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Anchor-Free Correlated Topic Modeling
Xiao Fu∗, Kejun Huang∗, Nicholas D. Sidiropoulos, Qingjiang Shi, and Mingyi Hong

Abstract—In topic modeling, identifiability of the topics is an essential issue. Many topic modeling approaches have been developed
under the premise that each topic has a characteristic anchor word that only appears in that topic. The anchor-word assumption is
fragile in practice, because words and terms have multiple uses; yet it is commonly adopted because it enables identifiability
guarantees. Remedies in the literature include using three- or higher-order word co-occurence statistics to come up with tensor
factorization models, but such statistics need many more samples to obtain reliable estimates, and identifiability still hinges on
additional assumptions, such as consecutive words being persistently drawn from the same topic. In this work, we propose a new topic
identification criterion using second order statistics of the words. The criterion is theoretically guaranteed to identify the underlying
topics even when the anchor-word assumption is grossly violated. An algorithm based on alternating optimization, and an efficient
primal-dual algorithm are proposed to handle the resulting identification problem. The former exhibits high performance and is
completely parameter-free; the latter affords up to 200 times speedup relative to the former, but requires step-size tuning and a slight
sacrifice in accuracy. A variety of real text copora are employed to showcase the effectiveness of the approach, where the proposed
anchor-free method demonstrates substantial improvements compared to a number of anchor-word based approaches under various
evaluation metrics.

Index Terms—Topic Modeling, Identifiability, Anchor Free, Sufficiently Scattered, Non-convex Optimization, Nonnegative Matrix
Factorization
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1 INTRODUCTION
Topic modeling aims at discovering prominent topics ([dis-
tributions over] sets of words) from a collection of docu-
ments. Considerable effort has been expended in the data
mining and machine learning communities to come up with
effective and efficient topic models and algorithms, since
this basic text analytics task has a wide variety of applica-
tions in search engines, document categorization, and news
recommendation, to name a few.

In 2003, Blei et al. proposed a Latent Dirichlet Allocation
(LDA) model for topic mining [1], where the topics are mod-
eled as probability mass functions (PMFs) over a vocabulary
and each document is a mixture of the PMFs. Therefore, a
word-document text data corpus can be viewed as a matrix
factorization model. Under this model, posterior inference-
based methods and approximations were proposed [1], [2],
but identifiability issues—i.e., whether the matrix factors are
unique—were not considered. However, identifiability is an
essential issue when considering an estimation problem like
topic modeling, since it guarantees that there is no arbitrary
mixing of the topics which confounds interpretation.

In recent years, identifiable models, topic identification
criteria, and polynomial time solvable topic modeling al-
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gorithms have drawn considerable attention [3]–[10]. Most
of these approaches are essentially based on the so-called
separable nonnegative matrix factorization (NMF) model [11].
The key assumption that is relied upon is that every topic
has a characteristic anchor word that does not appear in the
other topics. The anchor word assumption is tantamount to
the separability assumption that is common in the context of
NMF. Under the anchor word assumption, the topic mining
problem boils down to a much more tractable problem—
i.e., anchor word search. Two major classes of approaches
have been proposed. The first class finds the anchor words
via linear programing [4], [6]; some sparse optimization-
based variants were also proposed [12]. Another class is
based on greedy pursuit [5], [7], [9], [10], [13], where the
algorithms pick out one anchor word at a time and use a
deflation procedure to avoid finding repeated anchor words.
The former class has serious scalability issues, as it lifts the
number of variables to the square of the size of vocabu-
lary (or documents). The latter, although computationally
very efficient, usually suffers from error propagation, if
at some point one anchor word is incorrectly identified.
Furthermore, since all the anchor word-based approaches
essentially convert topic identification to the problem of
seeking the vertices of a simplex, most of the above algo-
rithms require normalizing each data column (or row) by
its `1 norm. However, applying normalization at the topic
identification stage may destroy the good conditioning of
the data matrix and also has the risk of amplifying noise in
practice, so it is better to avoid it [7].

Unlike many NMF-based methods that work directly
with the word-document data, the approach proposed by
Arora et al. works on the word-word correlation matrix [8],
[9]. This way, the topic information is kept in a relatively
small matrix, which offers good scalability when dealing
with a large corpus—the size of the correlation matrix
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TABLE 1
Topics discovered by FastAnchor (left) and by the proposed algorithm (AnchorFree - right).

FastAnchor AnchorFree
anchor anchor

predicts slipping cleansing strangled tenday
allegations poll columbia gm bulls lewinsky gm shuttle bulls jonesboro
lewinsky cnnusa shuttle motors jazz monica motors space jazz arkansas
clinton gallup space plants nba starr plants columbia nba school

lady allegations crew workers utah grand flint astronauts chicago shooting
white clinton astronauts michigan finals white workers nasa game boys
hillary presidents nasa flint game jury michigan crew utah teacher
monica rating experiments strikes chicago house auto experiments finals students

starr lewinsky mission auto jordan clinton plant rats jordan westside
house president stories plant series counsel strikes mission malone middle

husband approval fix strike malone intern gms nervous michael 11year
dissipate starr repair gms michael independent strike brain series fire
president white rats idled championship president union aboard championship girls

intern monica unit production tonight investigation idled system karl mitchell
affair house aboard walkouts lakers affair assembly weightlessness pippen shootings

infidelity hurting brain north win lewinskys production earth basketball suspects
grand slipping system union karl relationship north mice win funerals
jury americans broken assembly lewinsky sexual shut animals night children

sexual public nervous talks games ken talks fish sixth killed
justice sexual cleansing shut basketball former autoworkers neurological games 13year

obstruction affair dioxide striking night starrs walkouts seven title johnson

remains the same (if the vocabulary size does not change)
even when the number of documents grows large. In addi-
tion, using the correlation matrix is more noise-robust since
it automatically averages out zero-mean noise. On the other
hand, [8], [9] did not relax the anchor-word assumption or
the need for normalization, and did not explore the symmet-
ric structure of the correlation matrix—i.e., the algorithms in
[8], [9] are essentially the same asymmetric separable NMF
algorithms as in [3], [5], [7].

The anchor-word assumption is reasonable in some
cases, but it can be violated in practice—e.g., when two
co-existing topics are closely related and many key words
overlap. Identifiable models without anchor words have
been considered in the literature, e.g., [14]–[17] make use
of third or higher-order statistics of the data corpus to
formulate the topic modeling problem as a tensor fac-
torization problem. There are two major drawbacks with
this approach: i) third- or higher-order statistics require a
lot more samples for reliable estimation relative to their
lower-order counterparts (second-order word co-occurrence
statistics); and ii) identifiability is guaranteed only when the
topics are uncorrelated—where a super-symmetric parallel
factor analysis (PARAFAC) model can be obtained [14], [15].
Uncorrelatedness is a restrictive assumption in practice [9]—
e.g., ‘politics’ and ‘economy’ are clearly correlated. When
the topics are correlated, the higher-order model amounts
to a Tucker model which requires further assumptions for
identifiability [16], [17].

Contributions. In this work, our interest lies in topic identi-
fication using second order statistics of words, i.e., the word-
word correlation matrix like in [8], [9], because of its noise
robustness. We propose an anchor-free identifiable model
and a practically implementable companion algorithm. Our
contributions are as follows:

First, we propose an anchor-free topic identification cri-
terion. The criterion aims at factoring the word-word corre-
lation matrix using a word-topic PMF matrix and a topic-
topic correlation matrix via minimizing the determinant of
the topic-topic correlation matrix. We show that under a so-
called sufficiently scattered condition, which is much milder

than the anchor-word assumption, the two matrices can be
uniquely identified by the proposed criterion. We emphasize
that the proposed approach does not need to resort to
higher-order statistics tensors to ensure topic identifiability.

Second, we propose a simple procedure for handling the
proposed criterion that only involves eigen-decomposition
of a large but sparse matrix and solving a determinant
maximization problem that has only a small number of
variables—therefore highly scalable and well-suited for
topic mining of very large corpora. We provide two dif-
ferent approaches for dealing with the determinant max-
imization problem: The first one is based on alternating
optimization—we ‘break down’ the optimization objective
to subproblems which are linear programs and solve them
cyclically. This way, there is no tuning parameter such as
step size. We also propose another novel algorithm for
expediting the anchor-free topic mining procedure. The
algorithm is based on a penalty-dual splitting (PDS) pro-
cedure. Compared to the simple alternating linear program
approach, the PDS algorithm needs more careful parameter
(e.g., step size) design and requires a more delicate variable
update strategy. On the other hand, PDS offers a 20∼200
times speed-up of the linear program-based algorithm with
a slight sacrifice in performance. We also show that the PDS
algorithm is guaranteed to converge to a stationary point
of the corresponding optimization problem. We carefully
design a set of experiments using three different text copora,
namely, the Reuters-21578, TDT2, and RCV1, to showcase
the effectiveness of the proposed approach.

A sneak peak of the performance of the proposed ap-
proach (AnchorFree) is shown in Table 1, where we compare
the topics discovered by our algorithm with those discov-
ered by another anchor word based algorithm (FastAnchor)
[9] from a set of documents that consists of five categories
of articles in the TDT2 corpus; detailed experiment settings
can be found in Sec. 6. We see that the topics given by An-
chorFree show clear diversity: Lewinsky scandal, General
Motors strike, Space Shuttle Columbia, 1997 NBA finals,
and a school shooting in Jonesboro, Arkansas. On the other
hand, FastAnchor yields topics with significant overlap—



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2827377, IEEE
Transactions on Pattern Analysis and Machine Intelligence

3

see the first two topics. Lewinsky also shows up in the
fifth topic mined by FastAnchor, which is mainly about
the 1997 NBA finals. This showcases the clear advantage of
our proposed criterion in terms of giving more meaningful
and interpretable results, compared to anchor-word based
approaches.

Part of this work appears in NIPS 2016 [18]. This jour-
nal version includes an additional algorithm that is based
on penalty-dual splitting, the convergence proof, detailed
proofs of identifiability results, and more experiments—
including more baselines for comparison.

2 BACKGROUND

In topic modeling, one of the most popular models is to treat
the documents as weighted combinations of a set of topics.
In other words, a document corpus can be approximately
represented as follows:

D ≈ CW , (1)
where D(:, d) is a column vector representation of the dth
document over a set of words with size V , C(:, f) denotes
the f th topic defined as a probability mass function (PMF)
over the vocabulary, and W (f, d) denotes the “weight”
of topic f in document d. Here D(v, d) denotes a certain
measure of word v in document d, e.g., the term-frequency
(tf) or term-frequency-inverse-document-frequency (tf-idf).
The well-known latent Dirichlet allocation (LDA) [1] adopts
the tf measure for D and interprets each document as a
realization of a multinomial distribution whose parameters
are generated from CW (:, d). Each column of C and W
also represent multinomial distributions, but independently
drawn from Dirichlet distributions (with appropriate di-
mensions). The tf-idf representation has also been popular
in the literature, since it usually provides a D matrix with
better conditioning and more robustness to “stop words”
(words that appear frequently in all documents, thus not
very informative) [7], [19].

In topic mining, matrices C and W are naturally non-
negative, since they represent topic PMFs and topic weights
respectively. Therefore, (1) can be viewed as nonnegative
matrix factorization (NMF). References [19]–[23] employ
the following formulation

(C,W ) = arg min
C≥0 ,W≥0

‖D −CW ‖2F ,

and its regularized versions to handle the topic mining prob-
lem. However, there are some drawbacks associated with
this formulation. An important one is that identifiability
of the topics cannot be guaranteed in general [11], [24].
In recent years, several approaches have been proposed to
provably identify the topic matrix C. One important class
of methods relies on the following so-called separability or
anchor-word assumption for identifiability of the topics:

Assumption 1. (Separability/Anchor-Word) There exists a
set of indices Λ = {v1, . . . , vF } such that C(Λ, :) is a
diagonal matrix.

In the context of topic modeling, separability means that
the probability of word vf appearing in topic f is positive
while the probabilities of appearing in other topics are zero.
The word vf is therefore called an anchor word for topic f .
Under the anchor-word assumption, the task of matrix
factorization boils down to finding the indices v1, . . . , vF

since D(Λ, :) is a scaled version of W , then C can be
estimated via (constrained) least squares. Many algorithms
have been proposed to solve this index-picking problem.
The arguably simplest algorithm is the so-called successive
projection algorithm (SPA) [5]. The algorithm first normal-
izes the rows of D using ‖D(v, :)‖1 so that the normalized
rows all live on a simplex. Then, SPA picks out v1, . . . , vF
using an algebraically very simple algorithm. Combining
with a deflation process (projection), the algorithm picks
out the F indices using F steps. Unlike the plain NMF
problem in (1) that is NP-hard, separable NMF is provably
solvable in polynomial time and robust to noise [5]. Many
variants of SPA have been considered with differences in
the deflation process, pre-processing, post-processing, or
stopping criteria; see [7], [9], [10], [13]. In particular, the
algorithm in [7] avoids row-normalization using ‖D(v, :)‖1.
In practice, normalization at the matrix factorization stage
is usually undesired, since it destroys the good conditioning
obtained by pre-processing (e.g., the tf-idf procedure) and
has the risk of amplifying noise. In addition, such deflation-
based greedy approaches suffer from error propagation,
and their performance is generally limited. Another line
of work formulates the vertex-picking problem using linear
programming or sparse optimization, including [4], [6], [12],
[25]–[27]. However, these approaches have serious complex-
ity issues: For a data matrix having V words, the number of
optimization variables is V 2. For a modest vocabulary size
∼10, 000, the resulting number of variables is at least 108.

In practice, the word-document matrix D may be very
noisy due to various reasons, e.g., modeling errors and
insufficient samples of words in each document in the LDA
model. To circumvent this, word-word correlation based
approaches have been considered [8], [9], [28]. Instead of
working with D, the correlation based approaches work
with P ∈ RV×V where P is defined as

P = E{DD>} = CEC>, (2)
and E = E{WW>} denotes the topic correlation matrix.
When D(v, i) is the term-frequency of word v in docu-
ment i, P (u, v) represents the probability of words v and u
co-occurring in a document. Therefore, P is sometimes
referred to as the word-word co-occurrence matrix as well.
Note that the co-occurrence matrix can be estimated by
various methods, e.g., as in [8] or using the unbiased es-
timator in [9]. More sophisticated estimators have also been
proposed in the literature—see, e.g., [28], for an alternating
projection-based algorithm for estimating a positive semi-
definite and element-wise nonnegative P . In this work, we
assume the word correlation matrix P has already been
constructed, and we try to identify topics based on the
given P .

Since the anchor-word assumption can be fragile in
practice, some effort has been put towards relaxing it.
Notably, the work in [14]–[17] proposed to use a three-
way word-word-word correlation tensor P instead of word-
word correlations, where the (i, j, k)th entry of P represents
the correlation of words i, j, and k. Assuming the topics
are uncorrelated (which can be restrictive in practice), the
three-way correlation tensor can be modeled using canon-
ical polyadic decomposition (CPD)—which is identifiable,
thereby enabling topic identification [14], [15]. When the
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topics are correlated, the co-occurrence tensor follows a
Tucker model, which is not identifiable in general—unless
we resort to some other assumptions, such as that every
t ≥ 2 consecutive words are persistently drawn from the
same topic [16], [17]. Furthermore, reliably estimating third-
order statistics requires more samples and factoring a tensor
is usually much more cumbersome compared to factoring a
matrix.

3 ANCHOR-FREE TOPIC MODELING
In this work, we are primarily interested in mining topics
from the matrix P because of its noise robustness and scala-
bility. We will formulate topic modeling as an optimization
problem, and show that the word-topic matrix C can be
identified under a much more relaxed condition compared
to the anchor-word assumption. In fact, the condition under
which the proposed criterion works includes the anchor-
word assumption as a special case.
3.1 Problem Formulation
Recall that our objective is to estimate C from the word-
word correlation matrix P = CEC> under the constraints
that C(:, f) for f = 1, . . . , F are PMFs over the word
vocabulary. To this end, it seems natural to consider the
following criterion:

find E ∈ RF×F ,C ∈ RV×F (3a)

s.t. P = CEC>, (3b)

C>1 = 1 ,C ≥ 0 . (3c)
In (3), the constraint (3b) enforces the data fidelity, and (3c)
is added because the columns of C are PMFs. However, the
above criterion is problematic in terms of identifiability of
C. In other words, many feasible solutions of (3) exist, and
these feasible solutions can be far from the ground-truth E
and C. To see this, consider any nonsingular and element-
wise non-negative A ∈ RF×F such that A>1 = 1 , and
define C̃ = CA, Ẽ = A−1EA−T . Then P = C̃ẼC̃>with
C̃>1 = 1 , C̃ ≥ 0 . Hence, (C̃ = CA, Ẽ = A−1EA−T )
is a feasible solution of (3)—which is undesired due to the
presence of the unknown matrix A.

We wish to find an identification criterion that can re-
move such ambiguity brought by a non-trivial matrix A,
and produce a solution which recovers the ground-truth
E and C. To achieve this goal, we propose the following
identification criterion:

min
E∈RF×F ,C∈RV ×F

|detE|, (4a)

s.t. P = CEC>, (4b)

C>1 = 1 ,C ≥ 0 . (4c)
Intuitively, we wish to avoid undesired feasible solutions
of (3) via enforcing the solution to have the minimum-
determinant E. As we will show, combined with a realis-
tic assumption on C, the criterion in (4) can identify the
ground-truth C up to a trivial ambiguity (namely, column
permutation).

To see this, our first observation is that if the anchor-
word assumption is satisfied, the optimal solutions of the
above identification criterion are the ground-truth C and E
and their column-permuted versions.

Proposition 1. Let (C?,E?) be an optimal solution of (4). If the
separability / anchor-word assumption (cf. Assumption 1) is sat-

isfied and rank(P ) = F , then C? = CΠ and E? = Π>EΠ ,
where Π is a permutation matrix.

Proof: Let us denote a feasible solution of Problem (3)
in the manuscript as (C̃, Ẽ), and let C\ and E\ stand
for the ground-truth word-topic PMF matrix and the topic
correlation matrix, respectively. Note that we can represent
any feasible solution as C̃ = C\A, Ẽ = A−1E\A

−1 where
A ∈ RF×F is an invertible matrix. Given rank(P ) = F
and that Assumption 1 holds, we must have rank(C̃) =
rank(Ẽ) = F, for any solution pair (C̃, Ẽ). In fact, if the
anchor-word assumption holds, then there is a nonsingular
diagonal submatrix in C\, so rank(C\) = F , and the same
holds for C̃ = C\A sinceA is invertible. By the assumption
rank(P ) = F and the equality P = C\E\C

>
\ = C̃ẼC̃>,

one can see that all the factors must have full column rank.
Therefore, |det Ẽ| > 0 for any feasible Ẽ—a trivial solution
cannot arise under the model considered.

Furthermore, C̃ satisfies C̃>1 = 1 and C̃ ≥ 0 since C̃
is a solution to Problem (3). Because the rows of Diag(c) all
appear in the rows of C under Assumption 1, a matrix A
satisfies C̃(Λ, :) = C(Λ, :)A ≥ 0 if and only if A ≥ 0 . Also
note that A>C>1 = 1 ⇒ A>1 = 1 . Then, we have that

|detA| ≤
F∏
f=1

‖A(:, f)‖2 ≤
F∏
f=1

‖A(:, f)‖1

=
F∏
f=1

A(:, f)>1 = 1,

(5)

where the first bounding step is the Hadamard inequality,
the second comes from elementary properties of vector
norms, and for non-negative vectors the `1 norm is sim-
ply the sum of all elements. The first inequality becomes
equality if and only if A is a column-orthogonal matrix,
and the second holds with equality if and only if A(:, f) for
f = 1, . . . , F are unit vectors. Therefore, for non-negative
matrices the equalities in (5) hold if and only if A is a
permutation matrix. As a result, any alternative solution Ẽ
has the form Ẽ = A−1E\A

−1, and
|det Ẽ| = |detA−1 detE\ detA−1|

= |detE\||detA|−2

≥ |detE\|,
where equality holds if and only if A is a permutation
matrix. This means that for optimal solutions that satisfy
P = C?E?C

>
?, we have C? = C\Π and E? = Π>E\Π ,

and achieve minimal value |detE?|, where Π is a permu-
tation matrix.

Proposition 1 is a good ‘sanity check’ of the soundness
of the proposed criterion — it keeps identifiability when
the anchor-word assumption holds. On the other hand, the
result in Proposition 1 is not so useful since any anchor-
based algorithm can identify C and E up to column per-
mutations. Since the criterion in (4) is non-convex and no
known tractable algorithm is theoretically ensured to solve
it to optimality, one natural question is what is the merit of
considering it?

3.2 The Sufficiently Scattered Condition
The answer lies in the fact that the proposed determinant
optimization criterion is able to identify topics under a much
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more relaxed condition. Intuitively, we seek a condition
under which the topics are not exactly but rather “approx-
imately” separable—they are “sufficiently scattered”. The
new identifiability condition is formally defined as follows.

Assumption 2. (sufficiently scattered) Let cone(C>)∗ denote
the polyhedral cone {x : Cx ≥ 0}, and K denote the
second-order cone {x : ‖x‖2 ≤ 1>x}. Matrix C is called
sufficiently scattered if it satisfies that:
(i) cone(C>)∗ ⊆ K, and
(ii) cone(C>)∗ ∩ bdK = {λef : λ ≥ 0, f = 1, . . . , F},
where bdK denotes the boundary of K, i.e.,

bdK = {x : ‖x‖2 = 1Tx}.

Under the sufficiently scattered condition, a similar iden-
tifiability result can be shown.

Theorem 1. Let (C?,E?) be an optimal solution of (4). If the
ground truth C is sufficiently scattered (cf. Assumption 2) and
rank(P ) = F , then C? = CΠ and E? = Π>EΠ , where Π
is a permutation matrix.

In words, Theorem 1 shows that for a sufficiently scat-
tered C and an arbitrary square matrix E, given P =
CEC>, C and E can be identified up to permutation via
solving (4).

Before proving Theorem 1, we first show the following
lemma, which ensures that we do not obtain degenerate
results.

Lemma 1. If C ∈ RV×F is sufficiently scattered, then
rank(C) = F . In addition, given rank(P ) = F , any feasible
solution Ẽ ∈ RF×F of Problem (4) has full rank and thus
|det Ẽ| > 0.

Proof: If C is sufficiently scattered, it satisfies
cone(C>)∗ ⊆ K. (6)

Suppose that C is rank-deficient. Then, all the vectors that
lie in the null space of C satisfy Cx = 0 , which implies
that for x ∈ N (C) we have

Cx ≥ 0 . (7)
Eq. (7) and Eq. (6) together imply that

N (C) ⊆ K.
However, a null space cannot be contained in a second-order
cone, so this is a contradiction.

We now show that any feasible solution pair (Ẽ, C̃)
has full rank. Denote the ground-truth word-topic PMF
matrix as C\, and the correlation matrix between topics
as E\. Under Assumption 2, the ground-truth C\ has full
column rank, and thus E\ ∈ RF×F has full rank when
rank(P ) = F . Now, since any other feasible solution can
be written as C = C\A, E = A−1E\A

−1, where A is
invertible, we have that any feasible solution pair (Ẽ, C̃)
has full rank and det Ẽ is bounded away from zero.

Lemma 1 ensures that any feasible solution pair (C̃, Ẽ)
of Problem (4) has full rank F when the ground-truth
C is sufficiently scattered, which is important from the
optimization perspective—otherwise |det Ẽ| can always be
zero which is a trivial optimal solution of (4).

Proof of Theorem 1: Denote the ground truth word-
topic PMF matrix as C\, and the correlation matrix between

topics as E\. What we observe is their product
P = C\E\C

>
\ ,

and we want to infer, from the observation P , what the
matrices C\ and E\ are. The method proposed in this paper
is via solving (3), repeated here

min
E,C

|detE|

s.t. P = CEC>,C>1 = 1 ,C ≥ 0 .

Now, denote one optimal solution of the above asC? and
E?, and Theorem 1 claims that if C\ is sufficiently scattered
(cf. Assumption 2), then there exists a permutation matrix
Π such that C? = C\Π, E? = Π>E\Π.

Because rank(P ) = F , and both C\ and C? have F
columns, this means C\ and C? span the same column
space, therefore there exists a non-singular matrix A such
that C? = C\A, E? = A−1E\A

−T .
In terms of problem (3), C\ and E\ are clearly feasible,

which yields an objective value detE\. Since we assume
(C?,E?) is an optimal solution of (3), we have that

|detE?| = |detA−1 detE\ detA−T | ≤ | detE\|,
implying

|detA| ≥ 1. (8)

On the other hand, since C? is feasible for (3), we also
have that

C\A ≥ 0 ,A>C>\1 = A>1 = 1 .

Geometrically, the inequality constraint C\A ≥ 0 means
that columns of A are contained in cone(C>\ )

∗. We assume
C\ is sufficiently scattered, therefore

A(:, f) ∈ cone(C>\ )
∗ ⊆ K,

or equivalently ‖A(:, f)‖2 ≤ 1>A(:, f).
Then for matrix A, we have that

|detA| ≤
F∏
f=1

‖A(:, f)‖2 ≤
F∏
f=1

1>A(:, f) = 1. (9)

Combining (8) and (9), we conclude that
|detA| = 1.

Furthermore, if (9) holds as an equality, we must have
‖A(:, f)‖2 = 1>A(:, f), ∀ f = 1, ..., F,

which, geometrically, means that the columns of A all lie
on the boundary of K. However, since C\ is sufficiently
scattered,

cone(C>\ )
∗ ∩ bdK = {λef : λ ≥ 0, f = 1, ..., F},

so A(:, f) being contained in cone(C>\ )
∗ then implies that

columns of A can only be selected from the columns of the
identity matrix I . Together with the fact that A should be
non-singular, we have that A can only be a permutation
matrix.

To understand the sufficiently scattered condition and
Theorem 1, it is better to look at the dual cones. The notation
cone(C>)∗ = {x : Cx ≥ 0} comes from the fact that it is
the dual cone of the conic hull of the row vectors of C, i.e.,
cone(C>) = {C>θ :θ≥0}. A useful property of dual cone is
that for two convex conesK1 andK2, ifK1 ⊆ K2, thenK∗2 ⊆
K∗1 , which means the first requirement of Assumption 2 is
equivalent to

K∗ ⊆ cone(C>). (10)
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(a) separable / anchor word (b) sufficiently scattered (c) not identifiable

Fig. 1. A graphical view of rows of C (blue dots) and various cones in R3, sliced at the plane 1>x = 1. The triangle indicates the non-negative
orthant, the enclosing circle is K, and the smaller circle is K∗. The shaded region is cone(C>), and the polygon with dashed sides is cone(C>)∗.
The matrix C can be identified up to column permutation in the left two cases, and clearly separability is a special case of sufficiently scattered.

Note that the dual cone of K is another second-order
cone [11] K∗ = {x : x>1 ≥

√
F − 1‖x‖2}, which is

tangent to and contained in the nonnegative orthant. Eq. (10)
and the definition of K∗ in fact give a straightforward
comparison between the sufficiently scattered condition in
Assumption 2 and the anchor-word assumption. An illus-
tration of Assumptions 1 and 2 is shown in Fig. 1 (a)-(b)
using an F = 3 case, where one can see that sufficiently
scattered is much more relaxed compared to the anchor-
word assumption: if the rows of the word-topic matrixC are
geometrically scattered enough so that cone(C>) contains
the inner circle (i.e., the second-order cone K∗), then the
identifiability of the criterion in (4) is guaranteed. However,
the anchor-word assumption requires that cone(C>) fills the
entire triangle, i.e., the nonnegative orthant, which is far
more restrictive. Fig. 1(c) shows a case where rows of C
are not “well scattered” in the non-negative orthant, and
indeed such a matrix C cannot be identified via solving (4).
Fig. 1 (c) shows a case where Assumption 2 is not satisfied,
which corresponds to the situation where most rows of C
are highly correlated.

As we can see from this simple example, the proposed
sufficiently scattered condition does require that a certain
number of rows of C lie on the boundary of the non-
negative orthant, implying that C should contain a certain
number of zeros. In the context of topic modeling, this
means that in each topic certain words should have zero
probability of appearing in it. This intuitively makes sense,
and is obviously much more relaxed than assuming that for
each topic there exists a characteristic word that only has
non-zero probability of appearing in it.
Remark. A salient feature of the criterion in (4) is that it
does not need to normalize the data columns to a simplex—
all the arguments in Theorem 1 are cone-based. The upshot
is clear: no normalization is involved in the procedure and
there is no risk of amplifying noise. Furthermore, matrix
E can be any symmetric matrix; it can contain negative
values, meaning topics can be negatively correlated, and it
does not even need to be positive semi-definite, although
we always have that for a correlation matrix. In practice,
we can further impose any prior information available on
E to enhance estimation performance; but mathematically
speaking, any symmetric matrix E can be identified using
our model. This shows the surprising effectiveness of the
sufficiently scattered condition.
Remark. Problems with similar structure to that of P also

arise in the context of graph network clustering, where
communities of entities (e.g., persons and genes) and corre-
lations appear as the underlying factors [29]–[31]. Therefore,
factoring the model P = CEC> with identifiability guar-
antees is of broader interest, well beyond topic modeling.

4 ALGORITHMS

The identification criterion in (4) imposes an interesting yet
challenging optimization problem. One way to tackle it is to
consider the following approximation:

min
E,C

∥∥∥P −CEC>∥∥∥2
F

+ µ|detE|

s.t. C ≥ 0 , C>1 = 1 ,

(11)

where µ ≥ 0 balances the data fidelity and the minimal
determinant considerations. The difficulty is that the term
CEC> makes the problem tri-linear and not easily de-
coupled. Plus, tuning a good µ may also be difficult. In
this work, we propose an easier procedure of handling
the determinant-minimization problem in (4), referred to as
AnchorFree.

4.1 AnchorFree: A Simple and Scalable Framework
To explain the procedure, first notice that P is symmetric
and positive semidefinite. Therefore, one can apply square
root decomposition to P = BB>, where B ∈ RV×F .
We can take advantage of well-established tools for eigen-
decomposition of sparse matrices, and there is widely avail-
able software that can compute this very efficiently. Now,
we have

B = CE
1/2Q, Q>Q = QQ>= I, E = E

1/2E
1/2;

i.e., the representing coefficients ofCE1/2 in the range space
of B must be orthonormal because of the symmetry of P .
Therefore, we also notice that

min
Ẽ,C

|det Ẽ| (12a)

s.t. B = CẼ, C>1 = 1 , C ≥ 0 . (12b)
has the same optimal solutions as (4). The reason is that
there always exists an orthonormal Q such that Ẽ = E1/2Q
and thus the objective of Problem (12) is proportional to
that of Problem (4). Since Q is unitary it does not affect the
determinant, so we further letM = Q>E−1/2 and obtain the
following optimization problem

max
M
|detM | (13a)

s.t. M>B>1 = 1 , BM ≥ 0 . (13b)
In practice, we do not have that the rank of P is exactly
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Algorithm 1: AnchorFree-LP

input : D, F .
1 P ← Co-Occurrence(D); P = BB>, M ← I ;

repeat
2 for f = 1, . . . , F do
3 ak = (−1)f+k detMk,f , ∀ k = 1, ..., F ;

m1 = arg max
x

a>x s.t. Bx ≥ 0 , 1>Bx = 1;

m2 = arg min
x

a>x s.t. Bx ≥ 0 , 1>Bx = 1;

4 M(:, f) = arg maxm1,m2
(|a>m1|, |a>m2|);

5 end
6 until convergence;
7 C? = BM ; E? = (C>?C?)

−1C>?PC?(C
>
?C?)

−1;
output: C?, E?

F , but it is straight forward to extend the idea to handle a P
with higher rank—we set columns of B as the F principal
eigenvectors of P , normalized by the square root of their
corresponding eigenvalues. As we will see in the experiment
section where none of the data matrices are exactly low rank,
this idea works very well in all cases.

4.2 Alternating Linear Program
By our reformulation, C has been marginalized and we
have only F 2 variables left, which is significantly smaller
compared to the variable size of the original problem, i.e.,
V F + F 2, where V is the vocabulary size. Problem (13) is
still non-convex, but can be handled very efficiently. Here,
we propose to employ the solver proposed in [32], where the
same subproblem (13) was used to solve a dynamical system
identification problem. The idea is to apply the co-factor
expansion to deal with the determinant objective function,
first proposed in the context of non-negative blind source
separation [33]: If we fix all the columns of M except the
f th one, detM becomes a linear function with respect to
M(:, f), i.e.,

detM =
F∑
k=1

(−1)f+kM(k, f) detMk,f = a>M(:, f),

where a = [a1, . . . , aF ]>, ak = (−1)f+k detMk,f , ∀ k =
1, ..., F , and Mk,f is a matrix obtained by removing the
kth row and f th column of M . Maximizing |a>x| subject
to linear constraints is still a non-convex problem, but we
can solve it via maximizing both a>x and −a>x, and then
picking the solution that gives larger absolute objective.
Then, cyclically updating the columns of M results in an
alternating optimization (AO) algorithm.

The detailed steps of the proposed algorithm, which we
refer to as AnchorFree-LP, is presented in Algorithm 1.
The algorithm is computationally not heavy: each linear
program only involves F variables, leading to a worst-
case complexity of O(F 3.5) flops even when the interior-
point method is employed, and empirically it takes 5 to 10
AO iterations to converge. Another good feature of the AO
algorithm is that it is completely parameter-free: no stepsize
tuning or regularization trade-off terms to be pre-defined.

4.3 All-At-Once Optimization: Penalty-Dual Splitting
The alternating optimization algorithm is effective and is
insensitive to initializations—in our experience, the algo-
rithm always finds the desired factors very accurately even

using an identity matrix as initialization. One shortcoming,
however, is that the algorithm needs to perform two linear
programs for updating one column of M , and this could
slow down the entire process when the number of topics is
large: Under such cases, completing one cycle of updating
all the columns of M requires performing 2F linear pro-
grams, which could be rather costly.

To circumvent this issue, we are motivated to find some
algorithm that can update all the columns of M simulta-
neously (even with some small sacrifices in performance).
One idea towards this end is as follows. Instead of directly
dealing with |det(M)|, one can change the problem to

min
M
− log |det(M)| (14a)

s.t. M>B>1 = 1 , BM ≥ 0 . (14b)
Note that such a modification does not change the problem
since the log-function is monotonic, but the merit is that now
the objective is continuously differentiable. One idea that
was used in [34] for optimizing a similar log-determinant
maximization problem is to do successive local approxi-
mation to Problem (14); i.e., in each iteration, one solves
a subproblem

M (r+1) = arg min
M

〈
∇f(M (r)),M

〉
+
µ(r)

2
‖M−M (r)‖2F

s.t. M>B>1 = 1 , BM ≥ 0 ,

where f(M) denotes the cost function of (14). Since each
subproblem is a linearly constrained quadratic program-
ming with strongly convex objective, an ADMM algorithm
with lightweight updates can be easily derived. However,
in our extensive simulations, two major issues arise when
applying the idea to topic modeling: 1) the algorithm re-
quires a fairly good initialization to get to a solution that is
as accurate as that of AnchorFree-LP; 2) each subproblem
in (15) requires a large number of ADMM iterations to reach
a certain accuracy level and to make the overall algorithm
work—which, in many cases, turns out to be even more
computationally expensive compared to AnchorFree-LP.

In this work, we propose an algorithm that avoids the
above issues of the “local approximation & ADMM” idea.
To be specific, we adopt the algorithmic framework that
was recently proposed in [35] for dealing with general
non-convex optimization problems. The idea bears some
resemblance to that of directly applying ADMM to the non-
convex problem in (14). Therefore, most good features of
ADMM such as computationally light updates are kept in
the new algorithm. On the other hand, unlike non-convex
ADMM which in general does not have convergence guar-
antees, gradually changing a penalty parameter and the
dual variables according to a certain judiciously designed
strategy ensures that the algorithm converges to a KKT
point eventually. To begin with, let us rewrite Problem (14)
as follows:

min
M

− log |det(M)|

s.t. BM = Z, M>B>1 = 1 , Z ≥ 0 .
(16)

The high-level algorithmic structure for handling Prob-
lem (16) is presented in Algorithm 2. In line 6, fk(M ,Z)
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Algorithm 2: AnchorFree-PDS

input : D, F , c < 1.
1 P ← Co-Occurrence(D);
2 P = BB>, k = 0, Mk = I , Zk = BMk;
3 repeat
4 (Mk,Zk) = Decrease (fk(M ,Z), εk);
5 if ‖BMk −Zk‖ ≤ ηk then
6 Uk+1 = Uk + 1

ρk
(BMk −Zk), ρk+1 = ρk;

7 else
8 Uk+1 = Uk, ρk+1 = cρk;
9 end

10 ηk+1 = cηk; εk+1 = cεk;
11 k ← k + 1;
12 until convergence;
13 C? = BM ; E? = (C>?C?)

−1C>?PC?(C
>
?C?)

−1;
output: C?, E?

is defined as

min
M ,Z

− log |det(M)|+ 1

2ρk
‖BM −Z + ρkUk‖2F

s.t. M>B>1 = 1 , Z ≥ 0 .

(17)

The subproblem in (17) looks similar to the augmented
Lagrangian used in ADMM. However, the update strategy
here is sharply different from that of ADMM. As we show
in Algorithm 2, for a fixed Uk and ρk, we try to decrease
the cost value of fk(M ,Z) using some algorithm to a
certain convergence measure εk (e.g., the one presented
in line 9 in Algorithm 3). Once (Mk,Zk) is obtained, the
‘size of violation’ of the dualized constraint ‖BMk − Zk‖
is measured. If the violation is smaller than a threshold,
we keep the algorithm within the augmented Lagrangian
routine, keep ρk unchanged, and update the dual variable;
if not, we shrink ρk so that we put more emphasis on
enforcing the constraints in the next iteration. This way, the
algorithm uses the dual variable and the penalty parameter
to help enforce the constraint. The hope is that with the help
of the dual variable, ρk never needs to become very large
and the ill-conditioning problem of the penalty method can
be avoided.

Let ek , PX (vec(Mk,Zk)−∇fk(Mk,Zk))−vec(Mk,Zk),
where X denotes the constraint set of problem (17). Then,
regarding the convergence of the algorithm, we have the
following result.

Proposition 2. Let {(Mk,Zk)} be the sequence gener-
ated by Algorithm 2. Suppose that the algorithm used in
Decrease (fk(M ,Z), εk) satisfies ‖ek‖ ≤ εk with ηk → 0
and εk → 0 as k → 0. Then, every limit point of the sequence
{(Mk,Zk)} is a KKT point of problem (14).

Proof: The basic idea of the proof follows that of [35,
Theorem 3.1]. For notational simplicity, let us define x ,
vec(M ,Z) and denote the linear constraint BM = Z
by h(x) = 0 . By the definition of ek and a well-known
property of the projection map PX , we have

(x− (xk + ek))
>

((xk −∇fk(xk))− (xk + ek)) ≤ 0,

∀x ∈ X ,∀k.
It follows that
− (x−(xk+ek))

>(∇fk(xk)+ek
)
≤ 0, ∀x ∈ X , ∀k. (18)

Define µk , (1/ρk)h(xk) + λk where λk , vec(Uk), and

fM (x) , − log |det(M)|. Thus, we have
∇fk(xk) = ∇fM (xk) +∇h(xk)>µk.

Plugging this into (18) , we obtain
− (x− (xk + ek))

>(∇fM (xk)+∇h(xk)>µk + ek
)
≤ 0,

∀x ∈ X ,∀k. (19)
Next, we prove that µk is bounded by contradiction

using Robinson’s condition [36]. Assume, to the contrary,
that µk is unbounded. Define µk , µk/‖µk‖. Without
loss of generality, let µk converge to µ and xk converge
to x∗ (if they do not converge, we can restrict them to a
convergent subsequence). Then, since all the constraints of
problem (16) are linear, we infer that Ronbinson’s condi-
tion [36] is satisfied for problem (16) at x∗ [35] , i.e., for
any z ∈ Rn, there exists some x ∈ X and c > 0 such that
z = c∇h(x∗)(x − x∗). By dividing both sides of (19) by
‖µk‖ and taking limit, we obtain

− (x− x∗)>∇h(x∗)
>µ ≤ 0,∀x ∈ X , (20)

where the term ∇fM (xk)/‖µk‖ disappears because we
assumed that µk goes unbounded in the limit. Since Robin-
son’s condition holds for Problem (16), there exists some
x ∈ X and c > 0 such that

−µ = c∇h(x∗)(x− x∗).
This, together with (20), implies that µ = 0, contradicting
the identity ‖µ‖ = 1. Hence, {µk} is bounded.

Since {µk} is bounded, we let it converge to µ∗ without
loss of generality. Furthermore, recall that ek → 0. Hence,
we have from (19)

(x− x∗)>
(
∇fM (x∗) +∇h(x∗)

>µ∗
)
≥ 0,∀x ∈ X . (21)

This completes the proof.
As for the oracle Decrease (fk(M ,Z), εk), we design

a very simple alternating optimization algorithm shown
in Algorithm 3. For the Z-subproblem, we can solve the
subproblem exactly by

Z ← max (BM + ρkUk,0 ) . (22)
The M -subproblem is a bit more complicated, but can also
be handled using simple operations. Specifically, instead of
dealing with the M -subproblem directly, we deal with its
local approximation at the current solution M̂ ,

min
M

〈
∇f(M̂),M

〉
+
µ

2
‖M − M̂‖2F

+
1

2ρk
‖BM −Z + ρkUk‖2F

s.t. B>M>1 = 1 .

(23)

Problem (23) is a linearly constrained quadratic program
and thus has a closed-form solution. Denote a solution
of (23) as M+. Note that such M+ does not necessarily
decrease the the cost value of Problem (17), but it can be
easily shown that (M+−M̂) represents a decent direction.
To ensure descent, we can implement a simple line search
step (e.g., Armijo rule) searching for a step size t such
that M ← M̂ + t(M+ − M̂) decreases the cost value of
(17). Similar to Theorem 4 of [37], it can be shown that the
proposed alternating optimization method has guaranteed
convergence to stationary solutions of problem (17), imply-
ing that the oracle can satisfy ‖ek‖ ≤ εk for any εk ≥ 0 with
reasonably many iterations.
Remark. As will be demonstrated in the next section,
AnchorFree-PDS exhibits much higher efficiency rela-



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2827377, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

Algorithm 3: Decrease (fk(M ,Z), εk)

input : Z, M , εk
1 repeat
2 M̂ ←M , Ẑ ← Z;
3 Z ← max (BM + ρkUk,0 );
4 M+ ← solution of (23);
5 line search for t;
6 M ← M̂ + t(M+ − M̂);
7 until max(‖M̂ −M‖, ‖Ẑ −Z‖) ≤ εk;

output: Z, M

tive to AnchorFree-LP. The reason is twofold: first,
AnchorFree-PDS is an all-at-once algorithm—it up-
dates all optimization variables simultaneously, whereas
AnchorFree-LP updates them block by block; second,
AnchorFree-PDS has very lightweight updates but the
subproblems of AnchorFree-LP are linear programs,
which need more effort to solve. On the other hand,
AnchorFree-PDS requires more care: several parameters,
such as µ, c, and {εk, ηk} all need to be pre-defined;
AnchorFree-LP is parameter-free and can be implemented
very easily.

5 SYNTHETIC DATA SIMULATIONS

Before applying AnchorFree to real data, we present several
synthetic data simulations to demonstrate the identifiability
of the proposed model.

In the synthetic data simulations, since the ground truth
C\ andE\ are known, we simply use the following criterion
for evaluation. Denoting the output of any algorithm as C?
and E?, before we compare them with the ground truth
C\ and E\, we need to fix the permutation ambiguity.
This task can be formulated as a linear assignment problem
and solved efficiently via the Hungarian algorithm. After
optimally matching the columns of C? and C\, we observe
the estimation errors ‖C? −C\‖2F and ‖E? −E\‖2F .

We generate data following the tri-factorization model
P = C\E\C

>
\ , where the entries of C\ are first drawn from

an i.i.d. exponential distribution, and then approximately
50% of the entries are randomly set to zero, according to an
i.i.d. Bernoulli distribution, and then the columns are scaled
to satisfy the sum-to-one constraint; the matrix E\ is gener-
ated as E\ = UU>/F + I , where the entries of the F × F
matrix U are drawn from the uniform distribution between
zero and one, therefore E\ is element-wise non-negative,
positive semidefinite, and relatively well conditioned. With
D = 1000 and F increasing from 5 to 30, we applied various
topic modeling algorithms on the synthetically generated
P and try to recover C\ and E\, including the proposed
AnchorFree-LP and AnchorFree-PDD. For each value of F ,
we ran these algorithms on 100 Monte-Carlo trials, and
report the percentage of cases that both ‖C? − C\‖2F and
‖E?−E\‖2F are less than 10−8, for which we consider them
to be correctly recovered, in Table 2. As we can see:

1) The anchor-word-based algorithms are not able to re-
cover the ground-truth C\ and E\ when the number
of topics F is relatively large, since the separability /
anchor-word assumption is grossly violated;

2) AnchorFree-based algorithms, on the other hand, recov-
ersC\ andE\ almost perfectly in all the cases under test,

TABLE 2
Synthetic test 1: percentage that both ‖C? −C\‖2F and ‖E? −E\‖2F are less

than 10−8, without guarantees on the existence of anchor words.
F 5 10 15 20 25 30

FastAnchor 100 3 0 0 0 0
SPA 100 3 0 0 0 0

SNPA 100 3 0 0 0 0
XRAY 100 3 0 0 0 0

AnchorFree-LP 100 100 100 100 100 100
AnchorFree-PDS 100 100 100 100 100 100

TABLE 3
Synthetic test 2: percentage that both ‖C? −C\‖2F and ‖E? −E\‖2F are less

than 10−8, with at most 15 topics guaranteed to have anchor words.
F 5 10 15 20 25 30

FastAnchor 100 100 100 0 0 0
SPA 100 100 100 0 0 0

SNPA 100 100 100 0 0 0
XRAY 100 100 100 0 0 0

AnchorFree-LP 100 100 100 100 100 100
AnchorFree-PDS 100 100 100 100 100 100

which supports our claim in Theorem 1;
3) Even though the identification criterion (3) is a non-

convex optimization problem, the proposed procedure
empirically always works, which is obviously encourag-
ing and deserves future study.
We also tested the aforementioned algorithms on a

slightly more interesting scenario: with almost exactly the
same experimental settings, we further enforce at most 15
topics to have anchor words. If F is less than or equal to
15, we simply set the top square sub-matrix of C\ to be
an identity matrix, before normalizing the columns; if F is
greater than 15, then only the first 15 rows of C\ are taken
to be canonical vectors with ones on different positions.
This reflects an interesting scenario that when the corpus
contains only a few very distinctive topics of documents, it
is very easy to find anchor words for each of the topics to
help the modeling, but as the scope of the corpus becomes
broader, some of the less distinctive topics fails to satisfy the
stringent anchor-word assumption. As shown in Table 3, the
anchor-word-based methods are only able to recover the full
set of topics when all to topics are separable, even though
for larger F the anchor-word assumption is still partially
satisfied. The proposed AnchorFree-LP and AnchorFree-
PDD, on the other hand, can robustly recover all the topics
regardless of the existence of anchor word.

The runtime performance of these algorithms for both
test scenarios are shown in Fig. 2. The acceleration obtained
by using primal-dual splitting (PDS) is dramatic in these
synthetic tests, as it is much faster than the other methods,
including SPA, a very simple deflation method with closed-
form updates. As expected, AnchorFree-LP is the slowest
among all, but not much slower than the anchor-word-based
methods. It is also interesting to notice that anchor-word-
based methods all becomes slightly faster when data loses
identifiability (F = 10 on the left and F = 20 on the right),
although in these cases those algorithms fail to produce
meaningful results; AnchorFree approaches, on the other
hand, increases the running time gradually as expected,
and consistently recovers the ground truth regardless of the
existence of anchor words.

Finally, the reconstruction error ‖C? −C\‖2F and ‖E? −
E\‖2F given by AnchorFree-LP and AnchorFree-PDS are
shown in Fig. 3 for the both testing scenarios. As we can see,
even though AnchorFree-PDS is able to recover the ground
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truth factors in a very short amount of time, the numerical
error is not as accurate as that given by AnchorFree-LP.
This can partly be explained by the fact that AnchorFree-
LP is parameter free, and relies on very reliable off-the-shelf
LP solvers, whereas AnchorFree-PDS is a brand new non-
convex algorithmic framework, and the overall numerical
performance is limited by a number of tolerance parameters
that needs to be finely tuned to balance between numerical
accuracy and computational efficiency.

6 REAL DATA EXPERIMENTS

In this section, we apply the proposed algorithms and the
baselines to three popular text mining datasets, namely, the
NIST Topic Detection and Tracking (TDT2), the Reuters-
21578, and the Reuters Corpus Volume 1 (RCV1) corpora, to
demonstrate the effectiveness of the proposed Anchor-Free
framework and the algorithms. Additional experiments on
synthetic data to showcase the effectiveness of the Anchor-
Free framework in recovering the ground truth latent factors
without relying on the separability / anchor-word assump-
tion can be found in Appendix 5, comparing with the same
baselines to be mentioned in this section, which are all based
on the stringent separability / anchor-word assumption. In
all experiments, the parameters used in AnchorFree-PDS are
set as follows: ρ0 = 1, c = 0.5, η0 = 10−3, µ = 10−4.

6.1 Datasets
Some more information regarding the datasets considered is
useful at this point.
• TDT2: We use a subset of the TDT2 corpus consisting of
9,394 documents which are single-category articles belong-
ing to the largest 30 categories. The vocabulary size of the
considered dataset is 36, 771.
• Reuters-21578: The Reuters-21578 corpus is the ModApte
version where 8,293 single-category documents are kept.
The vocabulary size of the considered dataset is 18, 933.
• RCV1: The RCV1 dataset contains 55 categories of doc-
uments and the total number of documents is 804, 414.
We used the single-label documents in the experiments,

which is a subset of the RCV1 corpus containing 550, 410
documents. The vocabulary size of RCV1 is 47, 236.

In our experiments, we use the standard tf-idf data as
the D matrix, and estimate the co-occurrences following
the method that was suggested in [8]. For each trial of our
experiment, we randomly draw F categories of documents,
form the co-occurrence matrix, and apply the proposed
algorithms and the baselines.

6.2 Evaluation Metrics
To evaluate the results, we employ a series of metrics.
• Coherence We use coherence (Coh) to measure the single-
topic quality. For a set of words V , the coherence is defined

as Coh =
∑

v1,v2∈V
log

(
freq(v1, v2) + ε

freq(v2)

)
, where v1 and v2

denote the indices of two words in the vocabulary, freq(v2)
and freq(v1, v2) denote the numbers of documents in which
v1 appears and v1 and v2 co-occur, respectively, and ε = 0.01
is used to prevent taking log of zero. Coherence is consid-
ered well-aligned to human judgment when evaluating a
single topic—a higher coherence score means better quality
of a mined topic. However, coherence does not evaluate
the relationship between different mined topics; e.g., if the
mined F topics are identical, the coherence score can still be
high but meaningless.
• Similarity Count To alleviate the shortcomes of Coh, we
also use the similarity count (SimCount) that was adopted in
[9]—for each topic, the similarity count is obtained simply
by adding up the overlapped words of the topics within
the leading N words, and a smaller SimCount means the
mined topics are more distinguishable.
• Clustering Accuracy When the topics are very correlated
(but different), the leading words of the topics may overlap
with each other, and thus using SimCount might still not
be enough to evaluate the results. We also include clus-
tering accuracy (ClustAcc), obtained by using the mined
C? matrix to estimate the weights W of the documents
via nonnegative least squares, and applying k-means (with
the correlation metric) to W . Since the ground-truth labels
of the data copora are known, clustering accuracy can be
calculated, and it serves as a good indicator of the quality of
the mined topics.

6.3 Baselines
We use the following algorithms for benchmarking:
• SPA successive projection algorithm [5],
• SNPA successive nonnegative projection algorithm [10],
• XRAY a fast conical hull algorithm [7], and
• FastAnchor the fast anchor words algorithm [9].
Since we are interested in co-occurrence based mining, all
the algorithms are combined with the framework provided
in [9], and the efficient RecoverL2 process is employed for
estimating the topics after the anchors are identified. We
mainly compare with the anchor-word based algorithms,
but also present results given by the most popular topic
modeling tool, namely,
• LDA latent Dirichlet allocation using Gibbs sampling [38],
as another baseline.

6.4 Experimental Results
Tables 4–6 show the experimental results on the TDT2 cor-
pus, averaged over 50 Monte-Carlo draws of the categories.
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TABLE 4
Coh given by the algorithms on TDT2.

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 -619.32 -613.43 -613.43 -597.16 -427.36 -430.24 -417.48
4 -648.23 -648.04 -648.04 -657.51 -510.24 -429.67 -420.53
5 -643.51 -643.91 -643.91 -665.20 -509.76 -404.40 -398.95
6 -650.91 -645.68 -645.68 -674.30 -546.01 -430.35 -428.72
7 -674.35 -665.55 -665.55 -664.38 -543.54 -397.79 -395.00
8 -680.48 -674.45 -674.45 -657.78 -565.28 -452.53 -437.56
9 -684.96 -671.81 -671.81 -690.39 -570.67 -418.48 -413.49

10 -738.84 -724.64 -724.64 -698.59 -574.40 -420.79 -410.05
15 -731.89 -730.19 -730.19 -773.17 -617.87 -443.65 -413.15
20 -750.96 -747.99 -747.99 -819.36 -642.48 -455.64 -424.30
25 -788.48 -792.29 -792.29 -876.28 -666.07 -473.43 -450.74

TABLE 5
SimCount given by the algorithms on TDT2.

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 8.30 7.98 7.98 8.94 2.78 2.14 0.76
4 10.76 11.18 11.18 13.70 5.26 2.56 2.06
5 14.62 13.36 13.36 22.56 8.02 4.30 4.32
6 18.98 18.10 18.10 31.56 11.90 6.56 6.60
7 19.38 18.84 18.84 39.06 16.06 4.48 5.16
8 25.18 25.14 25.14 40.30 21.12 9.68 9.44
9 27.64 29.10 29.10 53.68 25.46 10.54 8.00
10 28.90 29.86 29.86 53.16 30.48 13.32 13.02
15 53.04 52.62 52.62 59.96 65.08 42.52 43.50
20 65.30 65.00 65.00 82.92 104.82 78.14 84.44
25 67.34 66.00 66.00 101.52 147.22 133.76 116.66

TABLE 6
ClustAcc given by the algorithms on TDT2.

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 0.71 0.75 0.75 0.73 0.79 0.98 0.98
4 0.71 0.68 0.69 0.69 0.74 0.95 0.94
5 0.65 0.63 0.62 0.65 0.70 0.92 0.92
6 0.66 0.60 0.59 0.61 0.68 0.91 0.90
7 0.64 0.59 0.59 0.58 0.66 0.90 0.91
8 0.56 0.55 0.57 0.57 0.62 0.88 0.88
9 0.61 0.57 0.56 0.54 0.65 0.86 0.88
10 0.60 0.54 0.55 0.49 0.64 0.84 0.86
15 0.50 0.49 0.49 0.42 0.59 0.80 0.82
20 0.48 0.46 0.46 0.39 0.61 0.77 0.78
25 0.45 0.46 0.46 0.37 0.61 0.74 0.74

The top two performance results in each evaluation metrics
are shown in boldface, and the others are presented in
plain text. From F = 3 to 25, the proposed algorithms
(AnchorFree-LP and AnchorFree-PDS) give very promis-
ing results: for the three considered metrics, AnchorFree
consistently gives better results compared to the baselines.
Particularly, the ClustAcc’s obtained by AnchorFree are
at least 30% higher compared to the baselines for all cases.
In addition, the single-topic quality of the topics mined by
AnchorFree is the highest in terms of coherence scores; the
overlaps between topics are the smallest except for F = 20
and 25. Furthermore, for a specific trial with F = 5, the
mined topics represented by the top 20 words that have
the highest weights in each topic are shown in Table 1. As
we have explained earlier, AnchorFree gives a much cleaner
topic model for this dataset, compared with the best result
given by anchor-word-based methods.

Under the same experimental settings, the results on
the Reuters-21578 and RCV1 are shown in Tables 7–12. As
we can see, in terms of clustering accuracy, the topics ob-
tained by AnchorFree again lead to much higher clustering
accuracies in all cases. For the other evaluation metrics,
AnchorFree-based methods also perform well, especially
when the number of topics F becomes larger. XRAY is able
to give the best result in terms of single-topic quality Coh,
but for cross-topic quality SimCount, it does not perform as
well as AnchorFree, especially when the number of topics F
becomes larger, while AnchorFree consistently performs at

TABLE 7
Coh given by the algorithms on Reuters-21578.

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 -646.63 -647.28 -647.28 -574.72 -674.14 -827.54 -813.51
4 -634.73 -637.89 -637.89 -586.41 -677.18 -739.54 -745.83
5 -655.13 -652.53 -652.53 -581.73 -686.31 -768.44 -738.76
6 -647.30 -644.34 -644.34 -586.00 -715.15 -698.76 -698.91
7 -742.40 -732.01 -732.01 -612.97 -705.90 -690.37 -685.84
8 -731.45 -738.54 -738.54 -616.32 -762.92 -724.37 -739.37
9 -761.76 -755.46 -755.46 -640.36 -776.83 -705.60 -742.05

10 -761.15 -759.40 -759.40 -656.71 -776.46 -700.14 -677.32
15 -799.17 -801.17 -801.17 -585.18 -847.72 -688.43 -668.87
20 -864.32 -860.70 -860.70 -615.62 -903.37 -678.95 -682.97
25 -891.66 -890.16 -890.16 -633.75 -902.68 -671.20 -675.08

TABLE 8
SimCount given by the algorithms on Reuters-21578.

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 10.16 11.02 11.02 3.86 3.20 7.26 6.24
4 16.98 16.92 16.92 9.92 6.46 12.80 11.10
5 23.22 21.66 21.66 13.06 9.32 16.40 12.48
6 40.32 39.54 39.54 27.42 12.48 20.76 21.00
7 45.14 45.24 45.24 34.64 21.22 34.86 27.28
8 85.62 83.86 83.86 82.52 24.60 61.52 55.36
9 115.58 118.98 118.98 119.28 33.56 71.90 76.70
10 117.88 121.74 121.74 130.82 39.68 85.52 89.52
15 307.90 309.70 309.70 227.02 76.02 124.82 119.30
20 535.10 538.54 538.54 502.82 130.54 226.50 226.34
25 668.42 673.00 673.00 650.96 194.98 335.14 320.44

TABLE 9
ClustAcc given by the algorithms on Reuters-21578.

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 0.66 0.69 0.69 0.66 0.63 0.79 0.80
4 0.52 0.62 0.61 0.60 0.57 0.72 0.73
5 0.49 0.55 0.54 0.53 0.53 0.64 0.66
6 0.46 0.50 0.50 0.46 0.51 0.64 0.66
7 0.42 0.57 0.57 0.54 0.46 0.65 0.65
8 0.40 0.53 0.54 0.47 0.44 0.61 0.62
9 0.37 0.55 0.55 0.47 0.41 0.59 0.62
10 0.36 0.48 0.49 0.42 0.42 0.57 0.59
15 0.34 0.41 0.41 0.42 0.35 0.53 0.55
20 0.30 0.35 0.35 0.38 0.33 0.51 0.54
25 0.26 0.31 0.32 0.37 0.34 0.47 0.44

least second best in terms of both metrics. On the opposite
end, LDA performs well in terms of SimCount on Reuters-
21578, but not as well for Coh. LDA is not tested on RCV1
because RCV1 comes directly in the form of tf-idf, which
cannot be handled by the LDA program provided in [38].

The runtime performance of the two proposed Anchor-
Free variants along with the other anchor-word-based meth-
ods on the three datasets is summarized in Fig. 4. Among
the anchor-word-based methods, SPA is the fastest since
it has an efficient recursive update. The other variants all
perform nonnegative least squares-based deflation, which is
computationally heavy when the vocabulary size is large.
As expected, AnchorFree-LP is the slowest, since it consists
of AO and small-scale linear programming; interestingly,
when the vocabulary size is about the same as the docu-
ment size (e.g., TDT2), AnchorFree-LP is not that slower
than the other baselines, especially considering that we are
simply using a general-purpose convex optimization solver
CVX [39] as a sub-routine. The more striking result is that
AnchorFree-PDS is the second fastest algorithm in almost
all cases, and on TDT2 and RCV1 it is an order faster than
the three slower anchor-word-based methods. Recall that,
unlike anchor-word based methods, AnchorFree does not
have global optimality guarantees, but AnchorFree-PDS still
manages to obtain very good performances (as shown in
Tables 4–12) in a very short amount of time. This also hinges
the potential effectiveness of primal-dual splitting (PDS) as
a general non-convex algorithmic framework.
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Fig. 4. Runtime performance of the algorithms

TABLE 10
Coh given by the algorithms on RCV1.

F FastAnchor SPA SNPA XRAY AnchorFree-LP AnchorFree-PDS
3 -687.40 -691.36 -691.36 -488.46 -498.15 -500.26
4 -683.15 -676.45 -676.45 -493.38 -502.37 -497.97
5 -693.70 -690.41 -690.41 -498.83 -502.47 -516.96
6 -721.94 -718.68 -718.68 -515.23 -510.36 -520.10
7 -672.82 -676.64 -676.64 -498.69 -506.43 -508.39
8 -685.24 -689.27 -689.27 -511.61 -509.63 -521.11
9 -709.87 -714.10 -714.10 -518.20 -529.82 -535.34

10 -714.59 -710.33 -710.33 -539.62 -531.20 -545.60
15 -677.87 -678.97 -678.97 -545.63 -530.84 -550.42
20 -696.66 -692.97 -692.97 -575.98 -554.17 -566.06

TABLE 11
SimCount given by the algorithms on RCV1.

F FastAnchor SPA SNPA XRAY AnchorFree-LP AnchorFree-PDS
3 22.52 23.24 23.24 25.72 10.12 7.34
4 45.24 44.24 44.24 49.96 22.72 16.44
5 79.60 80.42 80.42 76.28 34.92 25.00
6 118.84 118.48 118.48 104.04 43.50 30.24
7 183.24 188.12 188.12 139.90 63.28 43.76
8 256.10 255.80 255.80 179.20 82.58 54.26
9 313.24 313.16 313.16 211.16 101.66 67.08

10 381.42 369.92 369.92 252.38 122.36 82.70
15 1043.98 1039.72 1039.72 508.80 282.28 183.02
20 1857.94 1984.46 1984.46 817.30 540.84 318.58

TABLE 12
ClustAcc given by the algorithms on RCV1.

F FastAnchor SPA SNPA XRAY AnchorFree-LP AnchorFree-PDS
3 0.65 0.65 0.65 0.63 0.79 0.79
4 0.56 0.59 0.59 0.56 0.74 0.73
5 0.54 0.53 0.53 0.50 0.69 0.68
6 0.51 0.52 0.52 0.50 0.69 0.69
7 0.46 0.46 0.46 0.50 0.65 0.66
8 0.43 0.43 0.43 0.47 0.64 0.65
9 0.41 0.41 0.42 0.46 0.63 0.62

10 0.40 0.40 0.40 0.43 0.61 0.61
15 0.33 0.31 0.31 0.37 0.57 0.57
20 0.27 0.25 0.26 0.32 0.54 0.54

6.5 Additional Experiments

In the previous example, we make use of the true labels
of the documents provided with the datasets to evaluate
the topic models learned using different methods. There
are 30∼55 different labels in the datasets we used, but the
total number of topics could be much larger due to un-
avoidable aggregation in the human-labeling process. Here,
we provide another set of experiments, where we ignore
the provided document labels and simply apply various
topic modeling methods to the entire TDT2 or Reuters-21578
dataset with number of topics up to 200. For evaluation,
we only provide the metrics of coherence and similarity
count, since the clustering accuracy cannot be evaluated
without the true labels. The results of this experiment on

TABLE 13
Coh on TDT2 (whole data).

F FastAnchor SPA SNPA XRAY LDA AnchorFree-PDS
10 -601.90 -601.90 -601.90 -486.89 -2337.23 -205.68
30 -738.04 -738.04 -738.04 -465.98 -2453.75 -143.87
50 -718.99 -714.52 -714.52 -467.56 -2426.50 -133.60
100 -699.36 -694.41 -694.41 -409.10 -2363.39 -167.56
200 -703.05 -703.39 -703.39 -363.79 -2363.94 -189.01

TABLE 14
SimCount on TDT2 (whole data).

F FastAnchor SPA SNPA XRAY LDA AnchorFree-PDS
10 13 13 13 65 1 20
30 168 168 168 209 1 48
50 340 330 330 336 15 19

100 1375 1463 1463 348 119 166
200 3866 3845 3845 471 907 225

TABLE 15
Coh on Reuters-21578 (whole data).

F FastAnchor SPA SNPA XRAY LDA AnchorFree-PDS
10 -773.51 -808.37 -808.37 -708.13 -2578.83 -291.88
30 -828.45 -810.80 -810.80 -717.65 -2554.47 -404.75
50 -816.33 -808.76 -808.76 -821.18 -2529.43 -447.74
100 -831.04 -844.00 -844.00 -838.26 -2548.76 -407.12
200 -909.66 -911.24 -911.24 -833.51 -2555.10 -438.48

TABLE 16
SimCount on Reuters-21578 (whole data).

F FastAnchor SPA SNPA XRAY LDA AnchorFree-PDS
10 234 234 234 121 1 71
30 2117 2068 2068 778 6 253
50 4760 4623 4623 1566 35 462

100 15673 15840 15840 2599 144 523
200 36548 36812 36812 4358 789 478

TDT2 are given in Table 13 and 14, and those on Reuters-
21578 are shown in Table 15 and 16. Once again, we see
that AnchorFree gives the best results, providing a good
balance between intra-topic quality (coherence) and inter-
topic quality (similarity count).

In our work, the definition of the correlation between
words P and between topics E may appear a bit vague.
We only assume that some measure of correlation between
words can be explained by a topic-word PMF matrix and
a similar measure of correlation between topics. In some
other approaches, this kind of flexibility is not supported.
For example, the argument made by Arora et al. [8], [9]
was specifically based on co-occurrence—number of times
two words both appear in a document—rather than a
general correlation measure. This kind of interpretation
cannot accommodate the popular tf-idf preprocessing of the
document data, even though researchers have consistently
reported better results using tf-idf compared to directly
using term frequency. Nevertheless, in Table 17 we show
the experimental results using the co-occurrence matrix P
constructed as in [9] on TDT2. We can see that: 1) Focusing
on Table 17, AnchorFree still works consistently among the
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TABLE 17
Study of the impact of preprocessing on TDT2.

F
Coh SimCount ClustAcc

FastAchor SPA SNPA XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree
3 -592.86 -598.23 -598.23 -402.75 -423.20 19.98 19.28 19.28 34.10 16.60 0.72 0.54 0.54 0.53 0.86
4 -571.27 -582.19 -582.19 -414.37 -486.92 35.62 34.92 34.92 61.72 28.54 0.70 0.50 0.50 0.48 0.80
5 -638.89 -639.02 -639.02 -404.47 -505.67 46.08 46.16 46.16 103.86 52.76 0.67 0.47 0.46 0.43 0.76
6 -630.44 -633.55 -633.55 -425.87 -522.24 78.80 79.20 79.20 141.38 77.98 0.63 0.42 0.43 0.41 0.73
7 -626.67 -632.45 -632.45 -428.69 -542.49 108.74 108.00 108.00 211.38 117.40 0.60 0.39 0.39 0.37 0.70
8 -645.27 -646.20 -646.20 -444.80 -560.88 136.62 135.08 135.08 265.46 162.46 0.56 0.38 0.38 0.36 0.65
9 -649.66 -653.26 -653.26 -431.75 -567.65 162.42 157.52 157.52 348.96 203.00 0.59 0.38 0.38 0.35 0.64

10 -673.52 -671.08 -671.08 -470.14 -577.37 176.62 175.42 175.42 408.64 242.22 0.56 0.35 0.35 0.33 0.64
15 -648.94 -653.55 -653.60 -469.93 -624.34 410.58 417.88 417.50 887.60 715.08 0.48 0.33 0.33 0.31 0.60
20 -648.83 -649.62 -649.40 -483.11 -644.91 687.74 682.70 684.42 1403.94 1377.90 0.45 0.31 0.31 0.30 0.61
25 -644.38 -649.65 -649.65 -507.70 -648.99 1106.58 1112.92 1112.92 1962.22 2256.34 0.43 0.28 0.28 0.29 0.61

best, especially in terms of clustering accuracy; 2) Compared
to the results given in Tables 4–6, the performance of all
methods degrades. We should mention that there are so-
phisticated methods for constructing the P matrix, e.g., Lee
et al. [28]. Our experiments show that the method proposed
by Lee et al. can improve the performance of all algorithms—
and among which AnchorFree still works the best. The
implication is that with a better estimated P , the perfor-
mance of topic mining algorithms can be further improved.
However, we did not include Lee’s method here for more
comparison because the P -construction algorithm is very
costly and hard to implement for Monte-Carlo simulations
at the scale of our experiments.

7 CONCLUSION

In this paper, we considered identifiable anchor-free corre-
lated topic modeling. A topic estimation criterion based on
word-word correlation was proposed and its identifiability
conditions were proven. The proposed approach features
topic identifiability guarantees under a much milder condi-
tion compared to the anchor-word assumption, and thus ex-
hibits better robustness to model mismatch. Two algorithms
based on alternating (small-scale) linear programming and
primal-dual splitting were proposed to deal with the formu-
lated criterion. Experiments on real text corpora showcased
the effectiveness of the proposed approach.
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