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Abstract—Deep neural networks (DNN) heavily rely on labeled
data for supervised training. However, acquiring accurate labels
is often a challenging task. Moreover, DNNs easily overfit to noisy
labels, hindering the generalization ability. Modeling the label
noise using a “confusion matrix” is a widely adopted strategy
under such circumstances. A recent work dealt with this problem
using a regularizer that is reminiscent of minimum-volume
enclosing simplex (MVES)-based matrix factorization. MVES is
known for its identifiability of the latent factors, which in turn
helps accurately estimate the confusion matrix and rectify its
negative effects when training DNNs. However, MVES is highly
sensitive to outliers due to its geometric nature. To overcome
this limitation, we take insight from the robustification of MVES
in the literature to come up with an outlier-resilient noisy label
learning criterion. Consequently, when some data samples deviate
from the model assumptions, the proposed criterion automatically
downweights such outlying data, thereby steering DNN towards
identifying the correct model parameters. Our experiment results
provide support for the effectiveness of the proposed criterion.

Index Terms—noisy labels, deep learning, volume minimiza-
tion, nonnegative matrix factorization

I. INTRODUCTION

The success of deep learning can be largely attributed to the
use of massive amounts of labeled data. However, collecting
accurate labels is a highly nontrivial task. Label noise often
arises, especially when the annotators lack expertise [1]. Train-
ing deep neural networks (DNNs) using noisy labels often
leads to poor generalization performance, as DNNs easily
overfit to wrong labels [2], [3]. Hence, it is important to take
label noise into consideration when training DNNs.

Many approaches were proposed to learn from noisy labels;
see, e.g., [4]–[13]. Among them, an effective and widely
used strategy is to explicitly model the label noise generation
process using a label transition matrix, namely, the confusion
matrix; see [14]–[17]. This leads to a nonnegative matrix
factorization (NMF) model [18], [19], with the confusion
matrix and the desired (possibly DNN-represented) classifier
as the underlying latent factors. Under this model, rectifying
the negative impacts brought by the label noise boils down
to identifying the latent factors of the NMF model. Several

The work of S. Ibrahim and X. Fu was supported in part by the National
Science Foundation (NSF) under Project IIS-2007836. The work of D. G.
Wolnick was supported in part by the research experiences for undergraduates
(REU) program under NSF IIS-2007836.

methods were proposed for this purpose, which mostly relied
on the so-called anchor point assumption [10], [20], which
assumes the existence of data items that belong to a specific
class with a probability of one. Nonetheless, anchor points are
not always available [11].

In the context of NMF, the existence of anchor points is
equivalent to the separability condition [18], [21]. It is well-
known that the latent factors of the NMF model can be iden-
tified without using separability, e.g., via finding a minimum-
volume enclosing simplex (MVES) of the data points [22]–
[27]. A recent work [12] took the insight of MVES to design
a DNN training loss, which was shown to be more effective
than the anchor point-based methods. However, MVES is
sensitive to outliers due to its geometric nature; see [24],
[25], [28], [29]. As a result, when some data deviate from
the model assumptions (e.g., when some outlying samples
have confusion matrices different from that of the majority
of samples), the MVES-based learning criterion may produce
poor classification performance.

In this work, we propose to robustify the MVES-based DNN
learning criterion. Our approach is inspired by the outlier-
robust MVES concept that is often adopted in the hyper-
spectral unmixing community; see, e.g., [24], [25]. Unlike the
hyperspectral imaging works that often use (quasi-)norm based
loss functions, the proposed criterion utilizes a robust cross-
entropy loss [9], which is better suited for data classification—
as the data labels are integers rather than continuous values.
The newly designed loss function is differentiable, and thus
the involved DNN can be easily learned by back-propagation
based algorithms. We train DNN classifiers using the CIFAR-
100 [30] and the CIFAR-10 [31] datasets in the presence of
outlying samples (whose confusion matrices are not the same
as that of the vast majority) and use the test performance to
validate our idea.

II. BACKGROUND

A. Problem Statement

Assume that we have a dataset of size N , denoted as
{xn}Nn=1, where xn ∈ RD is the D-dimensional feature vector
of the nth data item. Let yn ∈ [K] = {1, . . . ,K} denote the
ground-truth label of xn; i.e., each data item xn belongs to
one of the K classes. Assume that yn is not available to us.



Instead, an annotator-produced estimation ŷn is given as the
label (and it is possible that ŷn ̸= yn). The goal is to train a
classifier f(·) using the dataset {xn}Nn=1 and the noisy labels
{ŷ}Nn such that f(xn) = yn and f(xunseen) = yunseen—i.e.,
a predictor that recognizes the ground-truth class label of both
the training and unseen (testing) data samples.

Consider the following generative model for noisy labels
[10]–[13]:

Pr(ŷn = k|xn)

=

K∑
k′=1

Pr(ŷn = k|yn = k′,xn)Pr(yn = k′|xn). (1)

The conditional probabilities Pr(yn = k|xn) represents the
prediction of the ground-truth labels given the data features
xn. This probability distribution is what we aim to learn and
is represented by f(x) : RD → RK such that

[f(xn)]k := Pr(yn = k|xn). (2)

A commonly used assumption in noisy label learning is that
the label noise is independent of individual data samples’
features; see [10]–[12], [32]. Under this assumption, we have

Pr(ŷn = k|yn = k′,xn) = Pr(ŷn = k|yn = k′). (3)

The right-hand side can be represented using a K × K-
sized label transition matrix T (which is also often called
the confusion matrix), i.e.,

[T ]k,k′ = Pr(ŷn = k|yn = k′).

Note that (3) is an important simplification for reducing the
complexity of the model—otherwise the amount of model pa-
rameters is too large to learn. We can also define a probability
vector pn such that [pn]k = Pr(ŷn = k|xn). Using these
notations, we obtain the following model from (1):

pn = Tf(xn),∀n. (4)

The noisy labels ŷn’s are categorical realizations of the
probability distribution represented by pn’s, i.e., ŷn ∼
categorical(pn). In practice, f(·) is represented by a certain
machine learning model, oftentimes DNNs in recent years.
Hence, learning f(·) from {(xn, ŷn)}Nn=1 is a DNN training
problem using noisy labels.

B. Connections to NMF & MVES

The model in (4) can be perceived as an NMF model by
stacking pn’s as the columns of a matrix:[

p1 . . . pN

]
= T

[
f(x1) . . . f(xN )

]
⇐⇒ P = TF . (5)

Note that each column of F resides in the probability simplex,
i.e.,

1⊤f(xn) = 1, f(xn) ≥ 0,

which is due to its physical meaning [cf. Eq. (2)]. Geometri-
cally, Eq. (5) implies that the pn’s are enclosed by the simplex
spanned by the columns of T , i.e., pn ∈ conv{t1, . . . , tK}.

Hence, identifying the latent factors T and F amounts to
identifying this data-enclosing simplex.

It is well-known that such a simplex-identification problem
is ill-posed [18], [19], [22], [23], [26] and some additional
assumptions are needed to underpin T and F . The so-called
anchor point assumption is widely adopted for this purpose
[10], [20]. Under this assumption, there exists an anchor point
xnk

for each class k such that Pr(ynk
= k|xnk

) = 1,
i.e., f(xnk

) = ek,∀k. This is the same as the separability
condition in NMF [18], [19], [21]. Under this condition, the
columns of T can be uniquely identified from P . However, the
anchor points may not always be available. To deal with this
challenge, the work in [12] considered the concept of MVES in
NMF [22], [23], [25], [27]. It was shown in the literature [23],
[33] that finding the minimum-volume data-enclosing simplex
identifies the latent factors of the corresponding NMF model,
if the data points are geometrically sufficiently spread—see
Fig. 1. MVES stemmed from the hyperspectral unmixing
literature in the 1990s [34], and has been widely used to deal
with NMF problems when the separability condition does not
hold.

The work [12] used the idea of MVES and recast the DNN
learning problem as follows:

minimize
T ,f∈F

vol(T ) (6a)

subject to pn = Tf(xn),∀n, (6b)

1⊤T = 1, T ≥ 0, (6c)

where vol(T ) denotes the volume of conv{t1, . . . , tK}, (6c) is
introduced to respect the physical meaning of tk (conditional
probabilities), F denotes the function class to learn f from,
e.g., DNNs. The work [12] also argued for the identifiability
of the ground-truth confusion matrix T via solving (6) using
the MVES proof from [23]. Note that the probability vectors
pn’s are not observed in practice. Instead, we observe their
realizations ŷn’s. Hence, the work [12] employed the cross
entropy (CE) loss in order to handle the constraint (6b). Also,
a commonly used volume measure log |det(T )| is chosen for
vol(T ). Specifically, the following criterion is employed in
[12]:

minimize
T ,f∈F

− 1

N

N∑
n=1

K∑
k=1

[ŷn]k log[Tf(xn)]k + λlog |det(T )|

(7a)

subject to 1⊤T = 1, T ≥ 0, (7b)

where ŷn denotes the one-hot representation of the noisy label
ŷn and and λ > 0.

C. Challenges

A notable challenge of MVES is that such a geometric NMF
criterion is sensitive to outliers [24], [25], [28]. Even if there
exists a single outlying data point, the MVES criterion may
produce largely undesired solutions—as the minimum-volume
enclosing simplex can be quite different from the ground-truth
one; see an illustration in Fig. 1. As a result, if there are



Fig. 1. Illustrating the effect of outlier data points in volume minimization.
The dots denote the vectors pn. Blue shaded region denote the ground-
truth conv(t1, . . . , tK) Left) The minimum volume simplex (outlined by
the black bold line) is same as conv(t1, . . . , tK). Right) An outlier impacts
volume minimization. Here the minimum volume simplex is different from
conv(t1, . . . , tK).

data points that do not closely obey the model in (4), the
criterion in [12] may fail to identify the ground-truth model
parameters, T and f . Note that for real-world data, the model
in (4) can indeed be easily violated, e.g., when some data
items suffer from feature-dependent label noise (i.e., when the
simplification in (3) is too far from reality). The hyperspectral
imaging community has long noticed the challenges arising
from outlying data and advocated using robust fitting criteria
to enforce P ≈ TF [22]–[27]. This suggests that the CE
criterion used in (6) may also need be replaced by some
outlier-robust surrogates. Indeed, it was widely reported in the
machine learning literature that CE is sensitive to outliers and
can create overfitting issues [7].

III. PROPOSED ROBUSTIFICATION

To enforce P ≈ TF , the hyperspectral imaging works often
use outlier-robust norms or quasi-norms (e.g., the ℓ1 norm or
the ℓq quasi-norm where q ∈ (0, 1)), see e.g., [24]. However,
such surrogates are not suitable for classification, as the data
ŷn in classification is integer—instead of a continuous-valued
pixel as in hyperspectral imaging. Indeed, the ℓ1 norm-based
mean absolute error (MAE) loss, i.e.,

N∑
n=1

∥ŷn − Tf(xn)∥1,

is considered computationally “unfriendly” when combined
with DNNs under integer ŷn, as its non-smoothness may cause
convergence issues [8]. The CE loss, despite its non-robustness
to outliers, encounters much less convergence challenges in the
context of classification.

To strike a balance between the difficulty of optimization
and the robustness of the learning criterion, we propose to
employ the symmetric cross entropy (SCE) loss function
proposed in [9]. For a probability vector p ∈ RK and a one
hot label y ∈ {0, 1}K , the SCE loss is defined as follows:

ℓsce(p,y) = −α

K∑
k=1

[y]k log[p]k − β

K∑
k=1

[p]k log[yϵ]k, (8)

Fig. 2. The proposed RobVolMinNet framework.

where α, β > 0 are certain scalars and the notation yϵ is
introduced to handle the log 0 cases of the one-hot label y, in
which we have

log[yϵ]k =

{
ϵ, [y]k = 0

log[y]k, otherwise.

The first term on the R.H.S of (8) is same as the CE loss.
The second term—the reverse cross entropy–is reduced to
exactly the MAE loss, when ϵ = −2. To see this, consider
the following:

ℓmae(p,y) ≜
K∑

k=1

|[p]k − [y]k| = (1− [p]y) +
∑
k ̸=y

[p]k

= 2(1− [p]y).

ℓrce(p,y) ≜ −
K∑

k=1

[p]k log[yϵ]k = −[p]k log 1−
∑
k ̸=y

[p]kϵ

= −ϵ
∑
k ̸=y

[p]k = −ϵ(1− [p]y).

Hence, with a proper choice of the hyperparameters, the
SCE loss is expected to enjoy a balance between the nice
convergence behavior of CE and the outlier robustness of
MAE.

Using the SCE loss, we propose the following robustified
criterion:

minimize
T ,f∈F

1

N

N∑
n=1

ℓsce(Tf(xn), ŷn) + λlog |det(T )|, (9a)

subject to 1⊤T = 1, T ≥ 0. (9b)

where ŷn denotes the one-hot vector for ŷn and log |det(T )|
is the MVES regularization with parameter λ > 0.

To implement the criterion, one can choose an appropriate
DNN function class F , e.g., ResNet. Any off-the shelf op-
timizers (e.g., Adam, SGD) can be employed to update the
parameters of the proposed network. To prevent T from being
rank deficient, we adopt the diagonally dominant parameteri-
zation trick from [12]. Specifically, the matrix T is assigned as
T (k, k) = 1,∀k and T (k, j) = sigmoid(wkj),∀k ̸= j. Then,
the parameter wkj is updated in every iteration during the
training phase. In this way, the nonnegativity constraints on T
will also be satisfied, since the sigmoid function output ranges
between 0 and 1. To account for the sum-to-one constraints on
the columns of T , column-wise normalization is performed in
each iteration.



TABLE I
AVERAGE TEST ACCURACY OF THE PROPOSED METHODS AND THE

BASELINES ON THE CIFAR-100 DATASET (K = 100)

Methods Noise Rate η = 0.1 η = 0.2

RobVolMinNet τ = 0.3 63.84 ± 1.47 64.34 ± 0.59
RobVolMinNet(λ = 0) τ = 0.3 60.77 ± 0.47 60.92 ± 0.50

VolMinNet τ = 0.3 62.31 ± 0.47 62.56 ± 0.98
GCE τ = 0.3 59.20 ± 0.78 59.36 ± 0.64
CE τ = 0.3 56.12 ± 0.44 56.18 ± 0.42

RobVolMinNet τ = 0.5 56.41 ± 0.91 56.61 ± 0.53
RobVolMinNet(λ = 0) τ = 0.5 51.09 ± 0.94 51.81 ± 0.71

VolMinNet τ = 0.5 53.97 ± 0.55 53.57 ± 0.75
GCE τ = 0.5 51.78 ± 0.32 51.83 ± 0.40
CE τ = 0.5 44.52 ± 0.68 44.88 ± 0.84

We name our framework as Robust Volume-Minimization-
based Deep Neural Network (RobVolMinNet). The illustra-
tion of the learning system is shown in Fig. 2.

IV. EXPERIMENTS

In this section, we present experiment results to showcase
the effectiveness of the proposed approach.
Baselines. We consider the following baselines: VolMinNet
[12], which employs the CE loss function along with MVES
regularization (cf. (7)); GCE [8], which utilizes another variant
of CE named as generalized cross entropy; and the plain
vanilla cross entropy loss-based DNN training, denoted as CE.
We also compare the proposed method with the regularization
parameter λ set to zero,denoted as RobVolMinNet(λ = 0).
Datasets. We use the CIFAR-100 dataset [30] and the CIFAR-
10 dataset [31]. Both CIFAR-100 and CIFAR-10 comprise a
collection of 60, 000 labeled color images of 32 × 32 pixels
in size. The CIFAR-100 contains 100 different classes and
the CIFAR-10 has 10 different classes. For both datasets,
we utilize 45, 000 images for training, 5, 000 images for
validation, and 10, 000 images for testing.
Noisy Label Generation To generate noisy labels for the
data items, we employ the following strategy. We control the
overall noise rate of the labels using a parameter τ ∈ (0, 1).
Using this parameter, we generate the ground-truth confusion
matrix T such that the diagonal entries of T are chosen as
[T ]k,k = 1− τ,∀k and the off-diagonal entries are chosen as
[T ]k,j = τ

K−1 ,∀k ̸= j. We select 1 − η fraction of the data
samples uniformly at random and generate their labels using
the feature-independent confusion matrix T .

The remaining η percent of the samples are considered as
outliers. For such outlying data, we adopt a feature-dependent
noise generation process. Specifically, we follow the strategy
in [35] to generate outliers so that the probabilities associated
with observing the noisy label ŷn depend on multiple factors
including the ground-truth label yn, the noise rate parameter
τ , and also the feature vector xn. Note that, when η is small,
this label noise generation process is different from that of the
majority of the samples which follows a feature-independent
noise generation model using T .
Network Structure and Parameters For CIFAR-100 and
CIFAR-10, we employ the ResNet-32 and the ResNet-18

TABLE II
AVERAGE TEST ACCURACY OF THE PROPOSED METHODS AND THE

BASELINES ON THE CIFAR-10 DATASET (K = 10)

Methods Noise Rate η = 0.1 η = 0.2

RobVolMinNet τ = 0.3 87.85 ± 0.14 86.74 ± 0.29
RobVolMinNet(λ = 0) τ = 0.3 87.93 ± 0.08 86.16 ± 0.17

VolMinNet τ = 0.3 87.70 ± 0.13 86.01 ± 0.34
GCE τ = 0.3 87.53 ± 0.16 86.63 ± 0.15
CE τ = 0.3 85.22 ± 0.15 83.04 ± 0.20

RobVolMinNet τ = 0.5 82.80 ± 0.21 81.49 ± 0.41
RobVolMinNet(λ = 0) τ = 0.5 80.45 ± 0.51 79.55 ± 0.27

VolMinNet τ = 0.5 80.75 ± 0.15 79.32 ± 0.31
GCE τ = 0.5 79.78 ± 0.54 77.37 ± 0.63
CE τ = 0.5 76.93 ± 0.46 75.46 ± 0.67

network architectures [36], respectively. The SGD optimizer is
employed to train the parameters of the network with a batch
size of 128, momentum of 0.9, weight decay of 10−3, and
an initial learning rate of 10−2. We run the algorithms for a
maximum of 80 epochs. We set hyperparameters as α = 0.9,
β = 0.4, ϵ = 0.0001, and λ = 0.0001. For all the methods,
we use validation set to select the best model parameters for
reporting the classification accuracy on testing set.
Results. We present the average classification accuracy on
the testing sets for CIFAR-100 and CIFAR-10 in Table I
and II, respectively. The first and second best performances
are highlighted in bold letters. All experiments are repeated
five times, and the standard deviation is also provided in
the tables. Our proposed criterion demonstrates performance
advantages over all the baselines considered for different
percent of outlying samples (i.e., for different values of η). No-
tably, our method, RobVolMinNet, consistently outperforms
VolMinNet, highlighting the effect of outlier-robustness in
our approach. One can also note that both MVES-based
approaches, RobVolMinNet and VolMinNet, outperform
RobVolMinNet(λ = 0) in most of the cases, underscoring
the importance of incorporating the MVES regularization in
the learning objective.

V. CONCLUSION

In this work, we revisited the noisy label learning framework
that uses the MVES matrix factorization-based regularization.
MVES was employed in this framework to guarantee the
identifiability of the noise transition matrix. However, from
a matrix factor identfiication viewpoint, MVES is known to
be sensitive to outliers. We observed that such sensitivity
could limit its effectiveness in noisy label deep learning. We
proposed an outlier-resilient noisy label learning criterion by
combining a robust neural network training loss function with
the MVES regularization. Our robustification makes use of
a symmetric cross-entropy function that is suited for integer
data, which is different from classic robust MVES formula-
tions that were designed for continuous (e.g., image) data. We
tested our new criterion using synthetically generated label
noise and observed nontrivial improvement relative to the non-
robust version in classification accuracy on the CIFAR-100 and
CIFAR-10 datasets.
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