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a b s t r a c t

Blind identification (BID) of mixtures of quasi-stationary sources (QSS) is a vital approach
for blind speech or audio source separation, and has attracted much interest for more than
a decade. In general, BID-QSS is formulated, and then treated, under either the parallel
factor analysis or joint diagonalization framework. This paper describes a Khatri–Rao (KR)
subspace formulation of BID-QSS. Like subspace techniques founded in sensor array
processing, the KR subspace formulation enables us to decompose the BID problem into
a per-source decoupled BID problem. By exploring this new opportunity, we derive an
overdetermined BID algorithm that solves BID-QSS in a successive and algebraically
simple manner. Analysis shows that under an ideal data setting, the decoupled solutions
of the proposed overdetermined BID algorithm yield very fast convergence. We also tackle
the underdetermined case by proposing a two-stage strategy where the decoupled
solutions are used to warm-start another BID algorithm. Simulation results show that
the proposed BID algorithms yield competitive mean-square error and runtime perfor-
mance in comparison to the state-of-the-arts in BID-QSS.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, our interest lies in blind identification
(BID), or blind source separation (BSS), of a linear instan-
taneous mixture of quasi-stationary sources (QSSs).
This problem is important, both fundamentally and practi-
cally. In terms of applications, the major driving force for the
investigation of BID-QSS is blind speech or audio source
separation in microphone arrays [2–5]. The idea of BID-QSS
is to utilize the statistically time-varying characteristics of
QSSs to identify the unknown system mixing matrix.
Roughly speaking, BID-QSS amounts to a problem where,
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given a set of data matrices R1;…;RM∈CN�N , we are
required to find a matrix A∈CN�K and a set of diagonal
matrices D1;…;DM∈CK�K such that

Rm ¼ADmA
H ; m¼ 1;…;M: ð1Þ

Or, alternatively, we seek to find an appropriate approxima-
tion of (1) through certain formulations.

The problem arising in BID-QSS, or (1), has attracted
much interest in the signal processing community. There
are two major frameworks for the problem. One is to pose
(1) as a three-way tensor decomposition problem, which is
commonly known as parallel factor analysis (PARAFAC) [6].1

In PARAFAC, there are elegant algebraic results regarding
the unique decomposition conditions of (1) [6–8] (also the
references therein), which translates into the key aspect
of unique blind identifiability in BID-QSS. Simply stated,
1 Note that PARAFAC is also called canonical decomposition (CANDE-
COMP) in the literature.
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these analysis results suggest that fundamentally, BID-QSS
is capable of handling rather underdetermined mixing
cases, i.e., a lot more sources than sensors. In terms of
implementation, PARAFAC often formulates (1) as a least-
squares data fitting problem. From this we have the now
popularized trilinear alternating least squares (TALS) [6,9]
and alternating-columns diagonal-centers (ACDC) [10] algo-
rithms; see also [3,11–13] for other important endeavors.

The second major framework is based on the class of
joint diagonalization (JD) techniques, where the aim is
often to find a matrix V such that VRmVH are diagonal (or
approximately diagonal) for all m. In this context, the
development is more on the algorithm side, where now
there exists a plethora of JD algorithms, e.g., [14–17]. Some
algorithms worth mentioning are Pham's JD [14] and fast
Frobenius diagonalization (FFDIAG) [16]. In [14], a connec-
tion between JD and maximum-likelihood estimation
(under some mild assumptions) is also shown.

It is also worthwhile to notice that while many existing
algorithms can be identified as either PARAFAC or JD
based, sometimes the line between the two can be blurred.
In uniformly weighted exhaustive diagonalization with
Gauss iterations (UWEDGE) [18], the formulation can be
seen as a combination of JD and PARAFAC criteria. While
the principle of JD constrains itself to the overdetermined
mixing case only, in second-order blind identification of
underdetermined mixtures (SOBIUM) [8], the authors
consider PARAFAC and devise a special kind of bilinear
mapping to convert an underdetermined problem to a
virtually overdetermined problem, which in turn enables
application of JD in the underdetermined case. We also
refer the readers to the literature [12,18] for a recent
coverage of the various PARAFAC and JD formulations.

PARAFAC and JD are considered dominant frameworks,
where most existing algorithms may be regarded as being
originated from them. In this work, we take inspiration
from direction-of-arrival (DOA) estimation and sensor
array processing to develop an alternative formulation
for BID-QSS. Specifically, we adopt a Khatri–Rao (KR)
subspace formulation [19]. As will be shown, the advan-
tage of KR subspace is that we can decouple the BID
problem into a per-source BID problem, the latter of which
exhibits a much simpler problem structure (relative to
a complete BID formulation) and may be solved more
efficiently. While this decoupled approach also has its own
challenge, namely, on how one may stitch the decoupled
results to yield a complete BID, we will study methods for
overcoming this issue. We will propose two BID-QSS
algorithms based on KR subspace, and their performance
and complexity will be compared to those of the state-of-
the-arts using simulations. The contribution of this paper
lies in deriving highly efficient, algebraically simple, algo-
rithms for per-source decoupled BID, and in using the
former to construct BID-QSS algorithms that will be
numerically shown to be competitive.

This paper is organized as follows. Section 2 describes
the problem formulation. Section 3 establishes criteria of
the KR subspace approach. Section 4 develops algorithms
for per-source decoupled BID, while Section 5 considers
all-sources BID-QSS based on the results in Section 4.
Section 6 compares the performance and complexity of
the proposed algorithms and several benchmarked
algorithms. The paper is concluded in Section 7.

Notation: We largely follow the conventional notation
in signal processing. In addition, DiagðxÞ denotes a diag-
onal matrix whose diagonal elements are x1;…; xn; vecð�Þ is
a vectorization operator, where, for X¼ ½x1;…; xm�∈Cn�m,
we have vecðXÞ ¼ ½xT

1 ;…; xT
m�T∈Cnm; vec−1ð�Þ represents the

inverse operation of vecð�Þ; ⊗ is the Kronecker product;
⊙ is the Khatri–Rao product, where, given A¼ ½a1;…; ak�
and B¼ ½b1;…;bk�, we have A⊙B¼ ½a1⊗b1;…; ak⊗bk�;
RðXÞ denotes the range space of X; λminðXÞ and λmaxðXÞ
denotes the magnitude-wise smallest and largest eigenva-
lues of X, respectively; ∥x∥0 is the zero norm, which counts
the number of nonzero elements in x; ∥x∥2 and ∥X∥F are
the vector 2-norm and matrix Frobenius norm, respec-
tively; X† denotes the Moore–Penrose pseudo-inverse of
X; X1:k denotes a submatrix of X that consists of the first k
columns of X.

2. Background

In this section we give the basic problem formulation of
BID-QSS and KR subspace.

2.1. Physical signal model

We follow a standard BID-QSS formulation wherein the
physical signal model is that of linear instantaneous
mixtures

xðtÞ ¼AsðtÞ þ vðtÞ; t ¼ 1;2;… ð2Þ
where we denote xðtÞ ¼ ½x1ðtÞ;…; xNðtÞ�T∈CN to be an
N-sensor received signal vector, sðtÞ ¼ ½s1ðtÞ;…; sK ðtÞ�T∈CK

to be a source signal vector, with K being the number of
sources, A¼ ½a1;…; aK �∈CN�K to be a mixing matrix, and
vðtÞ∈CN to be noise. It is assumed that
ðA1Þ
 The source signals skðtÞ; k¼ 1;…;K , are statistically
independent of each other.
ðA2Þ
 Each sk(t) is zero-mean wide-sense quasi-stationary; to
be specific, EfjskðtÞj2g generally changes with t, but is
fixed within every local time interval ½ðm−1ÞLþ 1;mL�,
for some window length L and for any m¼ 1;2;….
ðA3Þ
 The noise vector vðtÞ is wide-sense stationary with
mean zero and covariance s2I, and is statistically
independent of sðtÞ.
Under the setup above, we consider the local covar-
iances of xðtÞ, which is defined as

Rm ¼ EfxðtÞxðtÞHg; for any t∈½ðm−1ÞLþ 1;mL�: ð3Þ
Note that, in practice, Rm can be estimated by local
covariance sampling, e.g., Rm≃ð1=LÞ∑mL

t ¼ ðm−1ÞLþ1xðtÞxðtÞH .
From (2) and its associated assumptions, it is readily
shown that Rm adheres to the model

Rm ¼ADmA
H þ s2I; ð4Þ

where Dm are the local covariances of sðtÞ and are given by
Dm ¼DiagðdmÞ, in which dm ¼ ½dm;1; dm;2;…; dm;K �T , dm;k ¼
EfjskðtÞj2g for any t∈½ðm−1ÞLþ 1;mL�.
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2.2. Local covariances model and Khatri–Rao subspace

Suppose that we have measured a number of M local
covariances of xðtÞ, or R1;…;RM . Our interest lies in
exploiting the subspace characteristics of R1;…;RM for
blind identification of A. To put into context, let us assume
a noise covariance-free scenario

Rm ¼ADmA
H ; m¼ 1;…;M: ð5Þ

It will be reviewed in the next subsection that the noise
covariance s2I can be removed from (4) using a simple
preprocessing procedure. Consider the vectorization of Rm

in (5)

ym≜vecðRmÞ ¼ ðAn⊙AÞdm∈CN2
; ð6Þ

where An⊙A is a self-Khatri–Rao product of A and takes
the form

An⊙A¼ ½an

1⊗a1;…; an

K⊗aK �∈CN2�K :

Note that to arrive at the right hand side of (6), we have
used the matrix result vecðADBHÞ ¼ ðBn⊙AÞd, where D¼
DiagðdÞ [6,9]. There is an interesting observation with (6),
which has sparked interest in some recent DOA estimation
studies [19,20]—Eq. (6) is virtually identical to a linear
instantaneous mixture signal model, with a mixing matrix
An⊙A and a source vector dm. Hence, the insight is that
one may exploit the self-Khatri-Rao product structure of
the virtual mixing matrix An⊙A to identify its physical
counterpart, A, blindly.

There are more than one ways to utilize the structure of
An⊙A for blind identification. For example, in the popular-
ized TALS and ACDC algorithms [9,10], a least-squares
fitting formulation for (6) is used. This work considers
a subspace formulation. The following assumptions are
made.
ðA4Þ
2

tive, c
istic c
requir
The mixing matrix A has full Kruskal rank; or,
equivalently, any minfK;Ng columns of A are linearly
independent.
ðA5Þ
 Let Ψ¼ ½d1;…;dM�T∈CM�K . The matrix Ψ has full
column rank.
From ðA4Þ, it is readily deduced that

Fact 1. Assume ðA4Þ. The matrix An⊙A has full column
rank if K ≤2N−1 [6].2

Moreover, ðA5Þ means that the source local variances,
captured by dm, are assumed to be sufficiently time-varying
and different in their variations, thereby satisfying the full
column rank assumption on Ψ. Also, note that ðA5Þ implies
M≥K . Now, let us denote

Y≜½y1;…; yM � ¼ ðAn⊙AÞΨT∈CN2�M : ð7Þ
Since An⊙A and Ψ are of full column rank (assuming
K ≤2N−1 for the former), basic matrix analysis leads us to
Note that the condition K ≤2N−1 is a safe, but arguably conserva-
ondition for An⊙A to have full column rank. There exist probabil-
laims for the full column rank condition of An⊙A, where the
ement can be much more relaxed than K ≤2N−1 [7].
the following results. First, Y has rank K, and admits
a compact singular value decomposition (SVD)

Y¼UsΣsVH
s ; ð8Þ

where Σs∈RK�K is the nonzero singular value matrix, and
Us∈CN2�K and Vs∈CM�K are the associated left and right
singular matrices, respectively. Second, we have

RðUsÞ ¼RðAn⊙AÞ: ð9Þ
The subspace RðUsÞ or RðAn⊙AÞ will be called the Khatri–
Rao (KR) subspace in the sequel. Our endeavor will be
focused on using the KR subspace identity in (9) for blind
identification of A.

2.3. Preprocessing

Before proceeding to the main development in the next
sections, we should briefly describe two preprocessing
procedures for the sake of self-containedness. The first
procedure is noise covariance removal, where we return to
the noise covariance-present model in (4). It is well known
that λminðRmÞ ¼ λminðADmA

HÞ þ s2, and that λminðADmA
HÞ≥0

(see, e.g., [21]). Moreover, for N4K , i.e., more sensors than
sources, we have λminðADmA

HÞ ¼ 0. Hence, for this strictly
overdetermined case, we can estimate s2 via

ŝ2 ¼ min
m ¼ 1;…;M

λminðRmÞ; ð10Þ

and then subtract s2I from Rm. It should be noted that this
noise covariance removal procedure has been previously
suggested, e.g., in [3]. Interestingly, under a mild assump-
tion, the noise removal procedure above also works for the
case of N≤K .

Fact 2. If there exists an index m such that ∥dm∥0oN,
then (10) correctly estimates s2.

Fact 2 is a direct consequence of λminðADmA
HÞ ¼ 0 for

any m that satisfies ∥dm∥0oN, i.e., the active number of
sources at time window m is less than N. Physically, this
means that if the sources exhibit a mild amount of local
sparsity, then (10) may also estimate s2 reliably in the
underdetermined case.

The second procedure is prewhitening [22,23], which
will be used in one of our algorithms to be developed. The
goal is to transform the problem such that A becomes
unitary. The procedure works only for the overdetermined
case N≥K , and is described as follows. Assume that the
noise covariance has been removed, and consider the
time-averaged global covariance

R ¼ 1
M

∑
M

m ¼ 1
Rm ¼ ADAH ; ð11Þ

where, by (5), we have D ¼ ð1=MÞ∑M
m ¼ 1Dm. Since D is,

without loss of generality, a positive definite matrix, we
can apply a square-root factorization R ¼ BBH , where
B∈CN�K has full column rank (for N≥K). The prewhitening
operation is given by

~Rm ¼ B†RmðB†ÞH ; m¼ 1;…;M: ð12Þ
From (5) and (12), the prewhitened local covariances ~Rm
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can be written as

~Rm ¼ ~A ~Dm
~A
H
; m¼ 1;…;M; ð13Þ

where ~A ¼ B†AD
1=2

∈CK�K is the transformed mixing
matrix, and ~Dm ¼D

−1
Dm the transformed source local

covariances. It can be verified that ~A is unitary. Moreover,
Eq. (13) follows the same problem structure as in the basic
local covariance model (5).

3. KR subspace criteria

BID-QSS aims at estimating the mixing matrix A from
the observed local covariances R1;…;RM , given knowledge
of the number of sources K. Following the subspace
formulation in Section 2.2, we consider BID based on the
KR subspace matrix Us. From the KR subspace identity (9),
we see that any column ak of the true mixing matrix A
satisfies an

k⊗ak∈RðUsÞ. This observation leads us to the
following criterion for blind identification of A:

Criterion 1 :

find a∈CN

such that an⊗a∈RðUsÞ:

Criterion 1 suggests a column-decoupled BID approach
—solving Criterion 1 amounts to finding one of the ak 's,
assuming unique identifiability which will be discussed
shortly. We should note that Criterion 1 is reminiscent of
the criterion leading to MUSIC and some other subspace
algorithms in the context of DOA estimation; see [21,24]
and the references therein. Like the development in
subspace-based DOA estimation, it is essential to prove
the theoretical identifiability conditions of Criterion 1.
To be specific, while any ak is naturally a solution of
Criterion 1, is it also true that a solution of Criterion 1 must
be an ak, and no others? Consider the following theorem:

Theorem 1. Assume (5), ðA4Þ, and ðA5Þ. A sufficient and
necessary condition for

a satisfies Criterion 1⟺a¼ cak for some k and constant c∈C

is when K ≤2N−2.

The proof of Theorem 1 is shown in Appendix A.
Theorem 1 confirms that Criterion 1 is a sound criterion,
when the number of sources does not exceed approxi-
mately twice of the number of sensors. It also means that
Criterion 1 can operate in the underdetermined case.

As we will show in Section 4, a significant advantage of
the column-decoupled BID criterion in Criterion 1 is that
we can develop efficient algorithms for it. However, the
decoupled nature of Criterion 1 does not tell how all the
columns of A can simultaneously be identified. Section 5
will study how the column-decoupled BID solutions can be
used to estimate the whole A. In doing so, we will consider
the following alternative criterion:

Criterion 2 :

find A∈CN�K ; Θ∈CK�K

such that Us ¼ ðAn⊙AÞΘ:

The rationale behind is that from (9), it holds true that
any column of Us lies in RðAn⊙AÞ. Note that Criterion 2 is
reminiscent of a subspace fitting criterion in DOA estima-
tion [25]. Moreover, if we replace Us in Criterion 2 by Y,
and expand the dimension of Θ from CK�K to CK�M (M≥K),
then the criterion is essentially no different from that of
PARAFAC. Hence, Criterion 2 may alternatively be regarded
as a dimension reduced PARAFAC. This relation in addition
means that the PARAFAC unique identifiability results,
which are well established [6,7,26], apply to Criterion 2.
For example, using the standard result [26, Theorem 1], we
can easily deduce that Criterion 2 uniquely identifies
the true A (subjected to scalings and permutations) if
K ≤2N−2.

4. Column-decoupled blind identification

In the last section, we have proposed a column-
decoupled BID criterion, namely, Criterion 1. This criterion
possesses a relatively simple structure when compared to
other BID-QSS criteria, e.g., Criterion 2. In this section, we
will exploit such structure to derive efficient column-wise
BID algorithms.

4.1. Alternating projections

To implement Criterion 1, it is natural for one to
formulate it as an optimization problem

min
a∈CN

ðan⊗aÞHP⊥
s ðan⊗aÞ

s:t: ∥a∥22 ¼ 1; ð14Þ
where P⊥

s ¼ I−UsUH
s denotes the orthogonal complement

projector of the KR subspace RðUsÞ. In words, we aim at
minimizing the projection residual of an⊗a on RðUsÞ.
Problem (14) is a quartic polynomial optimization pro-
blem. Rather than dealing with its fourth-order multi-
variate polynomial objective directly, which may be
difficult, our approach is based on an alternative formula-
tion of (14) that will lead to a simple iterative algorithm.
We claim that problem (14) is equivalent to

min
α∈R;a∈CN ;h∈CN2

∥αan⊗a−h∥22

s:t: α∈f71g; ∥a∥22 ¼ 1; h∈RðUsÞ: ð15Þ
The equivalence of problems (14) and (15) is shown as
follows. Fixing ðα; aÞ, the optimization of (15) over h is a
linear projection problem, whose solution is easily shown
to be

h¼UsUH
s ðαan⊗aÞ: ð16Þ

By substituting (16) into (15), problem (15) can be reduced
to

min
α∈f71g;∥a∥22 ¼ 1

∥ðI−UsUH
s Þðαan⊗aÞ∥22

¼ min
∥a∥22 ¼ 1

ðan⊗aÞHP⊥
s ðan⊗aÞ; ð17Þ

which is exactly the same as problem (14).
Problem (15) has an interpretation of finding a pair of

closest points in two sets, namely, h∈RðUsÞ and ðα; aÞ
∈f71g � UN , where Un ¼ fx∈Cnj∥x∥22 ¼ 1g. Moreover, the
formulation in (15) enables us to apply alternating projec-
tions (APs) [27], or alternating optimization, conveniently.
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Essentially, the idea of AP is to fix ðα; aÞ and solve (15) with
respect to (w.r.t.) h at one time, and then fix h and solve
(15) w.r.t. ðα;aÞ at another time. For the partial optimiza-
tion of (15) over h, we have seen that the solution is (16).
Let us examine the partial optimization of (15) over ðα; aÞ.
By denoting H¼ vec−1ðhÞ∈CN�N , problem (15) can be re-
expressed as

min
α;a;H

∥αaaH−H∥2F

s:t: α∈f71g; ∥a∥22 ¼ 1; vecðHÞ∈RðUsÞ; ð18Þ
wherewe use the property vecðaaHÞ ¼ an⊗a to turn (15)–(18).
For any α∈f71g and ∥a∥22 ¼ 1, the objective function of (18)
yields

∥αaaH−H∥2F ¼ 1−2αRefaHHag þ ∥H∥2F
≥1−2jRefaHHagj þ ∥H∥2F ; ð19Þ

where equality in (19) holds when α¼ RefaHHag=jRefaHHagj.
Moreover, the second term in (19) is minimized when
jRefaHHagj is maximized, and the latter is achieved when a
aligns to a magnitude-wise most significant eigenvector of
ðHþHHÞ=2 (note that RefaHHag ¼ 1

2a
HðHþHHÞa). Hence, the

partial optimization of (18) w.r.t. ðα; aÞ has a closed-form
solution given by

a¼ qmax
1
2
ðHþHHÞ

� �
; α¼

λmax
1
2
ðHþHHÞ

� �

λmax
1
2
ðHþHHÞ

� �����
����
; ð20Þ

where λmaxðXÞ denotes the largest eigenvalue of X (magni-
tude-wise), and qmaxðXÞ denotes a unit-2-norm eigenvector of
X associated with λmaxðXÞ.

Our implementation of the AP method is shown in
Algorithm 1. We can see that the algorithm is simple to
implement.

Algorithm 1. AP algorithm for problem (15).
, ξ∼CN ð

1
HþHHÞ

�

sUH
s ðαan⊗
Input: the KR subspace matrix Us;

1: H≔vec−1ðUsξÞ
 0; IÞ (random initialization);

2: repeat
 � �

3: �
; α≔
λmax

1
2
ðHþHH Þ

λmax

1
2
ðHþHH Þ

� �����
����
;
a≔qmax 2

ð

4: H≔vec−1ðU
 aÞÞ;

5: until a stopp
 rion is satisfied.
ing crite
Output: a as an estimate of a column of the mixing matrix.

4.2. Nuclear norm regularization

While the AP algorithm derived in the last subsection is
simple, we found that empirically, AP generally exhibits
slow objective value convergence. In this subsection, we
consider a modified AP algorithm for improving conver-
gence. Our approach is to apply regularization to the BID
problem (14). To be specific, we consider the equivalent AP
formulation (18) and add a regularization term on it to
obtain

min
α;a;H

∥αaaH−H∥2F þ γrankðHÞ

s:t: α∈f71g; ∥a∥22 ¼ 1; vecðHÞ∈RðUsÞ; ð21Þ
where γ40 is a regularization parameter. It can be shown
that

Fact 3. Suppose that the unique identifiability premises in
Theorem 1 hold. Then, for any γo1, problem (21) is
equivalent to problem (18) in the sense that their optimal
solutions are the same.

Proof. Let ðα⋆; a⋆;H⋆Þ denote an optimal solution to pro-
blem (18). Under the unique identifiability premises in
Theorem 1, ðα⋆; a⋆;H⋆Þ must take the form ðα⋆; a⋆;H⋆Þ ¼
ðα; ai; αaiaHi Þ for any α∈f71g and any true mixing matrix
column ai, i¼1,…,K. We seek to prove that any optimal
solution of problem (21) must also be ðα⋆; a⋆;H⋆Þ. Let
f ðα; a;HÞ ¼ ∥αaaH−H∥2F þ γrankðHÞ
be the objective function of problem (21). For any feasible
ðα; a;HÞ with rankðHÞ≥1, we have

f ðα; a;HÞ≥γrankðHÞ≥γ:
Moreover, the equalities above are achieved if and only if
H¼ αaaH; this is possible only when ðα; a;HÞ ¼ ðα⋆;a⋆;H⋆Þ.
In other words, ðα⋆; a⋆;H⋆Þ is optimal to problem (21) if
the case of rankðHÞ ¼ 0 does not lead to an objective value
lower than γ. Let us consider rankðHÞ ¼ 0, which is equiva-
lent to H¼ 0. For any feasible ðα; a;0Þ, we have

f ðα; a;HÞ ¼ ∥αaaH∥2 ¼ ∥a∥42 ¼ 1:

Consequently, for γo1, any feasible ðα; a;0Þ is not optimal
to problem (21). □

The reason for studying problem (21) is with AP.
Suppose that AP is applied to problem (21) in the same
way as before. Then, for the partial optimization of (21) w.
r.t. H, i.e.

min
H

∥αaaH−H∥2F þ γrankðHÞ
s:t: vecðHÞ∈RðUsÞ; ð22Þ

the term γrankðHÞ would provide an incentive for (22) to
yield a lower rank optimal solution H. Subsequently, we
may push H closer to a rank-one solution, thereby helping
AP to converge faster.

To implement AP for problem (21), the key question lies
in solving the partial optimization problem (22). Unfortu-
nately, problem (22) is unlikely to be tractable, since
rankðHÞ is nonconvex. Hence, as a compromise, we replace
rankðHÞ in (22) by its convex envelope, namely, the nuclear
norm

min
H

∥αaaH−H∥2F þ γ∥H∥n

s:t: vecðHÞ∈RðUsÞ; ð23Þ
where ∥H∥n ¼∑r

i ¼ 1siðHÞ is the nuclear norm, with siðHÞ
denoting the ith nonzero singular value of H and
r¼ rankðHÞ. We should note that the notion of using the
nuclear norm to approximate the rank function was
proposed in low-rank matrix recovery [28,29], a topic that
has recently drawn much interest. A significant advantage
of problem (23) is that it is a convex tractable problem—it
can be reformulated as a semidefinite program [30] and
then conveniently processed by a general-purpose interior-
point algorithm [31]. Alternatively, one can custom-build
simple first-order optimization methods for problem (23),
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a representative one of which is the augmented Lagrangian
method of multipliers (ADMM) [32]. In this paper, we will
choose ADMM. Our derivation of the ADMM for problem
(23) is described in Appendix B.

To summarize, the nuclear-norm AP (NAP) algorithm
proposed in this subsection has its routines identical to
Algorithm 1, except for line 4 where the solution H is
obtained by solving (23) via ADMM. The pseudo-code of
NAP, with the ADMM routines included, is shown in
Algorithm 2.

Algorithm 2. Nuclear-norm AP (NAP) algorithm for
problem (21).
−300
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0

F

Input: the KR subspace matrix Us , a regularization parameter γ, and
an ADMM parameter ρ;

1: H≔vec−1ð
UsξÞ, ξ∼CN ð0; IÞ, G¼ Z¼ 0 (initializations);

2: repeat

3:
1
2
ðHþHH

� �
Þ; α≔

λmax

1
2
ðHþHH Þ

� �

λmax

1
2
ðHþHH Þ

� �����
����
;
a≔qmax

4: repeat
 (ADMM loop)

5:

H≔

1
þ 2

vec−1fUsUH
s ð2αan⊗aþ ρvecðG−ZÞÞg;
ρ
6: comp
ute the SVD ðU;Σ;VÞ of Hþ Z;

7: di≔m
axf0;Σii−γ=ρg, i¼ 1;…;K;

8: G≔UD
iagðdÞVH;

9: Z≔Z
þ ðH−GÞ;

10: until a
 stopping criterion is satisfied.

11: until a st
opping criterion is satisfied.

Output: a as an estimate of a column of the mixing matrix.

To demonstrate whether NAP can improve conver-
gence, we herein show a numerical example. A realization
of the local covariances R1;…;RM is synthetically gener-
ated according to the basic model (5), where we set K¼5,
N¼6, M¼200. The parameter settings of NAP are γ ¼ 0:5,
ρ¼ 1. Fig. 1 plots the projection residuals ðan⊗aÞHP⊥

s ðan⊗aÞ
of AP and NAP against the iteration numbers. Notice that
reaching a projection residual of −300 dB indicates almost
errorless BID of a column of A. We can see that AP is
indeed slow in convergence, while NAP exhibits a signifi-
cantly improved convergence speed.
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ig. 1. Convergence improvement of NAP.
4.3. Convergence for unitary mixing matrices

The NAP algorithm in the last subsection uses a rank
regularized methodology as the way to improve the
convergence of AP, which subsequently requires us to
solve a nuclear-norm optimization problem for each AP
iteration. The nuclear-norm problem is convex and can be
efficiently handled by ADMM, but solving them inevitably
incurs a higher per-iteration complexity. While we will
employ NAP, especially in the underdetermined case, an
alternative perspective is to understand the convergence
of the original simple AP by analysis, and see how or when
convergence may be improved. In general, analyzing AP
convergence for general A can be a formidable task—the
main challenge lies in the nonconvex constraint ∥a∥22 ¼ 1.
However, for the case of unitary A, an AP convergence
result can be established:

Theorem 2. Assume (5), ðA4Þ, and ðA5Þ, and consider
unitary A. With probability one and within one iteration,
the iterate a of Algorithm 1 equals a¼ cak, for some c≠0 and
k∈f1;…;Kg.

The proof of Theorem 2 will be given by the end of this
subsection. Theorem 2 reveals that the AP convergence for
unitary A is drastically different from that of general A.
While we have numerically illustrated in Fig. 1 that AP
exhibits slow convergence for a general A, Theorem 2
indicates that the AP convergence for unitary A is within
one iteration. The idea behind the proof of Theorem 2 is
that for unitary A, there is a strong connection between A
and the eigendecomposition of H. Consequently, we can
exploit that connection to obtain the within-one-
iteration claim.

It is important to discuss the practical utility of
Theorem 2. In general, A is supposed to be non-unitary.
However, for the overdetermined case (N≥K), we can
employ prewhitening (see Section 2.3) to transform A to
a unitary matrix. Hence, we can take advantage of the fast
AP convergence for unitary A by performing BID on
prewhitened local covariances. Once the prewhitened
mixing matrix is estimated, we can “post-dewhiten” the
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Fig. 2. Convergence improvement with prewhitening.
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estimate to recover the original mixing matrix. In Fig. 2,
we show an numerical result demonstrating the AP con-
vergence before and after prewhitening; the numerical
settings are the same as in Fig. 1. Fig. 2 confirms the fast
convergence claim in Theorem 2.

Proof of Theorem 2. By the KR subspace identity (9), we
have the relation

Us ¼ ðAn⊙AÞΘ ð24Þ
for some Θ∈CK�K . When A is unitary, one can verify that
ðAn⊙AÞHðAn⊙AÞ ¼ I. Using this result and (24), we show
from UH

s Us ¼ I that ΘHΘ¼ I, i.e., Θ is unitary. Consider the
random initialization in line 1 of Algorithm 1, which can be
expressed as

vecðHÞ ¼Usξ¼ ðAn⊙AÞη; ð25Þ
where η¼Θξ. Since Θ is unitary and ξ∼CN ð0; IÞ, we have
η∼CN ð0; IÞ. Next, consider line 3 of Algorithm 1 over the
first AP iteration. Devectorizing (25) yields

1
2ðHþHHÞ ¼A DiagðRefηgÞAH : ð26Þ
Since A is unitary, the right-hand side of (26) is already an
eigenvalue decomposition (EVD) of 1

2ðHþHHÞ. The remain-
ing question is whether (26) is the unique EVD. It is known
that if the eigenvalues Refη1g;…;RefηKg are distinct, then
the corresponding EVD is unique. As η is a continuous
random vector, Refηig ¼ Refηjg holds with probability zero
for any i≠j. Therefore, with probability one, the update
a≔qmaxð12 ðHþHHÞÞ picks up aℓ (up to a scaling factor),
where ℓ¼ arg maxijRefηigj. It also follows from Algorithm
1 that for the second iteration and onward, the update a
still stays at aℓ. □

5. Complete blind identification using the
column-decoupled solutions

In the previous section, we have developed two effi-
cient column-decoupled BID algorithms (specifically, NAP
and prewhitened AP). However, as we have previously
noted, they alone do not complete the task of blind
identification of the whole mixing matrix A. In this section,
we turn our attention to this aspect. We will further devise
algorithms that use the column-decoupled BID solutions
to perform complete BID.

5.1. KR subspace fitting

Let us consider Criterion 2 in Section 3, which is a
complete BID criterion. From Criterion 2, an optimization
formulation one may have in mind is the least-squares
fitting

min
A∈CN�K ;Θ∈CK�K

∥Us−ðAn⊙AÞΘ∥2F : ð27Þ

Problem (27) is fundamentally a hard optimization
problem—its objective is a sixth-order multivariate poly-
nomial w.r.t. ðA;ΘÞ. Moreover, problem (27) is structurally
no different from the least-squares data fitting formulation
used in PARAFAC, although the former aims at fitting the
subspace, rather than the data Y. In this regard, we should
note that there exists pragmatic algorithms, like ACDC and
TALS, that have been empirically found to produce reason-
able estimates for problems in the form of (27). ACDC and
TALS are alternating optimization algorithms that require
initialization of A. In particular, poor initializations are
likely to slow down convergence, or lead to unsatisfactory
estimates. Our empirical experience with applying ACDC
to problem (27) is that for randomly generated initializa-
tions (which is a common initialization scheme), the
number of iterations required may be very large. On the
other hand, NAP can effectively identify columns of A.
Hence, we can consider a two-stage approach where we
run NAP multiple times to find some columns of A (or,
if lucky, all), and then use them to initialize ACDC or TALS.
It will be demonstrated by simulations in the next section
that this two-stage approach can reduce both the number
of iterations and the estimation errors.

The detailed implementation of the two-stage
approach is given in Algorithm 3. In the algorithm, ACDC
is employed to process problem (27). NAP is run multiple
times, and we keep only distinct estimates outputted by
NAP. They are used to form part of the initialization of A
(or all, if all the columns of A are successfully identified by
NAP), while the rest are randomly generated. The algo-
rithm will be called NAP-initialized subspace ACDC.

Algorithm 3. NAP-initialized subspace ACDC

Input: local covariance matrices R1;…;RM; a maximum number of
NAP J, and a validation parameter ϵ;

1:
 compute the SVD ðU;Σ;VÞ of Y¼ ½vecðR1 ;…;vecðRMÞÞ�, Us≔U1:K ;

2:
 run Algorithm 2 to obtain â1, and set k¼2;

3:
 for j¼ 1 : J do

4:
 run Algorithm 2 to obtain â;

5:
 if jâH âℓjoϵ; ∀ℓok then

6:
 âk≔â and set k≔kþ 1;

7:
 end if

8:
 if k4K then goto step 10;

9:
 end for

10:
 run ACDC to (27) with A0 ¼ ½â1 ;…; âk−1 ; ak…;aK � as an

initialization to obtain Â , where aℓ∼CN ð0; IÞ, for ℓ¼ k;…;K
Output: Â as an estimate of the mixing matrix.

5.2. Successive optimization for unitary A

The NAP-initialized subspace ACDC algorithm in
Algorithm 3 is derived for blind identification of general A,
both overdetermined and underdetermined. However, for
the overdetermined case, we can develop a much more
efficient algorithm in place of Algorithm 3. A crucial
component lies in prewhitening again, which, as described
earlier, enables us to transform A to a unitary matrix.

Let us focus on the case of unitary A. Recall from
Criterion 2 that Us ¼ ðAn⊙AÞΘ is desired. When A is
unitary, we have shown in the proof of Theorem 2 that
Θ is unitary. For this reason, we consider a modified form
of the KR subspace fitting formulation (27):

min
A∈CK�K ;Θ∈CK�K

∥Us−ðAn⊙AÞΘ∥2F

s:t: ΘΘH ¼ I; ð28Þ
where we incorporate the unitarity of Θ as a constraint.
Our interest lies in reformulating problem (28) to a form
that will enable us to derive a divide-and-conquer strategy
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for handling problem (28). To do so, let Q ¼ΘH . By the
rotational invariance of ∥ � ∥F , we can rewrite (28) as

min
A;Q

∥UsQ−ðAn⊙AÞ∥2F

s:t: QHQ ¼ I: ð29Þ
In addition, by substituting hk ¼Usqk∈RðUsÞ, where qk is
the kth column of Q , problem (29) can be equivalently
expressed as

min
A;h1 ;…;hK

∑
K

k ¼ 1
∥hk−an

k⊗ak∥22

s:t: hk∈RðUsÞ; k¼ 1;…;K;

hH
k hℓ ¼ 0; ∀k≠ℓ;

∥hk∥22 ¼ 1; k¼ 1;…;K : ð30Þ
Let us slightly modify problem (30) by replacing the

constraints ∥hk∥22 ¼ 1 with ∥ak∥22 ¼ 1:

min
A;h1 ;…;hK

∑
K

k ¼ 1
∥hk−an

k⊗ak∥22

s:t: hk∈RðUsÞ; k¼ 1;…;K;

hH
k hℓ ¼ 0; ∀k≠ℓ;

∥ak∥22 ¼ 1; k¼ 1;…;K : ð31Þ
With the formulation in (31), we are ready to describe

the proposed optimization strategy. A key observation is
that problem (31) can be expressed as (32), shown at the
bottom of the page where

Hkðh1;…;hk−1Þ ¼ fh∈RðUsÞjhHhℓ ¼ 0;ℓ¼ 1;…; k−1g: ð33Þ
The expression in (32) suggests that we can apply a
successive optimization strategy. To be specific, we decou-
ple (32) into K sequentially processed stages. At stage k, we
aim at solving

ðâk; ĥkÞ ¼ argmin
ak ;hk

∥hk−an

k⊗ak∥22

s:t: ∥ak∥22 ¼ 1;hk∈Hkðĥ1;…; ĥk−1Þ ð34Þ
where ĥ1;…; ĥk−1 are the decisions in the previous stages
1;…; k−1. Moreover, it can be shown that since
ĥ1;…; ĥk−1∈RðUsÞ, the subspace Hkðĥ1;…; ĥk−1Þ takes an
explicit form

Hkðĥ1;…; ĥk−1Þ ¼RðP⊥
Ĥ1:k−1

UsÞ ð35Þ

where Ĥ1:k−1 ¼ ½ĥ1;…; ĥk−1�, P⊥
Ĥ1:k−1

¼ I−Ĥ1:k−1ðĤ
H
1:k−1

Ĥ1:k−1Þ−1Ĥ
H
1:k−1. Now, we can see the following connection:

problem (34) is equivalently the AP problem (15), with the
original subspace matrix Us being replaced by P⊥

Ĥ1:k−1
Us. As a

result, problem (34) can be readily handled by applying AP
(Algorithm 1). It is also interesting to note that if the
previous stages 1;…; k−1 have perfectly identified some of
the mixing matrix columns, say, ĥ1 ¼ an

1⊗a1;…; ĥk−1 ¼
an

k−1⊗ak−1, then, by the orthogonality of An⊙A (implied
min
∥a1∥

2
2

¼ 1;

h1∈RðUs Þ

8<
:∥h1−an

1⊗a1∥22 þ min
∥a2∥

2
2

¼ 1;

h2∈H2 ðh1 Þ

∥h2−an

2⊗a2∥22 þ⋯þ min
∥aK ∥2

2
¼

hK∈HK ðh1 ;…;

0
@

2
4

by the unitarity of A), we can show that

Hkðĥ1;…; ĥk−1Þ ¼Rð½an

k⊗ak;…;an

K⊗aK �Þ;

in which the previously found columns are removed from
the subspace. Consequently, at stage k, problem (34) will
identify a new mixing matrix column.

The AP-based successive optimization method proposed
above is summarized in a pseudo-code form in Algorithm 4.
The algorithm is named as the prewhitened alternating
projection algorithm (PAPA) for convenience. There are two
major advantages of PAPA compared to the previous subspace
ACDC algorithm. First, PAPA deals with K AP problems only.
Second, since A is unitary, the AP convergence is expected to
be fast according to Theorem 2. These two merits make PAPA
a computationally very competitive algorithm, as our simula-
tion results will demonstrate. However, we should reiterate
that PAPA is for the overdetermined case only. It is also
interesting to note that the successive operation in PAPA
shows a flavor reminiscent of that in deflation-based FastICA
[33] (and the references therein), where they both estimate
source components in a one-by-one manner.

Algorithm 4. Prewhitened alternating projection algorithm.
1;

hK−
Input: local covariance matrices R1 ;…;RM;

1:
1 Þ

∥h
R ¼ 1
M
∑M

m ¼ 1Rm;
2:
 compute a square-root factorization R ¼ BBH;

3:
 Rm≔B†RmðB†ÞH , m¼ 1;…;M; (prewhitening)

4:
 compute the SVD ðU;Σ;VÞ of Y¼ ½vecðR1 ;…; vecðRMÞÞ�, Us≔U1:K ,

and set k¼1;

5:
 run Algorithm 1 with P⊥

Ĥ1:k−1
Us as the input to obtain ðâk ; ĥkÞ,

where Ĥ1:k−1 ¼ ½ĥ1 ;…; ĥk−1�;

6:
 set k≔kþ 1 and goto step 5 until k4K;

7:
 Â≔B½â1 ;…; âK �; (post-dewhitening)

Output: Â as an estimate of the mixing matrix

6. Simulations

We provide simulations to demonstrate the advantages
of the proposed algorithms compared to some other bench-
marked QSS-based blind identification algorithms. The
simulation settings are described as follows. We consider
real-valued mixtures and sources. The mixing matrix
A∈RN�K is randomly generated at each trial with columns
being normalized to unit 2-norm. We use speech recordings
as our source signals. We have a database of 23 speech
signals, and at each trial we randomly pick K of them as the
source signals. In order to obtain more local covariances
under limited signal length, we employ 50% overlapping
frames in acquiring Rm 's, i.e., Rm ¼ ð1=LÞ∑0:5ðm−1ÞLþL

t ¼ 0:5ðm−1ÞLþ1
xðtÞxðtÞH . Noisy received signals are assumed. The noise
covariance removal procedure described in Section 2.3 is
applied to the estimated Rm 's. For our proposed algorithms,
we adopt a standard stopping criterion, specifically,
K−an

K⊗aK∥22

1
A
3
5
9=
; ð32Þ
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jf ðnÞ−f ðn−1Þjoϵ¼ 10−6, where f ðnÞ is the objective value of
the algorithm at the nth iteration.

The performance measure employed here is the aver-
age mean square error (MSE), defined as

MSE¼ min
π∈Π;

c1 ;…;cK ∈f7 1g

1
K

∑
K

k ¼ 1

ak
∥ak∥2

−ck
âπðkÞ

∥âπðkÞ∥2

�����
�����
2

2

;

where Π is the set of all bijections π : f1;…;Kg-f1;…;Kg;
A and Â are the true and estimated mixing matrices,
respectively. The MSE performance results to be shown
are averages of one thousand independent trials. All
algorithms are run on a computer with i7 2.8 GHz CPU
and 16 GB RAM, with all the codes written in MATLAB.
The signal-to-noise ratio (SNR) is defined as SNR¼
ðð1=TÞ∑T−1

t ¼ 0Ef∥AsðtÞ∥22gÞ=Ef∥vðtÞ∥22g.

6.1. The overdetermined case

We first consider an overdetermined case where we set
ðN;KÞ ¼ ð6;5Þ and ðM; LÞ ¼ ð399;200Þ. PAPA (Algorithm 4) is
used. The algorithms we benchmark against are FFDIAG [16],
UWEDGE [18], BGWEDGE [18] and Pham's JD [14]. All the
algorithms are run on the same set of noise covariance-
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Fig. 3. The average MSEs of the various algorithms w.r.t. the SNRs.

Table 1
The average runtimes (in second) under various SNRs. N¼6; K¼5.

Method SNR (dB)

−10 0 10 20 30

PAPA 0.0055 0.0035 0.0026 0.0024 0.0023
FFDIAG 0.4386 0.1561 0.0819 0.0649 0.0628
UWEDGE 0.5006 0.1318 0.0706 0.0600 0.0781
Pham's JD 8.7037 3.1116 2.3582 1.7417 1.4583
BGWEDGE 0.1315 0.1121 0.0826 0.0656 0.0615

Table 2
The average number of AP iterations of PAPA under various SNRs. N¼6; K¼5.

SNR (dB) −10 0
Average number of AP iterations 8.5280 5.033
removed and prewhitened Rm 's. Fig. 3 shows the average
MSEs of the various algorithms w.r.t. the SNRs. It is seen that
PAPA provides the best MSE performance for SNR ≤30 dB.
For SNR435 dB, PAPA is outperformed by FFDIAG and
UWEDGE. Having said so, the MSE performance of PAPA is
still quite on a par.

Table 1 lists the average runtimes of the various algo-
rithms corresponding to the above simulation. PAPA clearly
demonstrates better computational efficiency compared to
the other algorithms. In particular, PAPA is at least 23 times
faster than FFDIAG, UWEDGE and BGWEDGE. The reason
behind its high efficiency lies in the fact that the number of
iterations required by PAPA is small. To get a better idea, in
Table 2 we show the average numbers of AP iterations in
PAPA. We can see that for SNR≥10 dB, the average numbers
of AP iterations are around 3. This is consistent with the fast
AP convergence claim in Theorem 2, which says conver-
gence within one iteration, although one may wonder why
the former and latter do not exactly collide. We should note
at this point that Theorem 2 is established based on the
satisfiability of the basic model laid in Section 2.2. In
practice, the local covariances Rm 's are subjected to mea-
surement errors and the subsequent subspace perturbation
effects may have an impact on the practical AP convergence.
Notwithstanding, we see in Table 2 that the impact is
insignificant for moderate to high SNRs.

Although the main interest in this paper lies in mixing
matrix estimation, it is also interesting to look at source
separation performance. Fig. 4 shows the source separation
performance obtained by the various algorithms. The per-
formance metric used here is the signal-to-interference-
plus-noise ratio (SINR) of the separated signals, where the
sources are separated via MMSE demixing; see [34] for
details. It can be seen that all the algorithms exhibit similar
SINR performance, except for SNR≥30 dB where BGWEDGE
and Pham's JD have slightly better SINRs than the others.

More performance comparisons are shown in Figs. 5
and 6. The simulation settings are essentially the same as
the previous, and we fix SNR¼10 dB. Fig. 5 plots the MSEs
w.r.t. the number of local covariances M. We can see that
PAPA performs better than the other algorithms for
M≥200, and the otherwise for Mo200. This suggests that
PAPA works better for larger numbers of local covariances.
Fig. 6 plots the MSEs w.r.t. the number of sources K, with
N¼ K þ 1. As seen, PAPA performs better for small to
moderate numbers of sources, specifically, K ≤10. Table 3
shows the corresponding runtime performance. PAPA
remains computationally competitive, except for K¼23
where BGWEDGE yields the fastest runtime.
6.2. The underdetermined case

Next, we consider an underdetermined case where
ðN;KÞ ¼ ð5;7Þ and ðM; LÞ ¼ ð399;400Þ. In order to avoid
10 20 30
6 3.3724 2.9250 2.8654
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Table 3
The average runtimes (in second) under various source numbers.
N¼ K þ 1; SNR¼10 dB.

Method K

3 7 11 15 19 23

PAPA 0.0072 0.0053 0.0195 0.0738 0.2321 0.6134
FFDIAG 0.0230 0.0634 0.1243 0.2206 0.3889 0.5904
UWEDGE 0.0291 0.0896 0.1726 0.2828 0.5154 0.7799
BGWEDGE 0.0332 0.0819 0.1272 0.1863 0.2697 0.3769
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overly ill-conditioned mixing matrices [12,17,35], we
constrain the columns of A to satisfy jaHi ajjo0:8; ∀i≠j.
The algorithms under comparison are NAP-initialized
subspace ACDC (Algorithm 3), SOBIUM [8], TALS [6] and
UDSEP [12]. We apply noise covariance-removed Rm 's to
all the algorithms, except for UDSEP. UDSEP was found to
be numerically sensitive to noise covariance removal, and
we run it using the original Rm 's. For Algorithm 3, we set
ϵ¼ 0:8 and J ¼ 5 K , i.e., NAP is run at most 35 times. For
NAP (Algorithm 2), we set γ ¼ 0:5; ρ¼ 1 and we stop the
ADMM when the number of ADMM iterations reaches 20.
We also try subspace ACDC with completely random



Table 4
The average number of iterations and runtimes under various SNRs. N¼5; K¼7.

Method SNR (dB)

−10 0 10 20 30

Subspace ACDC
Iterations 741.177 292.356 264.536 292.216 282.969
Time (s) 1.5683 0.61939 0.56625 0.62739 0.60435

NAP-initialized subspace ACDC
Iterations 689.237 134.197 91.737 88.403 89.201
Time (s) 1.4634 0.28498 0.19685 0.18833 0.18793

SOBIUM
Iterations 38.92 8.681 5.37 5.241 5.266
Time (s) 0.063175 0.027482 0.023618 0.023728 0.023509

TALS
Iterations 1889.775 633.107 479.733 473.49 485.238
Time (s) 39.4489 13.1247 9.97616 9.81866 10.0604

UDSEP
Iterations 1000 1000 1000 1000 1000
Time (s) 159.7963 159.4327 159.2985 159.0518 158.6283
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Fig. 9. The average MSEs of the various algorithms w.r.t. M.

Table 5
Performance of NAP under various SNR. N¼5; K¼7.

SNR (dB) −10 0 10 20 30

Average number of
AP iterations

16.5163 23.6907 27.3381 27.8929 28.0969

Time (s) 1.7136 1.2812 1.2364 1.2456 1.2437
Success rate (%) 4.3 63.5 73.8 73.5 74.1
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initializations (by setting J¼0), where the purpose is to
examine the differences of using “good” and “bad” initi-
alizations. Fig. 7 shows the average MSEs of the various
algorithms w.r.t. the SNRs. Remarkably, it can be seen that
NAP-initialized subspace ACDC gives the best MSE perfor-
mance. Another observation is that without the NAP
initialization, subspace ACDC still works reasonably, but
suffer from around 4 dB performance degradation com-
pared to NAP-initialized subspace ACDC. Fig. 8 takes a
closer look at the performance of UDSEP and NAP-ACDC by
showing both the averages and standard deviations of the
MSEs. As seen, UDSEP exhibits large variations with MSEs.
This means that there are realizations where UDSEP
performs much better than NAP-ACDC; however, there
are realizations where UDSEP does not perform well.

Table 4 shows the average numbers of iterations and
runtimes of the various algorithms corresponding to the
above simulation. We are interested in examining the
differences of using and not using NAP initialization, and
hence the overheads of NAP are not counted at this point.
It can be seen that with NAP initialization, the numbers of
iterations required by subspace ACDC are reduced.
For SNR≥10 dB, an iterations saving of about 2/3 can be
observed for subspace ACDC. Moreover, SOBIUM is seen to
yield the best runtime and iteration performance. Hence,
we conclude that NAP-initialized subspace ACDC has its
edge on MSE performance, but is more expensive to apply.
To further confirm the performance advantage claim, we
show the MSE performance of the various algorithms
under different M in Fig. 9. We fix SNR¼ 10 dB. NAP-
initialized subspace ACDC is seen to yield better perfor-
mance once again.

We also look at a relatively detailed aspect: how does
NAP perform? Table 5 shows the average numbers of AP
iterations, the total runtimes spent by the multiple NAPs in
NAP-initialized subspace ACDC, and the success rate for
NAPs to identify a complete A. The settings are identical to
those in Table 4. We can see that NAP converges within 30
iterations, and that we have actually a success rate of 73%
for SNR≥10 dB, which is quite promising. However, we
should recognize that the computational times are rela-
tively high—it is low compared to TALS, but high compared
to SOBIUM; cf. Tables 4 and 5. There are two reasons. First,
unlike PAPA, we need to run NAP many times. Second, NAP
needs to solve a convex optimization problem at each AP
iteration. While the ADMM solver we employ to tackle the
problem is well known to be efficient in the context of
low-rank matrix recovery, a curious question still lies in
whether we can further reduce the complexity by devising
more specialized algorithms for NAP. We leave this as a
future direction.
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7. Conclusion

In this paper, we have established a Khatri–Rao sub-
space framework for blind identification of mixtures of
quasi-stationary sources. A particularly notable result lies
in the overdetermined case, where we have developed a
blind identification algorithm (PAPA, Algorithm 4) that can
provide significant computational performance edge over
the other algorithms especially for small to moderate
numbers of sources. The algorithm also shows competitive
estimation performance. Its computational advantage has
also been supported by theoretical analysis. For the under-
determined case, we have developed another algorithm
(NAP-initialized subspace ACDC, Algorithm 3) that yields
good estimation performance by simulations. For both
cases, the key insight lies in using the Khatri–Rao subspace
to decouple the problem to column-wise BID problems,
which is easier to manage.
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Appendix A. Proof of Theorem 1

The proof of sufficiency is by contradiction. Suppose
that there exists a∈CN , a≠cak for any c≠0 and k∈f1;…;Kg,
such that an⊗a∈RðUsÞ. By the KR subspace identity (9), the
condition an⊗a∈RðUsÞ is equivalent to

an⊗a¼ ∑
K

k ¼ 1
αkan

k⊗ak; ð36Þ

for some α¼ ½α1;…; αK �∈CK , α≠0. We will show that (36)
does not hold whenever K ≤2N−2. Let P≤K be the number
of nonzero elements in α, and assume without loss of
generality that αk≠0 for k¼1,…,P, and αk ¼ 0 for
k¼ P þ 1;…;K . Moreover, by denoting

A1 ¼ ½a1;…; aminfP;Ng�∈CN�minfP;Ng;

A2 ¼ ½aminfP;Ngþ1;…;aP ; a�∈CN�ðP−minfP;Ngþ1Þ;

D1 ¼Diagðα1;…; αminfP;NgÞ;
D2 ¼Diagð−αminfP;Ngþ1;…;−αP ;1Þ;
and by devectorization, we can rewrite (36) as

A2D2A
H
2 ¼A1D1A

H
1 : ð37Þ

Eq. (37) implies that

rankðA2D2A
H
2 Þ ¼ rankðA1D1A

H
1 Þ: ð38Þ

For convenience, let r1 ¼ rankðA1D1A
H
1 Þ, r2 ¼ rankðA2

D2A
H
2 Þ. The matrix A1 has full column rank, as a direct

consequence of (A4). In addition, using the fact that all the
diagonal elements of D1 are nonzero, one can easily
deduce that r1 ¼ rankðA1Þ ¼minfP;Ng. Now, let us consider
two cases for r2, namely, P≤N and NoP≤2N−2. For P≤N,
where A2 ¼ a, we have r2 ¼ 1. The equality r1 ¼ r2 does not
hold except for P¼1, which reduces to the trivial case of
a¼ cak. For NoP≤2N−2, it can be verified that A2 is a
strictly tall matrix. Hence, we have r2≤N−1, and r1 ¼ r2
cannot be satisfied. The violation of r1 ¼ r2 in the above
two cases contradicts (36).

The proof of necessity is done by finding an A such that
K42N−2 and (36) holds. Consider a Vandemonde A
where each column ak takes the form

ak ¼ ½1; ejθk ;…; ejθkðN−1Þ�T≜bðθkÞ; ð39Þ
for which the angles θk∈½0;2πÞ satisfy θk≠θℓ for all k≠ℓ.
Such an A is always of full Kruskal rank [36], thereby
satisfying the premise (A4). Also, suppose that a takes the
form a¼ bðψÞ for some ψ , and that P ¼ 2N−1 (thus
K42N−2). Now, if we choose

θk ¼
2πðk−1Þ

N
; k¼ 1;…;N;

2πðk−N−1Þ
N

þ π

N
; k¼N þ 1;…;2N−1

8>><
>>:

ψ ¼ 2πðN−1Þ
N

þ π

N
;

then it can be verified that A1 and A2 are both unitary.
Subsequently, by setting α1 ¼⋯¼ αN ¼ 1, αNþ1 ¼⋯¼
α2N−1 ¼−1, we get both sides of (37) being equal to I. This
in turn means that (36) can be satisfied.

Appendix B. ADMM for problem (23)

In order to apply ADMM, we rewrite problem (23) as

min
vecðHÞ∈RðUsÞ;G

∥B−H∥2F þ γ∥G∥n

s:t: H¼G; ð40Þ
where we denote B≜αaaH for convenience, and G is a
splitting variable. According to the ADMM literature (e.g.,
[32]), the augmented Lagrangian of (40) is

~LðH;G;ΛÞ ¼ ∥B−H∥2F þ γ∥G∥n

þRefΛHðH−GÞg þ ρ

2
∥H−G∥2F ; ð41Þ

where Λ is the dual variable for the equality constraint
H¼G, and ρ is a penalty parameter for the augmented
term. Eq. (41) can be reexpressed as

~LðH;G;ZÞ ¼ ∥B−H∥2F þ γ∥G∥n þ ρ

2
∥H−G

þZ∥2F−
ρ

2
∥Z∥2F ; ð42Þ

where Z≜ð1=ρÞΛ. The idea of ADMM is to optimize (42)
using alternating optimization and gradient ascent; in
essence, we alternatingly solve the following two mini-
mization problems:

Hðkþ1Þ≔arg min
vecðHÞ∈RðUsÞ

~LðH;GðkÞ;ZðkÞÞ; ð43Þ

Gðkþ1Þ≔arg min
G

~LðHðkþ1Þ;G;ZðkÞÞ; ð44Þ

together with the update of the (scaled) dual variable Z by

Zðkþ1Þ≔ZðkÞ þ ðHðkþ1Þ−Gðkþ1ÞÞ: ð45Þ
There are many convergence results established for ADMM.
For example, in [32], it has been shown that HðkÞ−GðkÞ-0;
∥B−HðkÞ∥2F þ γ∥GðkÞ∥n-p⋆;ZðkÞ-Z⋆ as k-∞, where p⋆ is
the optimal objective value of (40). The solutions of (43) and
(44) are as follows. We note that (43) is an unconstrained
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least-squares problem (the subspace constraint can be
eliminated by substituting H¼ vec−1ðUsxÞ; x∈CK ), whose
solution is given by

Hðkþ1Þ≔
1

ρþ 2
vec−1fUsUH

s vecð2Bþ ρðGðkÞ−ZðkÞÞÞg: ð46Þ

Moreover, problem (44), which is given by

min
G

γ∥GðkÞ∥n þ
ρ

2
∥Hðkþ1Þ−Gþ ZðkÞ∥2F ; ð47Þ

is a proximal minimization problem. This problem arises
frequently in low-rank matrix recovery [28,29] and its
solution is well known to be that of singular value thresh-
olding (SVT) [37], i.e.

Gðkþ1Þ ¼UDiagðdÞVH ; ð48Þ
where we have the SVD Hðkþ1Þ þ ZðkÞ ¼UΣVH , and
di ¼maxf0;Σii−γ=ρg; i¼ 1;…;K .
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