
328 IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 3, MARCH 2018

On Identifiability of Nonnegative
Matrix Factorization

Xiao Fu , Kejun Huang , and Nicholas D. Sidiropoulos

Abstract—In this letter, we propose a new identification crite-
rion that guarantees the recovery of the low-rank latent factors
in the nonnegative matrix factorization (NMF) generative model,
under mild conditions. Specifically, using the proposed criterion, it
suffices to identify the latent factors if the rows of one factor are suf-
ficiently scattered over the nonnegative orthant, while no structural
assumption is imposed on the other factor except being full-rank.
This is by far the mildest condition under which the latent factors
are provably identifiable from the NMF model.

Index Terms—Convex analysis, identifiability, nonnegative ma-
trix factorization (NMF), sufficiently scattered.

I. INTRODUCTION

NONNEGATIVE matrix factorization (NMF) [1], [2] aims
to decompose a data matrix into low-rank latent factor

matrices with nonnegativity constraints on (one or both of) the
latent matrices. In other words, given a data matrix X ∈ RM×N

and a targeted rank r, NMF tries to find a factorization model
X = WH�, where W ∈ RM×r and/or H ∈ RN×r take only
nonnegative values and r ≤ min{M,N}.

One notable trait of NMF is model identifiability—the la-
tent factors are uniquely identifiable under some conditions (up
to some trivial ambiguities) if the data are truly generated by
X = WH�. Identifiability is critical in parameter estimation
and model recovery. In signal processing, many NMF-based
approaches have, therefore, been proposed to handle problems
such as blind source separation [3], spectrum sensing [4], and
hyperspectral unmixing [5], [6], where model identifiability
plays an essential role. In machine learning, identifiability of
NMF is also considered essential for applications such as la-
tent mixture model recovery [7], topic mining [8], and social
network clustering [9], where model identifiability is entangled
with interpretability of the results.
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Despite the importance of identifiability in NMF, the analyt-
ical understanding of this aspect is still quite limited, and many
existing identifiability conditions for NMF are not satisfactory
in some sense. Donoho and Stodden [10], Laurberg et al. [11],
and Huang et al. [12] have proven different sufficient conditions
for identifiability of NMF, but these conditions all require that
both of the generative factors W and H exhibit certain spar-
sity patterns or properties. The machine learning and remote
sensing communities have proposed several factorization crite-
ria and algorithms that have identifiability guarantees, but these
methods heavily rely on the so-called separability condition [8],
[13]–[18]. The separability condition essentially assumes that
there is a (scaled) permutation matrix in one of the two latent
factors as a submatrix, which is clearly restrictive in practice.
Recently, Fu et al. [3] and Lin et al. [19] proved that the so-
called volume minimization (VolMin) criterion can identify W
and H without any assumption on one factor (say, W ) except
being full-rank when the other (H) satisfies a condition which
is much milder than separability. However, the caveat is that
VolMin also requires that each row of the nonnegative factor
sums up to 1. This assumption implies loss of generality and is
not satisfied in many applications.

In this letter, we reveal a new identifiablity result for NMF,
which is obtained from a delicate tweak of the VolMin identi-
fication criterion. Specifically, we “shift” the sum-to-one con-
straint on H from its rows to its columns. As a result, we show
that this “constraint-altered VolMin criterion” identifies W and
H with provable guarantees under conditions that are much
more easily satisfied relative to VolMin. This interesting tweak
is seemingly slight, yet the result is significant: putting sum-
to-one constraints on the columns (instead of rows) of H is
without loss of generality, since the bilinear model X = WH�
can always be rewritten as X = WD−1(HD)�, where D is
a full-rank diagonal matrix satisfying Dr,r = 1/‖H :,r‖1 and
H :,r is the rth column of H . Our new result is the only iden-
tifiability condition that does not assume any other structure
beyond the target rank on W (e.g., zero pattern or nonnegativ-
ity) and has natural assumptions on H (relative to the restrictive
row sum-to-one assumption as in VolMin).

II. BACKGROUND

To facilitate our discussion, let us formally define identifia-
bility of constrained matrix factorization.

Definition 1 (Identifiability): Consider a data matrix that is
generated from the model X = W �H

�
� , where W � and H � are

the ground-truth factors. Let (W � ,H�) be an optimal solution
from an identification criterion

(W � ,H�) = arg min
X=W H�

g(W ,H).
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If W � and/or H � satisfy some condition such that for all
(W � ,H�), we have that W � = W �ΠD and H� = H �Π

D−1 , where Π is a permutation matrix and D is a full-rank
diagonal matrix, then we say that the matrix factorization model
is identifiable under that condition.1

For the “plain NMF” model [1], [10], [12], [20], the identifi-
cation criterion g(W ,H) is 1 (or, ∞) if W or H has a negative
element, and 0 otherwise. Assuming that X can be perfectly fac-
tored under the postulated model, the above is equivalent to the
popular least-squares NMF formulation:

minimize
W≥0,H≥0,

∥
∥X − WH�∥∥2

F
. (1)

Several sufficient conditions for identifiability of (1) have been
proposed. Early results in [10] and [11] require that one factor
(say, H) satisfies the so-called the separability condition:

Definition 2 (Separability): A nonnegative matrix H ∈
RN×r is separable if for every k = 1, ..., r, there exists a row
index nk such that Hnk ,: = αke�k , where αk > 0 is a scalar and
ek is the kth coordinate vector in Rr .

With the separability assumption, the works in [10] and
[11] first revealed the reason behind the success of NMF in
many applications—NMF is unique under some conditions. The
downside is that separability is easily violated in practice—see
discussions in [5]. In addition to separability, the conditions
in [10] and [11] also need that W to exhibit a certain zero
pattern. This is also considered restrictive in practice—e.g., in
hyperspectral unmixing, W :,r ’s spectral signatures, which are
always dense. The remote sensing and machine learning com-
munities have come up with many different separability-based
identification methods without assuming zero patterns on W ,
e.g., the volume maximization (VolMax) criterion [8], [13] and
self-dictionary sparse regression [8], [15], [16], [21], [22], re-
spectively. However, the separability condition was not relaxed
in those works.

The stringent separability condition was considerably relaxed
by Huang et al. [12] based on a so-called sufficiently scattered
condition from a geometric interpretation of NMF.

Definition 3 (Sufficiently Scattered): A nonnegative matrix
H ∈ RN×r is sufficiently scattered if 1) cone{H�} ⊇ C, 2)
cone{H�}∗ ∩ bdC∗ = {λek |λ ≥ 0, k = 1, ..., r}, where C =
{x|x�1 ≥ √

r − 1‖x‖2}, C∗ = {x|x�1 ≥ ‖x‖2}, cone{H�}
= {x|x = H�θ,∀θ ≥ 0} and cone{H�}∗ = {y|x�y ≥ 0,∀x

∈ cone{H�}} are the conic hull of H� and its dual cone, re-
spectively, and bd is the boundary of a set.

The main result in [12] is that if both W and H satisfy
the sufficiently scattered condition, then the criterion in (1) has
identifiability. This is a notable result since it was the first prov-
able result in which separability was relaxed for both W and
H . The sufficiently scattered condition essentially means that
cone{H�} contains C as its subset, which is much more relaxed
than separability that needs cone{H�} to contain the entire
nonnegative orthant; see Fig. 1.

On the other hand, the zero-pattern assumption on W and
H are still needed in [12]. Another line of work removed the
zero pattern assumption from one factor (say, W ) by using a

1Whereas identifiability is usually understood as a property of a given model
that is independent of identification criteria, NMF can be identifiable under a
suitable identification criterion, but not under another, as will be seen.

Fig. 1. Illustration of the separability (left) and sufficiently scattered (right)
conditions by assuming that the viewer stands in the nonnegative orthant and
faces the origin. The dots are rows of H, the triangle is the nonnegative orthant,
the circle is C, and the shaded region is cone{H�}. Clearly, separability is
special case of the sufficiently scattered condition.

Fig. 2. Intuition of VolMin. The shaded region is conv{W :,1 , . . . , W :,r },
the dots are X:,n ’s dash lines are enclosing convex hulls, and the bold dashed
lines comprise the minimum-volume data-enclosing convex hull.

different identification criterion [3], [19]:

minimize
W∈RM ×r ,H∈RN ×r

det
(

W�W
)

(2a)

subject to X = WH� (2b)

H1 = 1,H ≥ 0 (2c)

where 1 is an all-one vector with proper length. Criterion (2)
aims at finding the minimum-volume (measured by determinant)
data-enclosing convex hull (or simplex) and is also a popular
criterion in the NMF literature [23]–[25]. The main result in [3]
is that if the ground truth H ∈ {Y ∈ RN×r |Y 1 = 1,Y ≥ 0}
and H is sufficiently scattered, then the VolMin criterion iden-
tifies the ground truth W and H . This very intuitive result is
illustrated in Fig. 2: if H is sufficiently scattered in the non-
negative orthant, X :,n ’s sufficiently spread in the convex hull2

spanned by the columns of W . Then, finding the minimum-
volume data-enclosing convex hull recovers the ground truth
W . This result resolves the long-standing Craig’s conjecture in
remote sensing [26] proposed in the 1990s.

The VolMin identifiability condition is intriguing, since it
completely sets W free—there is no assumption on the ground
truth W except for being full-column rank, and it has a very
mild assumption on H . There is a caveat, however: The VolMin
criterion needs an extra condition on the ground truth H ,
namely H1 = 1, so that the columns of X all live in the convex
hull (not conic hull as in the general NMF case) spanned by the
columns of W —otherwise, the geometric intuition of VolMin in
Fig. 2 does not make sense. Many NMF problem instances stem-
ming from applications do not naturally satisfy this assumption.
The common trick is to normalize the columns of X using their
�1-norms [14] so that an equivalent model with this sum-to-one
assumption holding is enforced—but normalization only works
when the ground truth W is also nonnegative. This raises a nat-
ural question: Can we essentially keep the advantages of VolMin
identifiability (namely, no structural assumption on W (other
than low-rank) and no separability requirement on H) without
assuming sum-to-one on the rows of the ground truth H?

2The convex hull of W is defined as conv{W :,1 , . . . , W :,r } = {x|x =
Wθ, ∀θ ≥ 0, 1�θ = 1}.



330 IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 3, MARCH 2018

TABLE I
DIFFERENT ASSUMPTIONS ON W AND H FOR IDENTIFIABILITY OF NMF

Plain [12] Self-dict VolMax VolMin Proposed
[15], [16], [22] [8], [13] [3], [19]

W NN, Suff NN, Full-rank NN, Full-rank NN, Full-rank Full-rank
(Full-rank) (Full-rank) (Full-rank)

H NN, Suff NN, Sep NN, Sep NN, Suff NN, Suff
(NN, Sep (NN, Sep (NN, Suff
row sto) row sto) row sto)

Note: “NN” means nonnegativity, “Sep.” means separability, “Suff.” denotes the suffi-
ciently scattered condition, and “sto” denotes sum-to-one. The conditions in “(·)” give an
alternative set of conditions for the corresponding approach.

III. MAIN RESULT

Our main result in this letter fixes the issues with the VolMin
identifiability. Specifically, we show that, with a careful and
delicate tweak to the VolMin criterion, one can identify the
model X = WH�without assuming the sum-to-one condition
on the rows of H:

Theorem 1: Assume that X = W �H
�
� where W � ∈ RM×r

and H � ∈ RN×r and that rank(X) = rank(W �) = r. Also,
assume that H � is sufficiently scattered. Let (W � ,H�) be the
optimal solution of the following identification criterion:

minimize
W∈RM ×r ,H∈RN ×r

det
(

W�W
)

(3a)

subject to X = WH� (3b)

H�1 = 1,H ≥ 0. (3c)

Then, W � = W �ΠD and H� = H �ΠD−1 must hold, where
Π and D denotes a permutation matrix and a full-rank diagonal
matrix, respectively,

At first glance, the identification criterion in (3) looks
similar to VolMin in (2). The difference lies between (2c)
and (3c). In (3c), we “shift” the sum-to-one condition to the
columns of H , rather than enforcing it on the rows of H .
This simple modification makes a big difference in terms of
generality: Enforcing columns of H to be sum-to-one entails
no loss in generality, since in bilinear factorization models like
X = WH�, there is always an intrinsic scaling ambiguity
of the columns. In other words, one can always assume the
columns of H are scaled by a diagonal matrix and then counter
scale the corresponding columns of W , which will not affect
the factorization model, i.e., X = (WD−1)(HD)� still holds.
Therefore, there is no need for data normalization to enforce
this constraint, as opposed to the VolMin case. In fact, the
identifiability of (3) holds for H�1 = ρ1 for any ρ > 0—we
use ρ = 1 only for notational simplicity.

We should mention that avoiding normalization may benefit
some applications. For example, it was reported in the literature
that normalization degrades performance of text mining signif-
icantly, since it usually worsens the conditioning of the data
matrix [27]. In addition, as mentioned, in applications where
W naturally contains negative elements (e.g., channel identifi-
cation in MIMO communications), even normalization cannot
enforce the VolMin model.

It is worth noting that the criterion in Theorem 1 has by far the
most relaxed identifiability conditions for NMF. A detailed com-
parison of different NMF conditions is listed in Table I, where
one can see that Criterion (3) works under the mildest conditions
on both H and W . Specifically, compared to plain NMF, the

new criterion does not assume any structure on W ; compared to
VolMin, it does not need the sum-to-one assumption on the rows
of H or nonnegativity of W ; it also does not need separability,
which is inherited from the advantage of VolMin.

In the next section, we will show the proof of Theorem 1. We
should remark that although it seems that shifting the sum-to-
one constraint to the columns of H is a “small” modification to
VolMin, the result in Theorem 1 was not obvious at all before
we proved it: by this modification, the clear geometric intuition
of VolMin no longer holds—the objective in (3) no longer corre-
sponds to the volume of a data-enclosing convex hull and has no
geometric interpretation. Indeed, our proof for the new criterion
is purely algebraic rather than geometric.

IV. PROOF OF THEOREM 1

The major insights of the proof are evolved from the VolMin
work of the authors and variants [3], [28], [29], with proper mod-
ifications to show Theorem 1. To proceed, let us first introduce
the following classic lemma in convex analysis.

Lemma 1 (see[30]): If K1 and K2 are convex cones and
K1 ⊆ K2 , then, K∗

2 ⊆ K∗
1 , where K∗

1 and K∗
2 denote the dual

cones of K1 and K2 , respectively.
Our purpose is to show that the optimization criterion in

(3) outputs W � and H� that are the column-scaled and per-
muted versions of the ground truth W � and H � . To this end,
let us denote (Ŵ ∈ RM×r , Ĥ ∈ RN×r ) as a feasible solution
of Problem (3) that satisfies the constraints in (3), i.e.,

X = Ŵ Ĥ
�
, Ĥ

�
1 = 1, Ĥ ≥ 0. (4)

Note that X = W �H
�
� and that W � has full-column rank. In

addition, since H � is sufficiently scattered, rank(H �) = r also
holds [29, Lemma 1]. Consequently, there exists an invertible
A ∈ Rr×r such that

Ĥ = H �A, Ŵ = W �A
−�. (5)

This is because Ŵ and Ĥ have to admit full-column rank,
and thus, H � and Ĥ span the same subspace. Otherwise,
rank(X) = r cannot hold. Since (4) holds, one can see that

Ĥ
�
1 = A�H�

�1 = A�1 = 1. (6)

Note, here, that we implicitly used H�
�1 = 1, which can be

assumed without loss of generality due to the intrinsic scaling
ambiguity of any matrix factorization model. By (4), we also
have H �A ≥ 0. By the definition of a dual cone, H �A ≥ 0
means that ai ∈ cone{H�

�}∗, where ai is the ith column of
A, for all i = 1, ..., r. Because H � is sufficiently scattered, we
have that C ⊆ cone{HT

� } which, together with Lemma 1, leads
to cone{H�

�}∗ ⊆ C∗. This further implies that ai ∈ C∗, which
means ‖ai‖2 ≤ 1�ai , by the definition of C∗. Then, we have the
following chain:

|det(A)| ≤
r∏

i=1

‖ai‖2 (7a)

≤
r∏

i=1

1�ai (7b)

= 1 (7c)
where (7a) is Hadamard’s inequality, and (7b) is due to ai ∈C∗.

Now, suppose that the equality is attained, i.e., |det(A)| =
1; then, all the inequalities in (7) hold as equality, and
specifically, (7b) means that the columns of A lie on the
boundary of C∗. Recall that ai ∈ cone{H�

�}∗, and H � being
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sufficiently scattered, according to the second requirement
in Definition 3, shows that cone{H�

�}∗ ∩ bdC∗ = {λek |λ ≥
0, k = 1, ..., r}; therefore, ais can only be the ek s. In other
words, A can only be a permutation matrix.

Suppose that an optimal solution H� of (3) is not a col-
umn permutation of H � . Since W � and H � are clearly feasi-
ble for (3), this means that det(W�

�W �) ≤ det(W�
�W �). We

also know that for every feasible solution, including W � and
H� , (5) holds, which means that we have H� = H �A and
W � = W �A

−� hold for a certain invertible A ∈ Rr×r . Since
H � is sufficiently scattered, according to (7b) and our assump-
tion that A is not a permutation matrix, we have |det(A)| < 1.
However, the optimal objective of (3) is

det(W�
�W �) = det(A−1W�

�W �A
−�)

= det(A−1) det(W�
�W �) det(A−�)

= |det(A)|−2 det(W�
�W �)

> det(W�
�W �)

which contradicts our first assumption that (W � ,H�) is an
optimal solution for (3). Therefore, H� must be a column per-
mutation of H � . Q.E.D.

As a remark, the proof of Theorem 1 follows the same ratio-
nale of that of the VolMin identifiability as in [3]. The critical
change is that we have made use of the relationship between
sufficiently scattered H and the inequality in (7) here. This in-
equality appeared in [28] and [29] but was not related to the
bilinear matrix factorization criterion in (3)—which might be
by far the most important application of this inequality. The
interesting and surprising point is that, by this simple yet deli-
cate tweak, the identifiability criterion can cover a substantially
wider range of applications, which naturally involve W ’s that
are not nonnegative.

V. VALIDATION AND DISCUSSION

The identification criterion in (3) is a nonconvex optimization
problem. In particular, the bilinear constraint X = WH� is not
easy to handle. However, the existing workarounds for handling
VolMin can all be employed to deal with Problem (3). One pop-
ular method for VolMin is to first take the singular value decom-
position (SVD) of the data X = UΣV�, where U ∈ RM×r ,
Σ ∈ Rr×r , and V ∈ RN×r . Then, V� = W̃H� holds, where
W̃ ∈ Rr×r is invertible because V and H span the same range
space. One can use (3) to identify H from the data model
X̃ = V� = W̃H�. Since W̃ is square and nonsingular, it has

an inverse Q = W̃
−1

. The identification criterion in (3) can
be recast as maxQ∈Rr×r |det (Q) |, s.t.QX̃1 = 1,QX̃ ≥ 0.
This reformulated problem is much more handy from
an optimization point of view. To be specific, one can
fix all the columns in Q except one, e.g., qi . Then,
the optimization w.r.t. qi is a linear function, i.e.,
det(Q) =

∑r
i=1(−1)i+kQk,i det(Qk,i) = p�qi , where p =

[p1 , . . . , pr ]�, pk = (−1)i+k det(Qk,i),∀k = 1, ..., r, and Qk,i
is a submatrix of Q without the kth row and ith column of Q.
Maximizing |p�qi | subject to linear constraints can be solved
via maximizing both p�qi and −p�qi , followed by picking the
solution that gives larger absolute objective. Then, cyclically
updating the columns of M results in an alternating optimiza-
tion (AO) algorithm. Similar SVD and AO-based solvers were

TABLE II
MSES OF THE ESTIMATED Ĥ

Method MSE of H
case 1 (sp. W ) case 2 (den. W ) case 3 (Gauss. W )

Plain (r = 5) 5.49E-05 0.0147 0.7468
VolMin (r = 5) 1.36E-08 7.31E-10 1.0406
Proposed (r = 5) 7.32E-18 7.78E-18 8.44E-18
Plain (r = 10) 4.82E-04 0.0403 0.8003
VolMin (r = 10) 8.64E-09 8.66E-09 1.2017
Proposed (r = 10) 6.54E-18 5.02E-18 6.38E-18

proposed to handle VolMin and its variants in [25], [28], and
[29], and empirically good results have been observed. Note that
the AO procedure is not the only possible solver here. When the
data are very noisy, one can reformulate the problem in (3) as

minW ,H�1=1,H≥0

∥
∥X − WH�∥∥2

F
+ λ det(W�W), where

λ > 0 balances the determinant term and the data fidelity. Many
algorithms for regularized NMF can be employed and modified
to handle the above.

An illustrative simulation is shown in Table II to showcase
the soundness of the theorem. In this simulation, we generate
X = W �H

�
� with r = 5, 10 and M = N = 200. We tested

several cases.
1) W � ≥ 0, H � ≥ 0, and both W � and H � are sufficiently

scattered.
2) W � ≥ 0, H � ≥ 0, and H � is sufficiently scattered but

W � is completely dense.
3) W � follows the independent and identically distributed

(i.i.d.) normal distribution, and H � ≥ 0 is sufficiently
scattered.

We generate sufficiently scattered factors following [31]—i.e.,
we generate the elements of a factor following the uniform
distribution between zero and one and zero out 35% of its
elements, randomly. This way, the obtained factor is empir-
ically sufficiently scattered with an overwhelming probabil-
ity. We employ the algorithm for fitting-based NMF in [20],
the VolMin algorithm in [32], and the described algorithm
to handle the new criterion, respectively. We measure the
performance of different approaches by measuring the mean
squared error (MSE) of the estimated Ĥ , which is defined as

MSE = minπ∈Π
1
r

∑r
k=1 ‖

H� : , k
‖H� : , k ‖2

− Ĥ : , π k

‖Ĥ : , π k
‖2
‖2

2 , where Π is

the set of all permutations of {1, 2, . . . , r}. The results are ob-
tained by averaging 50 random trials.

Table II matches our theoretical analysis. All the algorithms
work very well on case 1, where both W � and H � are sparse
(sp.) and sufficiently scattered. In case 2, since W is nonnega-
tive yet dense (den.), plain NMF fails as expected, but VolMin
still works, since normalization can help enforce its model when
W ≥ 0. In case 3, when W follows the i.i.d. normal distribu-
tion, VolMin fails since normalization does not help, while the
proposed method still works perfectly.

To conclude, in this letter, we discussed the identifiability
issues with the current NMF approaches. We proposed a new
NMF identification criterion that is a simple yet careful tweak of
the existing VolMin criterion. We show that, by slightly modify-
ing the constraints of VolMin, the identifiability of the proposed
criterion holds under the same sufficiently scattered condition
in VolMin, but the modified criterion covers a much wider range
of applications including the cases where one factor is not non-
negative. This new criterion offers identifiability to the largest
variety of cases among the known results.
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