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Abstract—The dictionary-aided sparse regression (SR) ap-
proach has recently emerged as a promising alternative to hy-
perspectral unmixing in remote sensing. By using an available
spectral library as a dictionary, the SR approach identifies the
underlying materials in a given hyperspectral image by selecting
a small subset of spectral samples in the dictionary to represent
the whole image. A drawback with the current SR developments
is that an actual spectral signature in the scene is often assumed
to have zero mismatch with its corresponding dictionary sample,
and such an assumption is considered too ideal in practice. In
this paper, we tackle the spectral signature mismatch problem by
proposing a dictionary-adjusted nonconvex sparsity-encouraging
regression (DANSER) framework. The main idea is to incorporate
dictionary-correcting variables in an SR formulation. A simple
and low per-iteration complexity algorithm is tailor-designed for
practical realization of DANSER. Using the same dictionary-
correcting idea, we also propose a robust subspace solution for
dictionary pruning. Extensive simulations and real-data experi-
ments show that the proposed method is effective in mitigating the
undesirable spectral signature mismatch effects.

Index Terms—Compressive sensing (CS), dictionary mismatch,
robust dictionary pruning, semiblind hyperspectral unmixing
(HU), �p quasi-norm sparsity promoting.

I. INTRODUCTION

HYPERSPECTRAL unmixing (HU) aims at decomposing
pixels of a hyperspectral image (HSI) into constituent

spectra that represent some pure materials. HU is useful in
a number of applications, such as environment surveillance,
agriculture, mine detection, and food and medicine analytics.
As one of the core developments in signal and image processing
for HSIs, various HU algorithms have been developed in the
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past two decades from different perspectives, such as Bayesian
inference, nonnegative matrix factorization, convex analysis,
pure-pixel pursuit, and many more (see, e.g., [2] and [3] for
recent overviews).

Recently, a class of HU algorithms based on spectral libraries
has attracted much attention. A spectral library is a collection
of spectral signatures of materials acquired in controlled or
ideal environments, e.g., in laboratories. There are several pub-
licly available libraries, provided by government agencies and
research institutes. For example, the U.S. Geological Survey
(USGS) library [4] contains remotely sensed and extracted
spectral signatures of over 1300 materials. Such rich knowledge
of materials’ spectra in the existing libraries provides new op-
portunities for HU. By using an existing library as a dictionary
and by assuming the linear mixture model, we can treat HU
as a problem of selecting a small number of spectra from the
dictionary to represent all of the pixels. Such a dictionary-
aided semiblind formulation is fundamentally identical to the
well-known basis selection or sparse regression (SR) problem
in compressive sensing (CS), and thus, many well-developed
tools from CS can be applied. Fundamentally, there are several
advantages with dictionary-aided semiblind HU. First, unlike
many blind HU approaches (which do not use dictionaries),
dictionary-aided methods do not require assumptions such
as the pure-pixel assumption and the sum-to-one abundance
conditions. Second, dictionary-aided methods may not require
knowledge of the number of materials contained in the HSIs.

Several dictionary-aided HU algorithms based on SR were
proposed in [5]–[8]. The algorithms in [5] and [6], [7] treat the
HU problem as a single-pixel-based SR problem and a multiple-
pixel-based collaborative SR (CSR) problem, respectively.
Classic �1 norm and �2/�1 mixed-norm minimization-based
sparse optimization methods are employed to tackle the
formulated problems there. The corresponding optimization
problems are convex and thus can be solved efficiently, e.g.,
by some specialized alternating direction method of multipliers
(ADMM) based algorithms [9]. Readers are also referred to
the literature such as [10]–[15] for concurrent developments of
SR in dictionary-aided semiblind HU. Three main difficulties
have been observed when applying the SR and CSR algorithms,
however, [5]–[7]: first, the spectral library members (i.e., the
recorded material spectra) exhibit very high mutual coherence.
As is known in CS [16]–[19], high mutual coherence may lead
to poor performance when applying �1 norm and �2/�1 mixed-
norm minimization-based sparse optimization. Second, the
size of a spectral library is often very large. Consequently, we
are faced with a large-scale problem, for which computational
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efficiency becomes an issue. Third, there may be mismatches
between the actual spectral signatures in the scene and the
dictionary samples due to various reasons. Such dictionary
mismatches can adversely affect the performance of a
dictionary-aided semiblind HU algorithm.

The first two difficulties mentioned previously have been
tackled by employing a dictionary-pruning method based on
multiple signal classification (MUSIC) [8]. MUSIC is a clas-
sical subspace method in sensor array processing [20] and
recently finds its application in CS [21]. In dictionary-aided
semiblind HU, MUSIC proves to be useful in preselecting some
relevant spectra from a large spectral library. As a result, a
size-reduced dictionary can be constructed for the SR and CSR
algorithms to perform semiblind HU. After dictionary pruning,
both the mutual coherence of the dictionary and the complexity
of the subsequent semiblind HU algorithm can be reduced.

However, the third difficulty, spectral signature mismatches,
is still not addressed. In practice, the mismatch problem arises
for several reasons. First, the materials’ spectra may vary from
time to time and from site to site, subject to diverse physical
conditions, e.g., strength of sunlight and temperature [22], [23].
Second, the calibration procedure for spectral signatures may
introduce errors. Third, the spatial resolutions of spectra in the
dictionary can be different from those of the image, and that
can also result in modeling errors. Spectral mismatches can
result in rather damaging effects on the existing semiblind HU
algorithms; in particular, MUSIC-based dictionary pruning is
sensitive to spectral signature mismatches, as will be seen in
the simulations.

Contributions: In this paper, we propose a dictionary-aided
HU framework that takes spectral signature mismatches into
consideration. Our first contribution lies in developing a new
dictionary-aided HU algorithm. The formulation leading to
the new algorithm uses insights of CSR but has two key
differences: 1) we model spectral signature mismatches as
bounded error vectors and attempt to compensate those errors
in the formulation. 2) We employ the nonconvex �2/�p (0 <
p < 1) quasi-norm as the sparsity-promoting function, instead
of the convex �2/�1 mixed-norm as in CSR [7]. The second
endeavor is motivated by the fact that quasi-norm-based sparse
optimization has been demonstrated to exhibit better sparsity-
promoting performance in certain difficult situations, e.g., the
high-coherence dictionary case [24]–[26]. Since our formula-
tion considers dictionary adjustment, it is more complicated
to handle than the previous CSR work. We derive the new
algorithm by a careful design of alternating optimization, and
its upshot is that the solution update at each iteration involves
simple matrix operations.

The second contribution is a spectral mismatch-robust solu-
tion to dictionary pruning. We give a robust MUSIC formula-
tion, wherein the goal is to identify spectral signature samples
that are close to the true materials’ signatures, rather than being
exactly equal. At first look, the robust MUSIC method seems to
be computationally expensive; specifically, for every dictionary
sample, we need to solve an optimization problem. We show
that, however, the optimization problem in robust MUSIC can
be converted to a single-variable optimization problem and
solved with a very low computational cost. Simulations and

real-data experiment are used to show the effectiveness of the
proposed algorithm.

The robust MUSIC approach was presented at IEEE
WHISPERS 2014 [1]. In this journal version, we additionally
include the proof of the optimality of robust MUSIC. Also, the
dictionary-adjusted sparse HU algorithm is completely new.

Related Works: While the topic of CS and SR has received
enormous attention in various fields, there are comparatively
fewer works that study SR in the presence of dictionary mis-
matches. Those works usually appear in signal processing, and
the application is not HU. In [27], perturbations of dictionaries
were modeled as Gaussian noise, and an �1-norm regularized
total least squares criterion was proposed; there, the focus was
the single-measurement vector case (or the single-pixel case
in our problem), and constraints on the unknowns were not
considered. In [28] and [29], dictionary perturbations were
modeled as scaling factors on each dictionary atom, and the
formulated problem is convex. The algorithm in [30] attacked
the dictionary mismatch problem in CSR-based direction-of-
arrival finding. There, the mismatch was characterized by a
subspace of a structured matrix, and the optimization surrogates
there are also convex �2/�1 norm and its smoothed counterparts.
We also note that �p quasi-norm-based SR was applied to HU
for single-pixel-based unmixing without considering dictionary
mismatches [31]. Here, our focus is CSR using multiple pix-
els, which is known to have both theoretical and practical
advantages over the single-pixel-based algorithms; we adopt
the nonconvex �2/�p quasi-norm, where 0 < p < 1, as our
sparsity-promoting function, since it has proven to show better
performance in various applications; and we model spectral
mismatches as deterministic bounded errors, which does not
require statistical assumptions and may be more flexible.

Notation: The notations x ∈ R
n and X ∈ R

m×n mean that
x and X are a real-valued n-dimensional vector and a real-
valuedm× n matrix, respectively. The notationx ≥ 0 (respec-
tively, X ≥ 0) means that x (respectively, X) is elementwise
nonnegative. The ith column of a matrix X ∈ R

m×n is denoted
by xi ∈ R

m, and the jth row of X is denoted by xj . The
superscripts “T ,” “−1,” and “†” stand for the transpose, matrix
inverse, and matrix pseudoinverse, respectively. The orthogonal
projectors onto the range space of X and its orthogonal com-
plement are denoted by PX = X(XTX)†XT and P ⊥

X =
I − PX , respectively. The �p norm of a vector x ∈ R

n (p ≥
1) is denoted by ‖x‖p = (

∑n
i=1 |xi|p)1/p. The �p quasi-norm

(0 < p < 1) is denoted by the same aforementioned notation.
The mixed �p/�q norm or �p/�q quasi-norm is denoted by
‖X‖q,p =)

∑m
i=1 ‖xi‖pq)1/p. The Frobenious norm is denoted

by ‖X‖F = ‖X‖2,2.

II. BACKGROUND

A. Signal Model and Dictionary-Aided Semiblind HU

Consider a remotely sensed scene that is composed of mix-
tures of N different materials. Assuming linear mixtures, the
measured HSI can be modeled as

y[�] =

N∑
n=1

ansn[�] + v[�], � = 1, . . . , L (1)
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where y[�] ∈ R
M denotes the hyperspectral measurement at the

�th pixel of the image, with M being the number of spectral
bands; each an ∈ R

M , n = 1, . . . , N , represents the spectral
signature of a particular material, indexed by n here; sn[�] ≥ 0
is the abundance of material n at pixel �; v[�] ∈ R

M is a noise
vector; and L is the number of pixels. For convenience, we will
write (1) in a matrix form

Y = AS + V (2)

where Y = [y[1], . . . ,y[L]], A = [a1, . . . ,aN ], S =
[s[1], . . . , s[L]], s[�] = [s1[�], . . . , sN [�]]T , and V =
[v[1], . . . ,v[L]].

In HU, we aim by identifying A and S from Y . This
amounts to a blind separation problem where hyperspectral
signal-specific properties—such as pure pixel and sum-to-one
abundance conditions—are often utilized to attack the problem
in many existing and concurrent HU studies. Dictionary-aided
semiblind HU takes a different strategy. Motivated by the fact
that many spectral libraries (e.g., the USGS library [4]) have
been built in the past decades, its principle is to use one such
spectral library as a dictionary to infer what are the underlying
spectral signatures, and hence materials, in the scene. To put
this into context, define

D = [d1, . . . ,dK ] ∈ R
M×K

as a spectral dictionary, where each dk ∈ R
M is a previously

recorded spectral sample for a specific material and K denotes
the dictionary size or the number of spectral samples. A dic-
tionary often contains a wide variety of samples of materials,
and as such, K is large. The key assumption with dictionary-
aided semiblind HU is that the dictionary covers the spectral
signatures of all materials in the scene; that is to say

an ∈ {d1, . . . ,dK}, for every n = 1, . . . , N.

Alternatively, we can write, for each n = 1, . . . , N

an = dkn
, for some kn ∈ {1, . . . ,K}. (3)

Consequently, the signal model in (2) can be written as

Y = DC + V (4)

whereC ∈ R
K,L is a row-sparse matrix; to be specific, the knth

row of C , n = 1, . . . , N , is the kth row of S, and the other rows
of C are all zeros.

Let us consider the SR approach—currently the main ap-
proach for dictionary-aided semiblind HU. The idea is to ex-
ploit the sparsity of C , thereby attempting to recover the indices
k1, . . . , kn correctly and the abundance matrix S accurately.
There is more than one way to formulate such a sparse pro-
moting problem (see, e.g., [2], [3], and the references therein),
and here, we are interested in the CSR formulation [7], [8]. The
CSR formulation is given as follows:

min
C∈RK×L

‖Y −DC‖2F + λ‖C‖2,1

s.t. C ≥ 0 (5)

for some prespecified constant λ > 0. Here, notice that
‖C‖2,1 =

∑K
i=1 ‖ci‖2, which aims at promoting row-sparsity

of C. As can be seen in Problem (5), CSR seeks to find a
nonnegative row-sparse C that provides a good approximation
to Y = DC. Problem (5) is convex, and a fast algorithm based
on ADMM has been derived for Problem (5) [7].

B. Dictionary Pruning Using the Subspace Approach

As discussed in the introduction, large dictionary size and
high mutual coherence with the dictionary are two main diffi-
culties encountered in CSR and other SR methods, and these
two difficulties may be circumvented by applying dictionary
pruning. Here, we are interested in a subspace-based dictionary-
pruning method called MUSIC [8]. This subspace method may
be best described by studying the noiseless case Y = AS. Let
US ∈ R

M×N denote a matrix that contains the first N left
singular vectors of Y . It can be shown that, in the noiseless
case and under some mild assumptions,1 we have

P⊥
US

dk = 0 ⇐⇒ dk = akn
for some n ∈ {1, . . . , N}. (6)

The physical meaning of (6) is that, if a spectral sample dk in
the dictionary is also one of the spectral signatures in the scene,
then it must be perpendicular to the orthogonal complement
signal subspace. Also, the converse is true. From an algorithm
viewpoint, the aforementioned observation suggests that we can
correctly identify the indices k1, . . . , kN by the simple closed-
form equations at the left-hand side (LHS) of (6)—at least in
the noiseless case.

In practice, where noise is present, the LHS of (6) may not
be exactly all zero. Under such circumstances, the following
procedure can be used to estimate k1, . . . , kN .

1) For k = 1, . . . ,K , calculate

γMUSIC(k) =
dT
kP

⊥
US

dk

‖dk‖22
. (7)

2) Determine Λ̂={k̂1, . . . , k̂N} such that, for n=1, . . . , N ,
we have γMUSIC(k̂n) < γMUSIC(j) for all j �∈ Λ̂.

The aforementioned procedure is known as MUSIC [8], [21].
Also, note that we may use some other hyperspectral subspace
identification algorithms, e.g., HySiMe [32], to estimate the
signal subspace matrix US from the noisy Y . MUSIC can, in
principle, be used to perform dictionary-based semiblind HU.
However, because of its sensitivity to colored noise and mod-
eling error that are usually present in real data, it is used as
a preprocessing algorithm for CSR (or other SR methods) in
practice. Specifically, MUSIC is used to discard a large num-
ber of spectral samples that yield large residuals γMUSIC(k).
The remaining spectral samples then form a (much) smaller
dictionary for CSR to operate. Such a dictionary-pruning proce-
dure has been found to be able to improve the HU performance
and speed up the process quite significantly (see [8] for details).

1Specifically, we require that S has full row rank and that spark(D)>N+1,
where spark(X) = r + 1 means that r is the smallest number such that any r
columns of X are linearly independent. Intuitively, these requirements mean
that the abundance maps of the different materials are sufficiently different and
that any N spectral samples in the dictionary are sufficiently different.
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III. PROPOSED APPROACH

The crucial assumption with dictionary-aided semiblind HU
is that there are no spectrum mismatches, i.e., we can always
find a dictionary sample that exactly matches an actual spectral
signature in the scene [cf., (3)]. As discussed in the introduc-
tion, this may be not the case in reality. In this section, we
will propose a dictionary-aided semiblind HU that takes into
account the presence of spectrum mismatches.

A. Dictionary-Adjusted Nonconvex Sparsity-Encouraging
Regression (DANSER)

We assume the following spectrum mismatch model in place
of (3):

dkn
= an + εn, n = 1, . . . , N (8)

for some εn ∈ R
M that characterizes the mismatch between

the presumed and actual spectra of each material. In particular,
every spectral error εn is assumed to be bounded, i.e.,

‖εn‖2 ≤ δ, n = 1, . . . , N

for some δ > 0. Physically, our model assumes that the dictio-
nary still covers all of the actual spectral signatures in the scene,
but their “best matched” spectral samples in the dictionary are
subject to certain perturbations. Also, such perturbations do not
go worse than δ2 in terms of magnitude.

Our rationale is to adjust the dictionary in the CSR formula-
tion. Specifically, we write

d′
k = dk + ek, k = 1, . . . ,K

where each ek ∈ R
M is a dictionary correction variable, and

we assume ‖ek‖2 ≤ δ. Following the CSR formulation in (5),
we propose a new formulation as follows:

min
D′∈RM×K ,C∈RK×L

1

2
‖Y −D′C‖2F + λ‖C‖p2,p

s.t. ‖d′
k − dk‖2 ≤ ε, k = 1, . . . ,K,

C ≥ 0 (9)

where 0 < p < 1, λ > 0, and ε > 0 are prespecified, and note
that ‖C‖p2,p =

∑K
i=1 ‖ci‖

p
2. Comparing the original CSR for-

mulation in (5) and the aforementioned formulation, we see two
differences. First, Problem (9) adjusts the dictionary to attempt
to neutralize the spectrum mismatches. Second, Problem (9)
employs a nonconvex row-sparsity-promoting function ‖C‖p2,p.
The reason is that nonconvex �p quasi-norms may exhibit
better sparsity-promoting performance than the �1-norm, as
reported in the sparse optimization context [24], [26], [33], and
we endeavor to explore such an opportunity to improve SR
performance in the HU application. The formulation in (9) or
its variants will be called DANSER in the sequel.

B. Efficient Algorithm for DANSER

Having expressed the DANSER formulation in the last sec-
tion, we turn our attention to algorithm design for DANSER.

A simple approach to handle DANSER is to apply alternating
optimization: fix D′ and optimize Problem (9) with respect to
(w.r.t.) C at one time, fix C and optimize Problem (9) w.r.t.
D′ at another time, and repeat the aforementioned cycle until
some stopping criterion holds. While this approach is doable,
our algorithm design experience is that it can lead to a compu-
tationally expensive algorithm. For instance, the optimization
of Problem (9) w.r.t. D′ involves joint adjustment of all of the
dictionary samples in an inseparable manner, which is computa-
tionally involved for large dictionary sizes. Also, the nonconvex
row-sparsity-promoting function ‖C‖p2,p used in Problem (9) in-
troduces difficulties in the optimization of Problem (9) w.r.t. C.

In view of the aforementioned issues, we formulate a modi-
fied version of Problem (9)

min
D′,H,C

1

2
‖Y −HC‖2F+

μ

2
‖H−D′‖2F+λ

K∑
k=1

(
‖ck‖22+τ

)p
2

s.t. ‖d′
k − dk‖2 ≤ ε, k = 1, . . . ,K,

C ≥ 0 (10)

where μ, τ > 0 and H is a slack variable. In particular, it can
be verified that, if μ = +∞ and τ = 0, then Problem (10) and
Problem (9) are essentially the same. It should be noted that we
have applied the variable splitting technique in Problem (10)
(specifically, to the variableC), which is a commonly used trick
in contexts such as image reconstruction [34]–[36].

The modified DANSER formulation in (10) can be handled
in a low per-iteration complexity fashion. To describe it, let us
first consider the following lemma [37]–[39].

Lemma 1: Let φp(w) = ((2 − p)/2)((2/p)w)p/(p−2) + τw,
where 0 < p < 2 and τ > 0. The function φp(w) is strictly
convex on w ≥ 0. Also, φp(w) satisfies the following identity:

(x2 + τ)
p
2 = min

w≥0
w · x2 + φp(w)

and the solution to the aforementioned problem is uniquely
given by

wopt =
p

2
(x2 + τ)

p−2
2 . (11)

By Lemma 1, Problem (10) can be equivalently expressed as

min
H,C,D′,{wk}

1

2
‖Y −HC‖2F +

μ

2
‖H −D′‖2F

+ λ
K∑

k=1

(
wk

∥∥ck∥∥2
2
+ φp(wk)

)
s.t. ‖d′

k − dk‖2 ≤ ε, k = 1, . . . ,K,

C ≥ 0, wk ≥ 0, k = 1, . . . ,K. (12)

Now, our strategy is to perform alternating optimization w.r.t.
H , D′, {wk}, c1, . . . , cK . As we will see soon, the merit of
doing so is that every update admits a computationally light
solution.

First, we examine the optimization w.r.t. H . One can easily
see that the solution is

H := (μD′ + Y CT )
(
CCT + μI

)−1
. (13)
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Second, the optimization w.r.t.D′ is separable w.r.t. d′
1, . . . ,d

′
K;

i.e., for k = 1, . . . ,K , we have

min
d′
k

‖d′
k − hk‖22

s.t. ‖d′
k − dk‖2 ≤ ε. (14)

Problem (14) is a projection problem, and the solution is

d′
k :=

{
hk, ‖hk − dk‖2 ≤ ε

dk + ε hk−dk

‖hk−dk‖2 , otherwise.
(15)

Third, to obtain the solution w.r.t. ck, let us first rewrite the
optimization w.r.t. C as

min
C

∥∥∥Ỹ − H̃C
∥∥∥2
F

s.t. C ≥ 0

where

Ỹ =

[√
1
2Y

0

]
H̃ =

[ √
1
2H

Diag(θ)

]

and θ := [
√
w1λ, . . . ,

√
wKλ]T . Then, the subproblem w.r.t. ck

can be expressed as

min
ck

∥∥∥Ỹ k − h̃kc
k
∥∥∥2
F

s.t. ck ≥ 0 (16)

where

Ỹ k =

[√
1
2Y −

∑
j �=k

√
1
2hjc

j

0

]
h̃k =

[ √
1
2hk√

wkλfk

]

in which fk is the kth column of the K ×K identity matrix.
Problem (16) is known to have a simple solution [40], [41],
given by

(ck)T :=

⎛
⎜⎝
[
Ỹ

T
H̃

]
:,k

−CT
[
H̃

T
H̃

]
:,k

+(ck)T
[
H̃

T
H̃

]
k,k[

H̃
T
H̃

]
k,k

⎞
⎟⎠
+

(17)

where (x)+ = max{0, x}. Notice that using the update (17)

is desirable: the large matrix products Ỹ
T
H̃ and H̃

T
H̃ both

only need to be calculated once before updating c1, . . . , cK .
Finally, by Lemma 1, the solution w.r.t. {wk} is

wk =
(p
2

) (
‖ck‖22 + τ

) (p−2)
2 , k = 1, . . . ,K. (18)

The alternating optimization process described previously is
summarized in Algorithm 1, and we simply call it DANSER.
The DANSER algorithm has the following solution conver-
gence guarantee.

Proposition 1: Every limit point of the solution sequence
produced by DANSER (Algorithm 1) is a stationary point of
Problem (10).

The proof of the aforementioned proposition is relegated to
Appendix A. Proposition 1 indicates that, although we have
been dealing with Problem (10) indirectly, a stationary point

of Problem (10) may be expected. Following Proposition 1, we
can stop DANSER by checking the relative or absolute change
of the solutionC . Notice that, since Problem (10) is nonconvex,
a good initialization would help DANSER converge to a better
solution. In practice, one can use the CSR solution mentioned
in Section II-A to initialize DANSER.

Remark 1: By analyzing the per-iteration complexity of
DANSER, one can verify that the complexities of many opera-
tions scale with K (i.e., the size of the dictionary) or higher.
For example, to solve (13), the operations CCT and Y CT

cost O(K2L) and O(MKL) flops, respectively, and the matrix
inversion requires O(K3) flops. Plus, although solving the
problems w.r.t. ck is easy, these procedures have to be repeated
K times at each iteration. Practically, it is therefore motivated to
use a dictionary with a smaller size, or, to prune the dictionary
in advance. However, due to the existence of spectral signature
mismatches, directly applying MUSIC as in [8] for this pur-
pose is not appropriate any more. To address this problem, a
robust dictionary-pruning method will be proposed in the next
section.

C. Robust MUSIC for Dictionary Pruning

Consider the MUSIC procedure back in Section II-B. In
particular, recall that the metric

γMUSIC(k) =
dT
kP

⊥
US

dk

‖dk‖22
(19)
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should yield a small value when dk exactly matches an actual
spectral signature in the scene, and this property has been used
as the way to prune the dictionary in the MUSIC procedure.
Now, in the presence of dictionary mismatches, we propose to
replace (19) by the following robust MUSIC (RMUSIC) metric

γRMUSIC(k) = min
ξ∈RM

(dk − ξ)TP⊥
US

(dk − ξ)

‖dk − ξ‖22
(20a)

s.t. ‖ξ‖2 ≤ ε (20b)

where ε > 0 is prespecified. The idea is the same as the
DANSER development in the aforementioned sections—adjust
the dictionary to find a better match, this time in a subspace
sense.

The key issue with realizing RMUSIC lies in solving Prob-
lem (20). Problem (20) is a single-ratio fractional quadratic
program, which is quasi-convex and can be solved, e.g., by
the Dinkelbach algorithm or its variants [42], [43]. While this
means that we can implement RMUSIC by applying some
existing optimization algorithms, we have to solve K such
quasi-convex problems—which is still inefficient for large K .
However, by carefully examining the problem structure, we find
that this particular problem can be solved quite easily. To see
this, let us re-express γRMUSIC(k) as

γRMUSIC(k) = min
‖ξ‖2≤ε

∥∥P ⊥
US

(dk − ξ)
∥∥2
2

‖P⊥
US

(dk − ξ)‖22 + ‖PUS
(dk − ξ)‖22

= min
‖ξ‖2≤ε

η2k(ξ)

η2k(ξ) + 1
(21)

where we recall thatPUS
= USU

T
S is the orthogonal projector

onto the range space of US and

ηk(ξ) =

∥∥P ⊥
US

(dk − ξ)
∥∥
2

‖PUS
(dk − ξ)‖2

. (22)

Since the objective function of (21) is a monotonically increas-
ing function of η2(ξ) ∈ [0,∞), computing γRMUSIC(k) is the
same as finding the minimal value of ηk(ξ) subject to ‖ξ‖2 ≤ ε.
Let us denote

η�k = min
‖ξ‖2≤ε

∥∥P⊥
US

(dk − ξ)
∥∥
2

‖PUS
(dk − ξ)‖2

. (23)

We show the following.
Proposition 2: The optimal value of Problem (23) can be

found by solving a single-variable problem

η�k = min
0≤θ≤ε

∣∣‖P⊥
US

dk‖2 − θ
∣∣

‖PUS
dk‖2 +

√
ε2 − θ2

. (24)

The proof of Proposition 2 is relegated to Appendix B. The
message revealed here is quite intriguing—the originally quasi-
convex problem can be recast as a simple single-variable
problem that can be easily solved, e.g., by grid search or
bisection. Practically, this means that the RMUSIC strategy can
be implemented quite efficiently.

As in the previous MUSIC work [8], we use RMUSIC to
perform dictionary pruning for DANSER. Specifically, we use

RMUSIC to select a number of K̃ (K̃ < K) spectral samples
from D, form a size-K̃ dictionary, denoted by D̃ here, and then
use D̃ as a pruned dictionary to run DANSER. We summarize
this procedure in Algorithm 2, and we call the procedure
RMUSIC-DANSER.

IV. COMPUTER SIMULATIONS

In this section, we use synthetic HSIs to show the effective-
ness of the proposed approach. In our simulations, the “ground-
truth” spectra are randomly selected from a subset of the USGS
library that has 332 spectral signatures; in this subset, the
angles between any two endmembers are larger than 3◦, and the
2-norms of the endmembers are larger than one. The “available
dictionary” D is formed by the same subset of spectra, but a
perturbation (i.e., ek for k = 1, . . . ,K) is intentionally added
to each spectrum. To quantify the “mismatch level” of the
available dictionary, we define the dictionary to modeling error
ratio (DMER) as follows:

DMER(dB) = 10 log10
(
‖dk�‖22/δ2

)
where k�=argmink=1,...,K‖dk‖2 and δ=maxk=1,...,K‖ek‖2.
The perturbation terms are first generated following a zero-
mean i.i.d. Gaussian distribution and then scaled such that the
DMER is satisfied. The abundances are generated following
the uniform Dirichlet distribution. Throughout this section, we
set the number of pixels to be L = 5 000. We also define the
signal-to-noise ratio (SNR) as SNR =

∑L
�=1 ‖As[�]‖22/MLσ2

to quantify the noise level, where σ2 denotes the variance of
the additive noise, which is also assumed to be zero-mean i.i.d.
Gaussian. The choice of the parameter ε is as follows:

ε =
1− α

1 + α
‖dk�‖2 (25)

where α ∈ [0, 1] is given. The parameter α controls the normal-
ized correlation between the RMUSIC/DANSER-resulted dic-
tionary member dk − ξ and the original dictionary member dk.
Specifically, under ‖ξ‖2 ≤ ε, it can be shown that the choice
of ε in (25) leads to (dk� − ξ)Tdk�/‖dk� − ξ‖2‖dk�‖2 ≥ α;
the derivation is shown in Appendix C. Note that ε need not
be identical across different dictionary members under the
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Fig. 1. Projection residues of MUSIC and RMUSIC.

Fig. 2. 2-norms of ck’s of CSR and DANSER. The black dash lines correspond
to the indices of the ground-truth materials’ spectra in the dictionary; for the
RMUSIC-pruned spectra, we set ‖ck‖2 = 0.

RMUSIC/DANSER framework: if some dictionary members
have larger spectral signature mismatches, larger ε’s may be
given to them.

Figs. 1 and 2 show an illustrative example. Fig. 1 shows the
residues of applying MUSIC and RMUSIC to prune the dictio-
nary D. Here, we randomly pick N = 6 spectra as the ground-
truth materials and then use the described dictionary D to
observe the performance of MUSIC and RMUSIC. The param-
eter of RMUSIC is set to be α = 0.85, and we set DMER =
20 dB and SNR = 35 dB in this case. We see that MUSIC has
difficulty in distinguishing several ground-truth spectra from
the other dictionary members (to be precise, the third and fourth
materials’ spectra), but RMUSIC can clearly differentiate the
same spectra from the irrelevant spectra. Fig. 2 compares the
unmixing performance of DANSER and CSR using the same
case, where the pruned dictionary with 40 spectra is obtained by
RMUSIC. Here, the CSR part is performed by the CLSUnSAL
algorithm [7], which is considered as a state of the art. For

Fig. 3. Detection probabilities of RMUSIC/MUSIC under various DMERs and
different α’s. SNR = 35 dB, N = 8, the pruned dictionary size is K̃ = 40,
and the original dictionary size K = 332.

DANSER, we set p = 0.5 and λ = 0.04 for this case. For
CSR, the regularization parameter is λ = 0.005. In this example
and the forthcoming simulations and real-data experiment, we
feed the solution of CSR to DANSER as initialization. We
see that RMUSIC-DANSER yields much row-sparser C than
that of RMUSIC-CSR, and all of the desired spectra have been
successively identified by DANSER.

In the following, we use Monte Carlo simulations to evaluate
the performance of the proposed algorithms. Two performance
discriminators will be used throughout this section. First, to
measure the dictionary-pruning performance, we define the
following detection probability:

Pr
{
Λ ⊂ Λ̂

}
where Λ = {k1, . . . , kN} denotes the index set that indicates
the ground-true spectra and Λ̂ ⊆ {1, . . . ,K} denotes an index
selection subset outputted by a dictionary-pruning algorithm.
Also, we will use K̃ to denote the size of the pruned dictionary.
Second, to measure the unmixing performance, we calculate in
the following the signal to reconstruction error (SRE) [5]–[7]:

SRE(dB) = 10 log10

⎛
⎜⎝ ‖S‖2F∥∥∥C − Ĉ

∥∥∥2
F

⎞
⎟⎠

where C is the true row-sparse abundance matrix (see (2) in
Section II-A), and Ĉ is the output of an unmixing algorithm.

In Fig. 3, we show the index set detection probabilities of
MUSIC and RMUSIC under various DMERs. In each trial,
N = 8 materials are randomly picked. The SNR in this simula-
tion is set to be 35 dB, and K̃ = 40 is employed. The results
are averaged from 1000 trials. One can see that MUSIC is
sensitive to dictionary mismatches even under high DMERs,
and MUSIC is not able to identify all of the true materials from
the dictionary. Generally, using RMUSIC with α = 0.85 and
0.95 both yield much better detection probabilities than MUSIC
under all DMERs. Interestingly, one can see that RMUSIC
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Fig. 4. Detection probabilities of RMUSIC/MUSIC under various DMERs and
different K̃’s (size of the pruned dictionary). α = 0.85, N = 8, the original
dictionary size K = 332, and SNR = 35 dB.

with α = 0.75 admits very good detection probabilities when
DMER ≤ 20 dB; however, when the DMER is higher, using a
small α leads to a slight performance degradation. The reason is
that a smaller α implies that one is allowed to adjust dk’s more
significantly in RMUSIC. Hence, several similar dk’s may be
confused with each other. Such a trend is more obvious with
smaller α—we see that RMUSIC with α = 0.55 and α = 0.65
cannot yield reasonable results when DMER gets higher. This
observation suggests that a more conservative choice of α
should be safer for implementing RMUSIC in practice.

Fig. 4 shows the detection probabilities of RMUSIC and
MUSIC under different K̃’s (the size of the pruned dictionary).
Setting K̃ to be small may be easier for the SR stage but
is considered more aggressive—some spectra corresponding
to the ground-truth materials may also be discarded. We see
that, when DMER ≥ 15 dB, RMUSIC with K̃ = 20 yields
higher detection probabilities than that of MUSIC with K̃ =
60, and that RMUSIC with a larger K̃ has a better detection
performance.

Figs. 5 and 6 show the performance of RMUSIC under
various SNRs and different number of underlying ground-truth
materials, respectively. From these figures, one can see how this
algorithm is scaled by different parameters.

Beginning from Fig. 7, we show the SRE performance of the
CSR-based HU algorithms. Specifically, we compare the SREs
yielded by the proposed RMUSIC-DANSER and by MUSIC-
CSR [8]. We also benchmark our algorithm using RMUSIC-
CSR for fairness, since we now have seen that RMUSIC
yields much better dictionary-pruning performance. In all of the
following simulations, we fix p = 0.5, μ = 105, and τ = 10−5

for DANSER, no matter how the simulation settings change; the
sparsity-controlling parameter λ’s for DANSER and CSR are
also fixed to be 0.5 and 0.1 unless specified. We stop DANSER
if ‖C(i) −C(i−1)‖F ≤ 10−5, where C(i) denotes the solution
at iteration i, or if the number of iterations reaches 5000. The
results in all of the following figures of this section are averaged
from 50 independent trials.

Fig. 5. Detection probabilities of RMUSIC under various DMERs and differ-
ent SNRs. α = 0.85, N = 8, the pruned dictionary size is K̃ = 40, and the
original dictionary size K = 332.

Fig. 6. Detection probabilities of RMUSIC under various DMERs and differ-
ent N ’s. α = 0.85, N = 8, the pruned dictionary size is K̃ = 60, the original
dictionary size K = 332, and SNR = 35 dB.

Fig. 7. SREs of the algorithms under different DMERs. α = 0.85, N = 8, the
pruned dictionary size is K̃ = 40, the original dictionary size K = 332, and
SNR = 35 dB.
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TABLE I
RUNTIMES (IN SECONDS) OF DANSER AND CSR UNDER VARIOUS

DMERS. α = 0.85, N = 8, THE PRUNED DICTIONARY SIZE IS K̃ = 40,
THE ORIGINAL DICTIONARY SIZE K = 332, AND SNR = 35 dB

Fig. 8. SREs of the algorithms under different N ’s. α = 0.85, N = 8, the
pruned dictionary size is K̃ = 40, the original dictionary size K = 332, and
SNR = 35 dB.

Fig. 7 shows the SREs of the algorithms under different
DMERs. We see that, under all DMERs, RMUSIC-DANSER
yields the highest SREs. We see that RMUSIC-CSR also con-
sistently yields better SRE performance than that of MUSIC-
CSR—this suggests that RMUSIC itself can help improve the
sparse unmixing performance. The runtime performance of
DANSER and CSR (i.e., CLSUnSAL) is shown in Table I as a
reference. We see that DANSER requires more time to converge
compared to CSR, since it also adjusts the dictionary during its
updates. Also, when the DMER gets higher, the convergence
speed of DANSER improves by 1/3. This intuitively suggests
that DANSER does put much effort on adjusting the dictionary
(i.e., updating H) when the DMER is low.

Figs. 8 and 9 show the performance of the algorithms under
different numbers of materials and SNRs, respectively. We see
that the results are similar to that in Fig. 7—the SRE perfor-
mance of RMUSIC-DANSER is consistently higher than the
other two under comparison. Note that, for the SNR = 25 dB
case, we change λ of DANSER and CSR to be 1 and 0.5,
respectively, to accommodate the situation where the data are
more severely corrupted.

Fig. 10 shows the SREs of the algorithms under different
values of K̃ . An interesting observation is that using K̃ = 20
yields much better unmixing performance than using K̃ = 60.
These results may shed some light on choosing K̃ in practice—
using a large K̃ may safely capture all of the true materials
in the pruned dictionary, but it may also degrade the unmixing
performance since the SR-type algorithms are, in general, in
favor of smaller K̃.

Fig. 9. SREs of the algorithms under different SNRs. α = 0.85, N = 8, the
pruned dictionary size is K̃ = 40, and the original dictionary size K = 332.

Fig. 10. SREs of the algorithms under different K̃s. α = 0.85, N = 8, the
original dictionary size K = 332, and SNR = 35 dB.

V. REAL-DATA EXPERIMENT

In this section, we test the algorithms on the AVIRIS Cuprite
data set which was captured in Nevada in 1997 (see http://aviris.
jpl.nasa.gov/html/aviris.freedata.html). This data set has been
studied for years, and the abundance maps of several promi-
nent materials are well recognized. The scene originally has
224 spectral bands between 0.4 and 2.5 μm, with a nominal
spectral resolution of 10 nm. Low SNR bands, i.e., bands 1–2,
105–115, 150–170, and 223–224, have been removed, resulting
in a total of 188 spectral bands. We take a subimage of the
whole data set, which consists of 250 × 191 pixels (see Fig. 11
for this subimage at spectral band 30). Like the previous
computer simulations, the dictionary chosen is a subset of
332 spectral signatures from the USGS library. It has been no-
ticed that there are calibration mismatches between the real im-
age spectra of this scene and the spectra available in the USGS
library [5]–[7]. Hence, we directly treat the 332 spectra from
USGS library as D that contains model mismatches—which
differs from the simulation in the last section.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 11. Band 30 (wavelength λ = 647.7 nm) of the subimage of AVIRIS
Cuprite Nevada data set that is used in the experiment of this section.

Fig. 12. (Top) Music and (bottom) RMUSIC residues of the real data.

We first apply RMUSIC and MUSIC on this data set. We
adopt the following way to evaluate the performance: from the
previous studies in [5]–[7], we know that alunite, budding-
tonite, chalcedony, and montmorillonite are prominent mate-
rials in this data set. Fig. 12 shows the residues obtained by
applying MUSIC (top) and RMUSIC (bottom). For RMUSIC,
we set α = 0.85. The red circles correspond to the library
members associated with alunite, buddingtonite, chalcedony,
and montmorillonite. For the real-data experiment, we see that
RMUSIC and MUSIC perform worse than in the simulated
cases due to various types of modeling error. We also see that
many other materials admit residue levels comparable to those
by the materials of interest. Nevertheless, we still find the result
by RMUSIC interesting: first, we see that the four endmembers
corresponding to the materials of interest indeed have small
RMUSIC residues. Second, the residues by RMUSIC can be
clearly separated into two groups, and the group with smaller
residues includes the spectra of the materials that we wish to
identify. Such a result is useful in practice: since the residues
associated with the spectra are clearly divided to two clusters, it
is easy to decide which spectra should be kept in the pruned

dictionary. In this experiment, we simply keep the spectra
below the green line, which is drawn by visual inspection,
and this results in a pruned dictionary with K̃ = 79 spectra.
Compared to the original size K = 332, RMUSIC successfully
reduces the dictionary size by 75% while preserving the spectra
associated with the prominent materials.

We follow the method in [5]–[7] to compare the abun-
dance map estimation results of RMUSIC-CSR and RMUSIC-
DANSER. We set the parameters of DANSER to be
(p, λ, μ, τ) = (0.5, 3, 103, 10−5) and the regularization param-
eter of CSR to be 0.01, respectively. Specifically, we plot the
classification maps yielded by the USGS Tetracorder software
[44] and the estimated abundance maps of alunite, budding-
tonite, chalcedony, and montmorillonite by RMUSIC-CSR and
RMUSIC-DANSER in Figs. 13–16. As mentioned in [5]–[7],
the classification maps are based on the older version Cuprite
data captured in 1995, while the HSI was captured in 1997,
which means that the details of the new data may not be fully
revealed by the classification maps—but it still makes a good
reference for visual evaluation. We see that, for alunite and
buddingtonite, RMUSIC-CSR and RMUSIC-DANSER yield
similar abundance maps. However, for chalcedony and mont-
morillonite, the abundances given by RMUSIC-DANSER gen-
erally have stronger intensities all over the area of interest.
In particular, the abundance map of chalcedony yielded by
RMUSIC-DANSER is visually observed to be closer to the
corresponding Tetracorder abundance map. Also, if we con-
sider a library member associated with c� such that ‖c�‖2 ≥
max�=1,...,L ‖c�‖2/100 as an “active endmember,” DANSER
and CSR were found to yield 15 and 19 active endmembers,
respectively, in this experiment. Following [7], we also observe
the average per-pixel number of endmembers yielded by the
algorithms, which is defined as N̂PP = (1/L)

∑L
�=1 |N�|, in

which N� = {k | ck[�] > 0.05}. In this experiment, N̂PP of
RMUSIC-CSR is 6.47, and that of RMUSIC-DANSER is 5.84.
These observations support our claim that using �p quasi-norm
yields sparser solution.

VI. CONCLUSION

In this paper, we have developed a dictionary-aided semib-
lind HU method that takes into account the spectral signature
mismatch problem. We have proposed a dictionary-adjusted
CSR formulation with a nonconvex collaborative sparsity-
promoting regularizer. By a careful reformulation, an alternat-
ing optimization algorithm with simple per-iteration updates
was proposed. A new dictionary-pruning algorithm based on a
spectral mismatch-robust MUSIC criterion was also proposed.
Simulations and real-data experiments showed that the pro-
posed algorithms are promising in improving the HU perfor-
mance compared to the prior works.

APPENDIX

A. Proof of Proposition 1

First, we claim that any limit point of the solution sequence
generated by the DANSER algorithm in Algorithm 1 is a
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Fig. 13. USGS Tetracorder abundance map (left) and estimated abundance maps of the alunite by RMUSIC-CSR and RMUSIC-DANSER, respectively.

Fig. 14. USGS Tetracorder abundance map (left) and estimated abundance maps of the buddingtonite by RMUSIC-CSR and RMUSIC-DANSER, respectively.

Fig. 15. USGS Tetracorder abundance map (left) and estimated abundance maps of the chalcedony by RMUSIC-CSR and RMUSIC-DANSER, respectively.

Fig. 16. USGS Tetracorder abundance map (left) and estimated abundance maps of the montmorillonite by RMUSIC-CSR and RMUSIC-DANSER, respectively.
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stationary point of Problem (12) (but not Problem (10) at
this moment). The claim is obtained by applying a general
alternating optimization (AO) result in [45, Prop. 2.7.1], which
says that every limit point of a solution sequence generated by
an AO algorithm is a stationary point of its tackled problem
if each partial optimization problem in AO is strictly convex
and has a continuously differentiable objective function within
the interior of its feasible set. In our case, one can see that the
partial optimizations of Problem (12) w.r.t. H , D′, c1, . . . , cK ,
and {wk} satisfy the aforementioned condition.

Second, we claim that a stationary point of Problem (12)
is also a stationary point of Problem (10). The proof is as
follows. For notational convenience, let X = [C,HT , (D′)

T
],

w = [w1, . . . , wK ]T , and denote

g(X,w) = h(X) + λ

K∑
k=1

(
wk

∥∥ck∥∥2
2
+ φp(wk)

)

f(X) = h(X) + λ

K∑
k=1

(
‖ck‖22 + τ

) p
2

as the objective functions of Problem (12) and Problem (10),
respectively, where

h(X) =
1

2
‖Y −HC‖2F +

μ

2
‖H −D′‖2F .

Also, recall from the development in Section III-B that

f(X) = min
w≥0

g(X,w).

Now, let (X�,w�) be a stationary point of Problem (12),
which, by definition, satisfies

(∇wg(X�,w�))T (w −w�) ≥ 0, ∀w ≥ 0 (26a)

Tr
(
(∇Xg(X�,w�))T (X −X�)

)
≥ 0, ∀X ∈ X (26b)

where ∇Xg(X,w) and ∇wg(X,w) denote the gradient of
g(X,w) w.r.t. X and w, respectively, and X denotes the
feasible set of X in Problem (12) or Problem (10). From (26a),
we observe that

g(X�,w�) = min
w≥0

g(X�,w) (27)

and the argument is as follows: g is strictly convex w.r.t.
w ≥ 0 by Lemma 1, and as a result of the optimality condi-
tions of convex optimization, (26a) holds if and only if w� is
the optimal solution to minw≥0 g(X

�,w). Equation (27) im-
plies that f(X�) = g(X�,w�). Consequently, we can rewrite
(26b) as

Tr
(
(∇Xf(X�))T (X −X�)

)
≥ 0, ∀X ∈ X .

The aforementioned equation is identical to the definition for
X� to be a stationary point of Problem (10). Hence, we have
proven that, for any stationary point (X�,w�) of Problem (12),
the part X� is a stationary point of Problem (10).

Finally, combining the aforementioned two claims leads to
the conclusion in Proposition 1.

B. Proof of Proposition 2

Recall that we aim at solving

min
‖ξ‖2≤ε

ηk(ξ) (28)

where

ηk(ξ) =

∥∥P⊥
US

(dk − ξ)
∥∥
2

‖PUS
(dk − ξ)‖2

. (29)

By the triangle inequality, we have

ηk(ξ) ≥
∣∣∥∥P ⊥

US
dk

∥∥
2
−
∥∥P ⊥

US
ξ
∥∥
2

∣∣
‖PUS

dk‖2 + ‖PUS
ξ‖2

(30)

where the aforementioned equality holds if and only if
1) P⊥

US
ξ = βP ⊥

US
dk, β ≥ 0 and 2) PUS

ξ = −αPUS
dk,

α ≥ 0. The two aforementioned conditions can be satisfied
simultaneously by setting

ξ = − α

‖PUS
dk‖2

PUS
dk +

β

‖P⊥
US

dk‖2
P⊥

US
dk (31)

for some α, β ≥ 0. Also, note that ‖ξ‖2 ≤ ε is equivalent to

α2 + β2 ≤ ε2. (32)

By substituting (31) into ηk(ξ) and by noting (32), we recast
Problem (28) as

min
α,β≥0

α2+β2≤ε2

∣∣∥∥P⊥
US

dk

∥∥
2
− β

∣∣
‖PUS

dk‖2 + α
. (33)

Consider two cases, namely, 1) ‖P⊥
US

dk‖2 ≤ ε2 and
2) ‖P⊥

US
dk‖2 > ε2. For case 1), the optimal β is β =

‖P⊥
US

dk‖2, and the optimal α may take any value in

[0,
√
ε2 − ‖P⊥

US
dk‖22]. For case 2), we observe the following:

fixing β and α should be made as large as possible so as
to reduce the objective value. Hence, we can substitute
α =

√
ε2 − β2 (the largest possible α fixing β) into Problem

(33) and simplify the problem to

η�k = min
0≤β≤ε

∣∣∥∥P⊥
US

dk

∥∥
2
− β

∣∣
‖PUS

dk‖2 +
√
ε2 − β2

(34)

which is exactly Problem (24).

C. On the Choice of ε in (25)

In this appendix, we discuss the rationale of the choice of ε
in (25). It can be verified that, for any ‖ξ‖2 ≤ ε, (25) implies

‖dk‖2 − ‖ξ‖2
‖dk‖2 + ‖ξ‖2

≥ α. (35)

By using the fact that

‖dk‖2 + ‖ξ‖2 ≥ ‖dk − ξ‖2

‖dk‖2 − ‖ξ‖2 ≤ ‖dk‖22 − dT
k ξ

‖dk‖2
=

dT
k )dk − ξ)

‖dk‖2
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which can be obtained by the triangle inequality and
Cauchy–Schwartz inequality, respectively, we see that (35)
implies

(dk − ξ)Tdk

‖dk − ξ‖2‖dk‖2
≥ α. (36)

Equation (36) suggests that the choice of ε in (25) ensures that
the dictionary endmember dk and its corrected version dk − ξ
must have their normalized correlation no less than α.
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