and BSS-QSS problem structures. Simulation
results have illustrated that the proposed algorithm is computation-
ally much more efficient than some existing algorithms.
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Fig. 1: MSE comparison of the various algorithms. K = 5; N = 6;
signal length= 6sec.
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