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Abstract—To overcome the curse of dimensionality in joint
probability learning, recent work has proposed to recover the
joint probability mass function (PMF) of an arbitrary number
of random variables (RVs) from three-dimensional marginals,
exploiting the uniqueness of tensor decomposition and the (un-
known) dependence among the RVs. Nonetheless, accurately
estimating three-dimensional marginals is still costly in terms
of sample complexity. Tensor decomposition also poses a compu-
tationally intensive optimization problem. This work puts forth
a new framework that learns the joint PMF using pairwise
marginals that are relatively easy to acquire. The method is built
upon nonnegative matrix factorization (NMF) theory, and features
a Gram–Schmidt-like economical algorithm that works provably
well under realistic conditions. Theoretical analysis of a recently
proposed expectation maximization (EM) algorithm for joint PMF
recovery is also presented. In particular, the EM algorithm
is shown to provably improve upon the proposed pairwise
marginal-based approach. Synthetic and real-data experiments
are employed to showcase the effectiveness of the proposed
approach.

Index Terms—joint probability learning, nonnegative matrix
factorization, probability tensors, two-dimensional marginals

I. INTRODUCTION

Many learning and inference tasks in high-dimensional
statistics boil down to estimating/approximating the joint prob-
ability of a set of random variables (RVs). However, in the
high-dimensional regime, directly estimating the joint proba-
bility via “structure-free” methods such as sample averaging
is considered not viable—due to the need of a huge amount of
data. Many workarounds, e.g., linear estimators, kernels, and
neural networks, have been proposed for combating this curse
of dimensionality [1]. However, the fundamental challenge of
estimating the joint probability from limited data remains.

Very recently, Kargas et al. proposed a new framework for
blindly estimating the joint probability mass function (PMF)
of N discrete finite-alphabet RVs [2] by modelling the N -
dimensional joint PMF as an N th-order tensor. The work
in [2] shows that if the RVs are “reasonably dependent”,
the joint PMF can be recovered via jointly decomposing
the three-dimensional marginal PMFs (which are third-order
tensors). The approach does not use any a priori structural
information of the RVs, and the recoverability of the joint
PMF is provably guaranteed [2]. The work in [2] has shown
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promising results, but a couple of major challenges remain.
First, estimating third-order marginals accurately is not a
trivial task, since real-life high-dimensional data are often
very sparse. Second, computing coupled third-order tensor
decomposition poses a challenging and resource-consuming
optimization problem, which in general does not have known
polynomial-time solvers.

Instead of working with a large number of third-order
marginals, a recent work in [3] offers an expectation maximiza-
tion (EM) algorithm that directly estimates the latent factors
of the N th-order probabilistic tensor. The EM algorithm is
well-motivated, since it tackles the the maximum likelihood
estimator (MLE). In addition, it admits simple and economical
updates, and thus is quite scalable. However, unlike the tensor-
based approach in [2], it is unclear if the recoverability of
the joint PMF can be guaranteed using EM and the MLE.
In addition, since the ML estimation problem is nonconvex,
convergence properties of the EM algorithm is unclear.

In this work, we propose a new framework that offers
provable recoverability of the joint PMF and at the same
time enjoys low sample and computational complexities. To
be specific, we propose an approach that utilizes only pairwise
marginals to recover the joint PMF of an arbitrary number of
discrete finite-alphabet RVs. This way, the sample complex-
ity is substantially reduced relative to the three-dimensional
marginal-based approach in [2]. We propose a pragmatic and
easy-to-implement joint PMF estimation procedure, which is
based on performing a simple and scalable Gram–Schmidt
(GS)-like algorithm (namely, the successive projection algo-
rithm [4]) on a carefully constructed “virtual nonnegative
matrix factorization (NMF)” model. We also show that the
EM algorithm in [3] can provably recover the joint PMF tensor
if initialized properly, e.g., using our GS-like algorithm. We
illustrate the effectiveness of the proposed approach using a
number of synthetic and real-data experiments.

II. PROBLEM STATEMENT

Consider a set of discrete and finite-alphabet RVs, i.e.,
Z1, . . . , ZN . We will use Pr(i1, . . . , iN ) as the shorthand
notation to represent Pr(Z1 = z

(i1)
1 , . . . , ZN = z

(iN )
N ) in

the sequel, where {z(1)n , . . . , z
(In)
n } denotes the alphabet of

Zn. The work in [2] shows a connection between joint PMFs
and low-rank tensors under the canonical polyadic decompo-



sition (CPD) model. To be specific, if an N -th order tensor
X ∈ RI1×I2×···×IN has CP rank F , it can be written as:

X(i1, i2, . . . , iN ) =

F∑
f=1

λ(f)

N∏
n=1

An(in, f), (1)

where An ∈ RIn×F is called the mode-n latent factor.
In the above, λ = [λ(1), . . . ,λ(F )]T with ‖λ‖0 = F is
employed to “absorb” the norms of columns. The work in [2]
shows that any joint PMF admits a naive Bayes (NB) model
representation. It follows that the joint PMF of {Zn}Nn=1 can
always be decomposed as

Pr(i1, i2, . . . , iN ) =

F∑
f=1

Pr(f)

N∏
n=1

Pr(in|f), (2)

where Pr(f) := Pr(H = f) is the prior distribution of a latent
variable H and Pr(in|f) := Pr(Zn = z

(in)
n |H = f) are the

conditional distributions. Consequently, one can represent any
joint PMF as an N th-order tensor by letting X(i1, . . . , iN ) =
Pr(i1, . . . , iN ) and An(in, f) = Pr(in|f), λ(f) = Pr(f) (see
more details in [2]).

The approach in [2] showed that if one has access to three-
dimesional marginals, i.e, Pr(ij , ik, i`) for different j, k, `,
then the joint PMF can be provably recovered through a
latent factor-coupled tensor decomposition approach—if the
tensor rank F is small (meaning that if the N RVs are
reasonably dependent). However, estimating Pr(ij , ik, i`) is
still not easy, since one needs many co-realizations of three
RVs. In addition, jointly decomposing a large number of third-
order tensors poses a challenging optimization problem, whose
global optimality is not guaranteed. The more recent work
by Yeredor and Haardt in [3] takes an ML perspective and
directly estimates the model parameters in (2) using an EM
algorithm. The algorithm admits economical updates, and is
effective if carefully initialized, e.g., using a coupled tensor
decomposition algorithm. Nonetheless, the ML formulation’s
recoverability properties are unclear. Since the ML estimator
is a nonconvex optimization criterion, it is also unclear if the
EM algorithm converges to the desired latent factors or not.

III. PROPOSED APPROACH

Our idea is to utilize pairwise marginals instead of the
three-dimensional marginals. Under the naive Bayes model,
the pairwise marginals can be expressed as Pr(ij , ik) =∑F
f=1 Pr(f)Pr(ij |f)Pr(ik|f), or, equivalently,

Xjk = AjD(λ)A>k, Xjk(ij , ik) = Pr(ij , ik),

where D(λ) = Diag(λ) and {An}Nn=1 and λ are defined as
before. It is readily seen that if An’s and λ can be identified
from the marginals, Pr(i1, . . . , iN ) can be recovered by (2).

In practice, the pairwise marginalsXjk’s are estimated from
realizations of the joint PMF. Consider a set of realizations
(data samples) of Pr(Z1, . . . , ZN ), denoted as {ds ∈ RN}Ss=1.
Assuming that there is no missing observations, the following
sample averaging estimator can employed:

X̂jk(ij , ik) =
1

S

S∑
s=1

I
[
ds(j) = z

(ij)
j ,ds(k) = z

(ik)
k

]
,

where ds(n) denotes the realization of Zn in the s-th data
sample and I[E] = 1 if the event E happens and I[E] = 0
otherwise. Note that using such sample averaging schemes,
the pair-wise marginals can be estimated to a much higher
accuracy compared to the three-dimensional ones, under the
same amount of data sample; see, e.g., [5].

However, recoverability of the joint PMF using pairwise
marginals is nontrivial to establish. The marginal distributions,
i.e., Xjk = AjD(λ)A>k for all j, k, are matrices, and low-
rank matrix decomposition is in general nonunique—while
uniqueness of the employed factorization model was the key
stepping stone in [2] to establish recoverability for the joint
PMF from the three-dimensional marginals. A natural thought
to handle the identifiability problem would be employing
certain NMF tools [6], [7], since the latent factors are all
nonnegative, per their physical interpretations. However, the
identifiability of NMF models holds only if F ≤ min{Ij , Ik}
(and preferably F � min{Ij , Ik}). The pairs Xjk =
AjD(λ)A>k ∈ RIj×Ik inherit the inner dimension F (i.e.,
the column dimension of Aj) from the joint PMF of all the
variables, which is the tensor rank of an N th-order tensor.
Note that the tensor rank F could be much larger than the
Ij’s [8]. Hence, one may not directly use the available NMF
uniqueness results on individual Xjk’s to argue for joint PMF
recoverability.

A. A Virtual NMF-based Approach

To see how we approach these challenges, consider a split-
ting of the indices of the N variables, i.e., S1 = {`1, . . . , `M}
and S2 = {`M+1, . . . , `N} such that S1 ∪ S2 = {1, . . . , N}
and S1 ∩ S2 = ∅, where ∅ denotes the empty set. Then, we
construct the following matrix:

X̃ =

X`1`M+1
. . . X`1`N

...
...

...
X`M `M+1

. . . X`M `N

 = WH>, (3)

where W = [A>`1 , . . . ,A
>
`M

]> ∈ RMI×F and H =

D[A>`M+1
, . . . ,A>`N ]> ∈ R(N−M)I×F , respectively, if I1 =

. . . = IN = I . Note that W and H are both non-negative
and thus (3) is an NMF model. By constructing X̃ such that
F ≤ min{MI, (N −M)I}, the identifiability of W and H
can be established using certain NMF tools. One celebrated
condition is the so-called separability [6]:

Definition 1 (Separability) If H ≥ 0, and Λ = {l1, . . . , lF }
such that H(Λ, :) = Σ holds, where Σ = Diag(α1, . . . , αF )
and αf > 0, then, H satisfies the separability condition.

Under the exact separability condition on H , we have
H(Λ, :) = Σ = Diag(α1, . . . , αF ) and WΣ = X(Λ, :).
Hence, the coupled NMF task boils down to identifying the
index set Λ. The successive projection algorithm (SPA) from
the NMF literature [4] can be employed for this purpose.
Notably, this algorithm admits Gram–Schmidt-like economical
and scalable updates and is provably robust to noise.



Once W is identified, we can recover A`n ∈ RI`n×F for
`n ∈ S1 up to identical column permutations, by extracting the
corresponding rows of W . Unlike general NMF models, since
we know every column of An is a conditional PMF, there is
no scaling ambiguity. The H matrix can be estimated using
(constrained) least squares, and A`n for `n ∈ S2 can then be
extracted in the similar way. Denote (3) as X̃ = WD(λ)H̃>,
where H̃ =

[
A>`M+1

. . .A>`N
]>

. Then, the PMF of the latent
variable can be estimated via λ = (H̃ �W )†vec(X̃) where
we have used the fact that the Khatri-Rao product H̃�W has
full column rank since both W and H̃ have full column rank.
Note that the permutation ambiguity across An’s and λ are
identical. Hence, the existence of column permutations does
not affect the “assembling” of Pr(in|f) and Pr(f) to recover
Pr(i1, . . . , iN ). We refer to this procedure as coupled NMF
via SPA (CNMF-SPA); see Algorithm 1.

Algorithm 1: CNMF-SPA
input : data samples {ds}Ss=1 and M

1 estimate second order statistics X̂jk;
2 split {1, . . . , N} into S1 = {1, . . . ,M} and
S2 = {M + 1, . . . , N};

3 Construct X̃;
4 Estimate Ŵ using the SPA algorithm [4] to select Λ;
5 for n = 1 to M do
6 Ân ← Ŵ ((n− 1)In + 1 : nIn, :);
7 normalize columns of Ân with respect to `1 norm;
8 end
9 Ĥ ← arg min

H≥0
‖X̃ − ŴH>‖2F;

10 for n = M + 1 to N do
11 Ân ← Ĥ((n− 1)In + 1 : nIn, :);
12 normalize columns of Ân with respect to `1 norm;
13 end
14 W̃>←

[
Â>1, . . . , Â

>
M

]
;

15 H̃>←
[
Â>M+1 . . . Â

>
N

]>
;

16 λ̂← (H̃ � W̃ )†vec(X̃);
output: estimates {Ân}Nn=1, λ̂.

B. Performance Analysis

The CNMF-SPA procedure looks simple, but several caveats
exist. First, SPA only works if one can construct S1 and S2
such that H in (3) satisfies the separability condition. Testing
all combinations of S1 and S2 gives a rise to a combinitorial
problem, which is apparently impossible. Second, the pairwise
marginals Xij are estimated through a finite number of data
samples, and typically there are many missing values in differ-
ent data samples (i.e., not all the realizations of Z1, . . . , Zn are
observed in any ds)—which both make the estimated pairwise
marginals very noisy. It is unclear how the performance of
CNMF-SPA is affected.

In practice, we observe that using the “naive” construction
S1 = {1, . . . ,M} and S2 = {M + 1, . . . , N} seems to work
reasonably well, even if the number of samples is finite and
many missing values exist. To understand such effectiveness,
we assume that S realizations of Pr(Z1, . . . , ZN ) are available.
In each realization, every variable is observed with probability

p—which determines how much is missing in the dataset. For
simplicity, we also assume that In = I for all n and utilize
the following generative model for the nonnegative Am’s:

Assumption 1 Assume that the rows of Am’s are generated
from the (F −1)-probability simplex uniformly at random and
then positively scaled, so that 1>Am = 1 is respected.

Under the above settings, we show that the following holds:

Theorem 1 Assume that ‖X̂ij(:, q)‖1 ≥ η > 0 for any q, i, j.
Also, assume that M ≥ F/I , p ≥

(
8
S log(4/δ)

)1/2
,

S = Ω

(
M2Ilog(1/δ)

σ2
max(W )η2ε2p2

)
,

N = M + Ω

(
ε−2(F−1)

IF
log

(
F

δ

))
,

where ε =
Mmin

(
1

2
√

F−1
, 14

)
2κ(W )(1+80κ2(W )) . Then, under the defined S, p

and Assumption 1, CNMF-SPA outputs Âm’s such that

min
Π: permuation

‖ÂmΠ−Am‖2 = O
(
κ2(W )

√
Fζ
)

(4)

for m ∈ S1 with a probability greater than or equal to 1− δ,
where ζ = max(σmax(W )ε,M

√
I log(1/δ)/ηp

√
S).

The proof can be found in a long version of the paper in the
appendix. Note that if Am for all m ∈ S1 can be accurately
estimated, the estimation accuracy of An for all n ∈ S2 and
λ can also be guaranteed and quantified, following standard
sensitivity analyses of least squares. We leave this part out of
the work for conciseness.

Remark 1 Theorem 1 is not entirely surprising. The insight
behind is to model the finite sample-induced noise and the
violation of separability as combined virtual noise, and then
utilize the robustness of SPA [4]. The challenge lies in quan-
tifying this virtual noise, for which we leverage concentration
theorems and Assumption 1. We would like to remark that
Assumption 1 is a working assumption for us to understand
the effectiveness of CNMF-SPA under the naive S1 and S2.
The key fact is that when |S2| grows, H in (3) has a good
chance to attain the separability condition approximately [9]
under Assumption 1. In principle, this fact holds if the rows
of Am are drawn from any joint continuous distribution, but
using the uniform distribution assumed in Assumption 1 helps
simplify the analysis.

C. Refinement via EM and Optimality Guarantees

In [3], Yeredor and Haardt proposed an EM algorithm to
handle the ML estimator for the naive Bayes model in (2).
Using MLE exhibits promising performance for joint PMF
recovery—after all the MLE is a “gold standard” for statistical
learning. However, the EM algorithm often converges to
undesired solutions, if randomly initialized. This is perhaps
due to the nonconvex nature of the MLE problem. As observed



in [3], using good initialization may improve the performance
of EM. However, quantification for the required quality of the
initial estimates has been elusive.

In this work, we offer theoretical supports for the EM
algorithm in [3]. To be specific, we show that, with good initial
estimations for An and λ (e.g., those output by CNMF-SPA),
the EM algorithm improves the solution towards the groud
truth. To proceed, we make the following assumption:

Assumption 2 Define D1 and D2 as follows:

D1 = min
f 6=f ′

1

N

N∑
n=1

pDKL(An(:, f),An(:, f ′)),

D2 =
2

N
min
f 6=f ′

log(λ(f)/λ(f ′)).

and D = (D1+D2)/2. Assume that An,λ and the initial esti-
mates Â0

n, λ̂
0 satisfy |Â0

n(i, f)−An(i, f)| ≤ δ1 := 4
ρ1(4+D)

,

An(i, f) ≥ ρ1, |λ̂0(f) − λ(f)| ≤ δ2 := 4
ρ2(4+ND)

and
λ(f) ≥ ρ2 for all n, i, f .

Note that D1 characterizes the “conditioning” of An under
the Kullback-Leibler (KL) divergence (denoted by DKL(·, ·))
sense, and |D2| measures how far λ is away from the uniform
distribution. Under the above assumption, we show that the
EM algorithm improves upon the initialization:

Theorem 2 Let δmin = min(δ1, δ2). Assume that the follow-
ing hold:

N ≥ max

(
33 log(3SF/µ)

ρ1D1

,
4 log(4SF 2/(3pρ2µ))

D

)
,

S ≥ 192F 2 log(12NFI/µ)

p2ρ22δ
2
min

, D ≥ max

{
8− 4ρ21
ρ21

,
8− 4ρ22
Nρ22

}
.

Then, under Assumption 2, the EM algorithm in [3] outputs
Ân(i, f), λ̂(f) that satisfy the following with a probability
greater than or equal to 1− µ:

|Ân(i, f)−An(i, f)|2 ≤ 48 log(12NFI/µ)

Spλ(f)
≤ δ21 ,

|λ̂(f)− λ(f)|2 ≤ 192F 2λ(f) log(12NFI/µ)

S
≤ δ22 .

The proof of the theorem can be found in a longer version
of the paper in the appendix. Our proof extends the analysis
of a different EM algorithm proposed in [10] that is designed
for learning the Dawid-Skene model in crowdsourcing. The
EM algorithm there effectively learns a naive Bayes model
when the latent variable is uniform. Our analysis covers the
more recent EM algorithm in [3] that can handle λ’s who have
general PMFs beyond the uniform distribution.

Since CNMF-SPA is a natural economical initialization for
Yeredor and Haardt’s EM, we combine the two algorithms
together and refer to this procedure as CNMF-SPA-EM.

IV. EXPERIMENTS

In this section, we present experiments to showcase the
effectiveness of the proposed framework.

TABLE I: MSE & MRE for N = 5, F = 5, I = 10, p = 0.5

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA [Proposed] MSE 0.0702 0.0257 0.0211 0.0204
CNMF-SPA-EM [Proposed] MSE 0.0560 0.0230 0.0207 0.0204

RAND-EM [3] MSE 0.0855 0.0405 0.0298 0.0502
CTD [2] MSE 0.1589 0.0260 0.0211 0.0205

CTD-EM [3] MSE 0.1196 0.0233 0.0208 0.0204
CNMF-SPA [Proposed] MRE 0.8084 0.3228 0.1137 0.0356

CNMF-SPA-EM [Proposed] MRE 0.6922 0.2077 0.0682 0.0219
RAND-EM [3] MRE 0.8285 0.3399 0.2226 0.3931

CTD [2] MRE 0.9237 0.3081 0.0955 0.0309
CTD-EM [3] MRE 0.8312 0.2180 0.0681 0.0220

TABLE II: MovieLens Action Movies set

Algorithm RMSE MAE Time (s)
CNMF-SPA [Proposed] 0.8536±0.0071 0.6679±0.0061 0.029

CNMF-SPA-EM [Proposed] 0.7761±0.0039 0.5936±0.0039 2.554
CTD [2] 0.8792±0.0137 0.6640±0.0104 17.808

CTD-EM [3] 0.7872±0.0053 0.6038±0.0076 20.578
BMF [11] 0.8020±0.0015 0.6268±0.0017 45.967

Global Average 0.9471±0.0010 0.6954±0.0010 –
User Average 0.8960±0.0012 0.6834±0.0007 –

Movie Average 0.8844±0.0009 0.6979±0.0008 –

A. Synthetic Data

We consider N = 5 RV’s where each variable takes
I = 10 discrete values. The columns of the conditional
PMF matrices (factor matrices) An ∈ RIn×F and the prior
probability vector λ ∈ RF are generated with F = 5. The
so-called ε-separability condition on H in (3) holds with
ε = 0.1; see the definition of ε-separability in [9]. We generate
S realizations of the joint PMF and randomly hide each
variable’s realization with probability p = 0.5. We fix M = 3.
The mean squared error (MSE) of the factors and the mean
relative error (MRE) of the recovered joint PMFs (see [2])
are evaluated. MRE is more preferred for evaluation, but it
is hard to compute (due to memory issues) for large N . The
results are averaged from 20 random trials. We benchmark our
method using the EM algorithm by Yeredor and Haardt [3]
initialized by random guesses (denoted as RAND-EM) and an
alternating optimization (AO) algorithm-based coupled tensor
decomposition (CTD) (denoted as CTD-EM), respectively.

Table I shows that the proposed approaches CNMF-SPA and
CNMF-SPA-EM exhibit promising performance. In particular,
CNMF-SPA is effective for initializing the EM algorithm
whereas RAND-EM sometimes struggles to attain good per-
formance. CTD-EM also works well when S is large, perhaps
because the CTD stage needs a large S to estimate the three-
dimensional marginals accurately.

B. Real Data : Recommender Systems

We test the approaches using the MovieLens 20M dataset
[12], which has many missing values. We first round the
ratings to the closest integers so that every movie’s rating
resides in {1, 2, . . . , 5}. We choose select a subset of movies
from the action movie genre. This way, Zi for i = 1, . . . , 30
represent the ratings of movie i, and all Zi’s alphabets are
{1, 2, . . . , 5}. We predict the rating for a movie (e.g., movie
N ) by user k via computing E[iN |rk(1), . . . , rk(N − 1)]
(i.e., using the MMSE estimator), where rk(i) denotes the
rating of movie i by user k. This can be done via estimating
Pr(i1, . . . , iN ).



TABLE III: UCI Dataset Car

Algorithm Accuracy (%) Time (s)
CNMF-SPA [Proposed] 69.26±2.28 0.007

CNMF-SPA-EM [Proposed] 86.61±1.76 0.018
CTD [2] 83.47±2.34 0.845

CTD-EM [3] 85.72±1.88 0.955
SVM 83.65±1.58 0.147

Linear Regression 80.68±1.61 0.029
Neural Net 85.00±3.22 0.193
SVM-RBF 76.22±3.93 0.793

Naive Bayes 83.42±2.15 0.026

We create the validation and testing sets by randomly hiding
20% and 30% of the dataset for each trial. The remianing 50%
is used for training (learning joint PMF in our approach). In
this task, we also use one of the popular recommender system
algorithms, biased matrix factorization (BMF) method [11] as
a baseline. The rank F for all the methods (ranging from 5 to
25) and the number of iterations needed for EM are chosen
using the validation set. The results are taken from 20 random
trials. We report the root mean squared error (RMSE) and
mean absolute error (MAE) of the predicted ratings.

From Table II, one can see that the proposed methods
are promising in terms of prediction accuracy and runtime.
Note BMF is specialized for recommender systems, while
the proposed approaches are for generic joint PMF recovery.
The fact that our methods perform better suggests that the
underlying joint PMF is well captured by the proposed CNMF
approach. Another important observation is that the CPD
method in [2] does not perform as well compared to the pro-
posed pairwise marginals based methods. This may be because
of the noisy estimation for three-dimensional marginals, due
to the sparse nature of the user-movie datasets. In particular,
CNMF-SPA is fast with acceptable prediction accuracy. In
addition, CNMF-SPA-EM presents a good accuracy and speed
tradeoff—it exhibits the lowest RMSEs and MAEs, and is 8
times faster than the state-of-the-art algorithm, i.e., CTD-EM.

C. Real Data : Data Classification

We consider UCI datasets for classification tasks. We split
each dataset into training, validation and testing sets in the
ratio of 50 : 20 : 30. For our approach, we estimate the joint
PMF of the features and the label using the training set, and
then predict the labels on the testing data by constructing a
Maximum A Posterior (MAP) predictor (i.e., predicting the la-
bels conditioned on the features). For each dataset, we perform
20 trials with randomly partitioned training/testing/validation
sets and take average of the results.

Tables III and IV show results on the UCI datasets Car and
Mushroom. Car has 1,728 data samples from 4 classes, and
Mushroom has 8,124 data samples belonging to two classes.
We have N = 7 and N = 22 for the two datasets, respectively,
and the average I’s are 4 and 6, respectively. We set M = 5 in
all experiments, and select rank F as before. In all the cases,
one can see that the proposed combination CNMF-SPA-EM
gives the most promising results. In particular, the solely using
CNMF-SPA is not as promising, perhaps because the N and
I are not large enough to ensure a high-accuracy performance

TABLE IV: UCI Dataset Mushroom

Algorithm Accuracy (%) Time (sec.)
CNMF-SPA [Proposed] 92.23+/-6.15 0.025

CNMF-SPA-EM [Proposed] 99.47+/-0.80 0.242
CTD [2] 96.40+/-0.59 13.695

CTD-EM [3] 97.18+/-1.21 13.931
SVM 97.47+/-0.46 37.213

Linear Regression 93.38+/-0.59 0.040
Neural Net 98.98+/-1.97 1.036
SVM-RBF 98.89+/-0.34 2.291

Naive Bayes 94.84+/-0.55 0.048

of the CNMF-SPA stage. However, when initialized using
CNMF-SPA, the CNMF-SPA-EM outputs the best classifica-
tion accuracy and is at least 50 times faster than CTD-EM
that is suggested in [3]. This suggests that even under critical
scenarios, CNMF-SPA still offers useful initialization for EM.

V. CONCLUSION

We proposed a new framework for recovering joint PMF
of any number of discrete RVs from marginal distributions.
Unlike a recent approach that relies on three-dimensional
marginals, our approach only uses two-dimensional marginals,
which naturally has reduced-sample complexity and lighter
computational burden. We proposed a virtual NMF frame-
work and employed a Gram-Schmidt-like scalable algorithm
for handling our formulation. We showed that the proposed
framework is effectiveness under realistic conditions, e.g.,
finite samples. We also showed that an existing EM algorithm
can provably improve the output of our NMF approach,
using theoretical analysis and experimental validation. The
combined NMF and EM approach admits economical updates
and exhibits appealing joint PMF recovery accuracy.
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APPENDIX A
PROOF OF THEOREM 1

Consider the noisy matrix factorization model as below:

X̃ = WH>+N , (5)

where W ∈ RL×F , H ∈ RK×F , W ≥ 0 and H ≥ 0, and N ∈ RL×K represents the noise. Also assume that rank(W ) = F

and H1 = 1, H = Π

[
IF
H∗

]
where IF is the identity matrix of size F and Π is the permutation matrix. This implies that

H satisfies seperability condition and that there exists Λ = {l1, . . . , lF } such that H(Λ, :) = IF . Gillis and Vavasis [4] have
shown that under the model in (5), SPA is provably robust to noise in estimating the factor matrix W (see Theorem 3).

First, we characterize the noise in our data model given by (3) by re-expressing it as a ‘virtual’ separable NMF as in (5).
Then, we utilize Theorem 3 to characterize the error in estimating W via SPA algorithm.

Consider the pairwise marginals Xjk’s used to construct the matrix X̃ in (3). Xjk’s are estimated by sample averaging of
a finite number of realizations and thus the estimated Xjk (denoted as X̂jk) is always noisy; i.e., we have

X̂jk = Xjk +Njk, (6)

where the noise matrix Njk ∈ RI×I , assuming In = I for all n ∈ {1, . . . , N}.
In order to characterize the estimation accuracy of X̂jk using finite number of realizations, we have the following proposition:

Proposition 1 Let p ∈ (0, 1] be the probability that an RV is observed. Let S be the number of available realizations of N
RVs. Assume that p ≥ ( 8

S log(2/δ))1/2. Then, with probability at least 1− δ,

‖Xjk − X̂jk‖F = ‖Njk‖F ≤ φ,

holds for any distinct j, k where φ =
√
2(1+
√

log(2/δ))

(p
√
S)

.

The proof of Proposition 1 is given in Sec. C.
By the definition of the Frobenius norm, we have

I∑
c=1

‖Nij(:, c)‖22 = ‖Nij‖2F ≤ φ2.

Applying norm equivalence ‖Nij(:,c)‖1√
I

≤ ‖Nij(:, c)‖2, we get

I∑
c=1

‖Nij(:, c)‖21 ≤ Iφ2. (7)

Eq. (7) implies that, for all c ∈ {1, . . . , I} and any i, j where i 6= j,

‖Nij(:, c)‖21 ≤ Iφ2,
=⇒ ‖Nij(:, c)‖1 ≤

√
Iφ. (8)

By using the estimates X̂jk, the model given by (3) can be represented as

X̂ =

 X̂`1`M+1
. . . X̂`1`N

...
...

...
X̂`M `M+1

. . . X̂`M `N


=

A`1
...

A`M


︸ ︷︷ ︸
W

D(λ)[A>`M+1
, . . . ,A>`N ]︸ ︷︷ ︸

H>

+Ñ

= X̃ + Ñ .

(9)

Note that X̂, X̃ and Ñ all have the same size of L×K. Assuming In = I for all n ∈ {1, . . . , N}, we have L = MI and
K = (N −M)I . Also note that W has a size of L× F and H has a size of K × F .



Since any column of Ñ formed from the columns of M number of Nij’s, we have

‖Ñ(:, q)‖1 ≤M
√
Iφ, (10)

where the last inequality is obtained by using triangle inequality and (8).
Next, we consider estimating W given in (9) using SPA algorithm. Before performing SPA to the data matrix X̂ , the

columns of X̂ are normalized with respect to the `1-norm. Let us denote the normalized data model as follows:

X = WH
>

+N , (11)

where X and W are column normalized versions (with respect to the `1 norm) of X̂ and W , respectively, and H is row
normalized version of H .

Since the matrix X̂ is noisy, the effect of normalization on Ñ can be characterized by Lemma 6. From the assumption
‖X̂ij(:, c)‖1 ≥ η for any i 6= j and c ∈ {1, . . . , I}, we get ‖X̂(:, q)‖1 ≥ Mη for any q. Combining Lemma 6 and Eq. (10),
we get

‖N(:, q)‖1 ≤
2
√
Iφ

η
. (12)

Applying norm equivalence, we further have ‖N(:, q)‖2 ≤ ‖N(:, q)‖1 and hence we get

‖N(:, q)‖2 ≤
2
√
Iφ

η
. (13)

Lemma 1 Assume that ‖N(:, q)‖2 ≤ ϕ for any q and that H satisfies ε-separability assumption in the model (11). Suppose(
σmax(W )ε+ ϕ

)
≤ σmin(W )min

(
1

2
√
F − 1

,
1

4

)(
1 + 80κ2(W )

)−1
.

Then, SPA identifies an index set Λ̂ = {l̂1, . . . l̂F } such that

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥W (:, f)−X(:, l̂f )
∥∥∥
2
≤
(
σmax(W )ε+ ϕ

) (
1 + 80κ2(W )

)
, (14)

where κ(W ) = σmax(W )

σmin(W )
is the condition number of W .

The proof of Lemma 1 is given in Sec. D.
The right hand side of (14) can be written as

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥W (:, f)−X(:, l̂f )
∥∥∥2
2

=
1

M

M∑
m=1

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥A`m(:, f)− Â`m(:, f)
∥∥∥2
2

≥ 1

M
max

1≤f≤F
min
l̂f∈Λ̂

∥∥∥A`m(:, f)− Â`m(:, f)
∥∥∥2
2
, (15)

for any m ∈ {1, . . . ,M}, where the first equality is due toW = [A>`1 , . . . ,A
>
`M

]>/M , in which Â`m denotes the corresponding
estimate of A`m .

Since ‖W (:, f)‖1 = M for any f , W = W /M . Therefore, we have

σmax(W ) = σmax(W )/M, σmin(W ) = σmin(W )/M, κ(W ) =
σmax(W )

σmin(W )
= κ(W ). (16)

Therefore, by combining (13),(15),(16) and Lemma 1, SPA estimates for any m ∈ {1, . . . ,M} such that

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥A`m(:, f)− Â`m(:, f)
∥∥∥
2
≤

(
σmax(W )ε+

2M
√
Iφ

η

)(
1 + 80κ2(W )

)
, (17)

if the below condition is satisfied:

σmax(W )

M
ε+

2
√
Iφ

η
≤ σmin(W )min

(
1

2
√
F − 1

,
1

4

)(
1 + 80κ2(W )

)−1
. (18)



Letting ε =
Mmin

(
1

2
√

F−1
, 14

)
2κ(W )(1+80κ2(W )) , from (18), we get the condition on φ as follows:

φ ≤ ησmax(W )ε

4M
√
I

. (19)

From Proposition 1, we have φ =
√
2(1+
√

log(2/δ))

p
√
S

with probability greater than 1 − δ. By substituting φ on the left had
side of (19), we get the number of realizations S required to get the estimation error bound (17) as below:

S ≥
32M2I(1 +

√
log(2/δ))2

σ2
max(W )η2ε2p2

.

Note that Lemma 1 holds if H satisfies ε-separability condition. By combining Assumption 1 and Lemma 7, we get that
H satisfies ε-separability assumption with probability greater than 1− ρ, if

(N −M)I = Ω

(
ε−2(F−1)

F
log

(
F

ρ

))
. (20)

By substituting φ in (17) and using the fact that for any matrix A ∈ RI×F , the matrix 2-norm ‖A‖2 ≤
√
F max

1≤f≤F
‖A(:, f)‖2,

we get the result (4) in the theorem.
Finally, we combine the probabilities involved in the results used in our proof. For the concentration bound in Proposition

1 and ε-separability condition on H given by Lemma 7 to jointly occur with probability greater than 1 − 2δ, we can assign
ρ = δ in (20).

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The EM algorithm proposed in [3] is as follows. Let ds ∈ RN be the s-th joint realization of N RVs. Let fs ∈ {1, . . . , F}
be the realization of the ‘latent variable’ H in the sth realization. Suppose {z(1)n , z

(2)
n , . . . , z

(In)
n } denotes the alphabet set of

n-th RV, then n-th entry in ds denoted as ds(n) ∈ {z(1)n , z
(2)
n , . . . , z

(In)
n }. The expectation maximization algorithm proposed

in [3] has the following E-step and M-step which are executed alternatively until convergence:
E-step: The parameter q̂s,f is updated for all s,f using the current estimates of Ân’s and λ̂

q̂s,f =
exp(log(λ̂(f)) +

∑N
n=1

∑In
i=1 I(ds(n) = z

(i)
n ) log(Ân(i, f)))∑F

f ′=1 exp(log(λ̂(f ′)) +
∑N
n=1

∑In
i=1 I(ds(n) = z

(i)
n ) log(Ân(i, f ′)))

(21)

M-step: Using the estimated q̂s,f , Ân and λ̂ are updated as:

Ân(i, f)←
∑S
s=1 q̂s,f I(ds(n) = z

(i)
n )∑In

i′=1

∑S
s=1 q̂s,f I(ds(n) = z

(i′)
n )

, ∀ i, f (22a)

λ̂(f)←
∑S
s=1 q̂s,f∑F

f ′=1

∑S
s=1 q̂s,f ′

, ∀ f. (22b)

The proof of convergence for the above defined iterates is inspired by the convergence proof of an EM algorithm handling
the crowdsourcing problem in [10]. There, the EM algorithm assumes a uniform latent distribution, i.e., λ(f) = 1/F while
formulating the maximum likelihood function. In our case, we do not assume uniform prior for λ.

First, we define certain events as below:

E1 :

N∑
n=1

In∑
i=1

I(ds(n) = z(i)n ) log

(
An(i, fs)

An(i, f)

)
≥ ND1/2, for all s and f 6= fs

E2 :

∣∣∣∣∣
S∑
s=1

I(fs = f)I(ds(n) = z(i)n )− Sλ(f)pAn(i, f)

∣∣∣∣∣ ≤ Stnif , for all n, i, f,

E3 :

∣∣∣∣∣
S∑
s=1

I(fs = f)I(ds(n) 6= 0)− Sλ(f)p

∣∣∣∣∣ ≤ Stnif , for all n, i, f,

E4 :

∣∣∣∣∣
S∑
s=1

I(fs = f)− Sλ(f)

∣∣∣∣∣ ≤ Scf , for all f,



where ds(n) 6= 0 represents that n-th RV is observed with any value from its alphabet set in the s-th sample, and tnif >
0, cf > 0 are scalars which will be assigned specific value later in the proof.

First, we consider the E-step update given in (21). The parameter q̂s,f can be bounded using the following lemma:

Lemma 2 Assume that the event E1 happens and also assume that An,λ and the initial estimates satisfy |Ân(i, f) −
An(i, f)| ≤ δ1, An(i, f) ≥ ρ1, |λ̂(f) − λ(f)| ≤ δ2 and λ(f) ≥ ρ2 for all n, i, f . Then, if q̂s,f is updated by (21), the
below holds:

|q̂s,f − I(fs = f)| ≤ exp

(
−
(
ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

))
+ log(F )

)
, ∀f, s. (23)

The proof of Lemma 2 is given in Sec. E Next lemma shows that once q̂s,f updated in E-step is bounded, the subsequent
M-step updates to An’s and λ are bounded.

Lemma 3 Assume that E2
⋂
E3
⋂
E4 holds. Suppose q̂s,f updated by (21) satisfies the following:

|q̂s,f − I(fs = f)| ≤ β, ∀f, s, (24)

where β > 0 is a scalar. Then Ân and λ̂ updated by (22) are bounded by:

|Ân(i, f)−An(i, f)| ≤ 2Stnif + 2Sβ

Sλ(f)p− Stnif − Sβ
, (25a)

|λ̂(f)− λ(f)| ≤ Scf + Sβ + SFβ

S − SFβ
. (25b)

The proof of Lemma 3 is given in Sec. F
Next, we show that the estimation accuracy bounds for Ân and λ̂ given in Lemma 3 are less than or equal to the initial

estimation accuracy. For this, we have the following lemma:

Lemma 4 Assume that E1
⋂
E2
⋂
E3
⋂
E4 happens. Also assume that An,λ and the initial estimates satisfy |Ân(i, f) −

An(i, f)| ≤ δ1 := 4
ρ1(4+D)

, An(i, f) ≥ ρ1, |λ̂(f) − λ(f)| ≤ δ2 := 4
ρ2(4+ND)

, λ(f) ≥ ρ2 for all n, i, f and D ≥

max
{

8−4ρ21
ρ21

,
8−4ρ22
Nρ22

}
. Suppose that the following holds ∀g ∈ {{tnif}n,i,f , {cf}f}:

2 exp(−ND
2

+ log(F )) ≤ g ≤ pρ2
8F

min

(
4

ρ1(4 +D)
,

4

ρ2(4 +ND)

)
. (26)

Then, by updating the parameters using (21) and (22) at least once (i.e., after runing the EM algorithm for at least one
iteration), we have the following: ∣∣∣Ân(i, f)−An(i, f)

∣∣∣ ≤ 4tnif
λ(f)p

≤ δ1, (27a)∣∣∣λ̂(f)− λ(f)
∣∣∣ ≤ 8Fcf ≤ δ2. (27b)

The proof of Lemma 4 is given in Sec G.
Next step is to find out the probabilities that the bounds in (27) hold true. Specifically, we need to characterize the probability

for the event E1
⋂
E2
⋂
E3
⋂
E4 to happen and the conditions under which (26) holds . Theorem 4 in [10] characterizes the

probabilities of the occurrence of events E1, E2 and E3. Specifically, we get the following results:

Pr(E1) ≥ 1− SF exp

(
ND1

33 log(1/ρ1)

)
, (28a)

Pr(E2) ≥ 1−
N∑
n=1

F∑
f=1

In∑
i=1

2 exp

(
−
St2nif

3pλ(f)

)
, (28b)

Pr(E3) ≥ 1−
N∑
n=1

F∑
f=1

In∑
i=1

2 exp

(
−
St2nif

3pλ(f)

)
. (28c)



In order to characterize Pr(E4), we observe that
∑S
s=1 I(fs = f) is sum of i.i.d. Bernoulli random variables with mean Sλ(f).

Therefore, using the Chernoff bound, we have

Pr

(∣∣∣∣∣
S∑
s=1

I(fs = f)− Sλ(f)

∣∣∣∣∣ ≥ Scf
)
≤ 2 exp(−Sc2f/(3λ(f))), ∀f. (29)

By taking the union bound over all f ∈ {1, . . . , F}, we obtain

Pr(E4) ≥ 1−
F∑
f=1

2 exp(−Sc2f/(3λ(f))). (30)

Summing the probability bounds for E1, E2, E3 given by (28) and for E4 given by (30), one can see that E1
⋂
E2
⋂
E3
⋂
E4

holds with probability at least

1− SI exp

(
ND1

33 log(1/ρ1)

)
−

N∑
n=1

F∑
f=1

In∑
i=1

4 exp

(
−
St2nif

3pλ(f)

)
−

F∑
f=1

2 exp

(
−

Sc2f
3λ(f)

)
.

To ensure that the estimation error bounds for An and λ given by (27) hold with probability greater than 1−ε, the following
conditions has to be satisfied simultaneously:

N ≥ 33 log(1/ρ1) log(3SF/ε)

D1

(31)

S ≥ 3pλ(f) log(12NFI/ε)

t2nif
(32)

S ≥ 3λ(f) log(6F/ε)

c2f
. (33)

We can assign specific values to tnif and cf such that the above conditions are satisfied. Let

tnif :=

√
3pλ(f) log(12NFI/ε)

S
, (34a)

cf :=

√
3λ(f) log(12NFI/ε)

S
. (34b)

By this selection of tnif and cf , the conditions in (32) and (33) hold. To enforce the condition (26), the following equalities
have to hold: √

3pλ(f) log(12NFI/ε)

S
≥ 2 exp

(
−ND

2
+ log(F )

)
√

3λ(f) log(12NFI/ε)

S
≤ pρ2

8F
min

(
4

ρ1(4 +D)
,

4

ρ2(4 +ND)

)
=
pρ2δmin

8F
,

where δmin = min(δ1, δ2). The above can be implied by the following:

N ≥ 4 log(2SF 2/(3pρ2 log(12NFI/ε)))

D
(35)

S ≥ 192F 2 log(12NFI/ε)

p2ρ22δ
2
min

, (36)

where we have used 1 ≥ λ(f) ≥ ρ2.
Using the inequality log x > 1− 1

x , x > 0, we can express the condition (35) as

N ≥ 4 log(2SF 2/(3pρ2(1− ε/(12NFI))))

D

Using the fact that 1− ε/(12NFI) > ε/2, we can further write the above condition as follows:

N ≥ 4 log(4SF 2/(3pρ2ε))

D
. (37)



Combing the two conditions (31) and (37), we have

N ≥ max

(
33 log(3SF/ε)

ρ1D1

,
4 log(4SF 2/(3pρ2ε))

D

)
, (38)

where we have used the fact that log(1/ρ1) ≤ (1/ρ1)− 1 < 1/ρ1.
To summarize, if (36) and (38) hold and tnif and cf are chosen to be as in (34), then, with probability at least 1− ε, the

following inequalities hold by Lemma 4:

|Ân(i, f)−An(i, f)|2 ≤
16t2nif
p2λ(f)2

≤ 48 log(12NFI/ε)

Spλ(f)

|λ̂(f)− λ(f)|2 ≤ 64F 2c2f ≤
192F 2λ(f) log(12NFI/ε)

S
This completes the proof.

APPENDIX C
PROOF PROPOSITION 1

Let ds ∈ RN denote the sth realization of the joint PMF Pr(Z1, . . . , ZN ). Recall that p is the probability of an RV being
observed in any realization. Let {z(1)n , . . . , z

(In)
n } denote the alphabet set of Zn. For simplicity, we assume that 0 does not

belong to the alphabets of Z1, . . . , ZN , and we use the notation ds(j) = 0 to represent that ‘Zj is not observed in the sth
realization’.

For S realizations of the joint PMF, i.e., {ds}Ss=1, the sample averaging expressions for estimating Xjk is defined as follows:

X̂jk(ij , ik) =
1

|Sjk|
∑
s∈Sjk

I[ds(j) = z
(ij)
j ,ds(k) = z

(ik)
k ],

where the indicator function I[E] is one if the event E happens and zero otherwise; e.g.,

I[ds(j) = z
(ij)
j ,ds(k) = z

(ik)
k ] =

{
1, ds(j) = z

(ij)
j ,ds(k) = z

(ik)
k

0, o.w.
.

In addition, Sjk = {s | I[ds(j) 6= 0,ds(k) 6= 0]}.
Let us construct a random variable Vj,s, where Vj,s = 1 if Zj is observed in ds; otherwise Vj,s = 0. With this definition,

we can see that the parameter Sjk in Lemma 5 is the sum of S i.i.d. Bernoulli random variable given by

Sjk =

S∑
s=1

I[Vj,s = 1 and Vk,s = 1], (39)

with mean E[Sjk] = Sp2, since Vj,s and Vk,s are independent.
In order to characterize the random variable Sjk, we can use Chernoff lower tail bound such that for 0 < t < 1,

Pr(Sjk ≤ (1− t)Sp2) ≤ e−Sp
2t2/2. (40)

Eq. (40) also implies that

Pr(Sjk ≥ (1− t)Sp2)) ≥ 1− e−Sp
2t2/2. (41)

Combining Lemma 5 and (41), we have

Pr

[
‖X̂jk −Xjk‖F ≤

(1 +
√

log(1/δ))√
(1− t)Sp2

]
= Pr

[
‖X̂jk −Xjk‖F ≤

(1 +
√

log(1/δ))√
Sjk

, Sjk ≥ (1− t)Sp2
]

≥ 1− δ − e−Sp
2t2/2,

where we have applied the De Morgan’s law and the union bound to obtain the last inequality.
Setting t = 1/2, we have

Pr

[
‖X̂jk −Xjk‖F ≤

√
2(1 +

√
log(1/δ))

p
√
S

]
≥ 1− δ − e−Sp

2/8. (42)

It follows that if p2 ≥ 8
S log(1/δ), the right hand side of (42) is greater than 1− 2δ.



APPENDIX D
PROOF OF LEMMA 1

From the assumption that H satisfies ε-separability, there exists a set of indices Λ = {l1, . . . , lF } such that

H(Λ, :) = IF +E,

E ∈ RF×F is the error matrix with ‖E(l, :)‖2 ≤ ε. and IF is the identity matrix of size F × F
Now we can write the normalized data model given in (11) as

X = WH
>

+N

= W [IF +E>, (H∗)>] +N

= W [IF , (H
∗)>] + [WE>,0] +N ,

where the zero matrix 0 has the same dimension as that of H∗. By defining the noise matrix N ∈ RL×K such that N :=
[WE>,0] +N , we have X = W [IF (H∗)>] +N . Then, for any q ∈ {1, . . . ,K}, the following inequality holds:

‖N(:, q)‖2 ≤ ‖W ‖2‖E(q, :)‖2 + ‖N(:, q)‖2
≤ σmax(W )ε+ ϕ, (43)

where the first inequality is by the Cauchy-Schwartz inequality and by the assumptions in the lemma.
Then, we invoke Lemma 3 to characterize the estimation accuracy of W . Combining (43) and Lemma 3, we get the final

result of the lemma given by (14) if(
σmax(W )ε+ ϕ

)
≤ σmin(W )min

(
1

2
√
F − 1

,
1

4

)(
1 + 80κ2(W )

)−1
.

APPENDIX E
PROOF OF LEMMA 2

Consider the update to q̂s,f in the E-step given by (21). For any f 6= fs,

q̂s,f ≤
exp(log(λ̂(f)) +

∑N
n=1

∑In
i=1 I(ds(n) = z

(i)
n ) log(Ân(i, f)))

exp(log(λ̂(fs)) +
∑N
n=1

∑In
i=1 I(ds(n) = z

(i)
n ) log(Ân(i, fs)))

=
λ̂(f)

∏N
n=1

∏In
i=1(Ân(i, f))I(ds(n)=z

(i)
n )

λ̂(fs)
∏N
n=1

∏In
i=1(Ân(i, fs))I(ds(n)=z

(i)
n )

=
λ̂(f)

λ̂(fs)

N∏
n=1

In∏
i=1

(
Ân(i, f)

Ân(i, fs)

)I(ds(n)=z
(i)
n )

= 1/ exp

(
log
(
λ̂(fs)/λ̂(f)

)
+

N∑
n=1

In∑
i=1

I(ds(n) = z(i)n ) log
(
Ân(i, fs)/Ân(i, f)

))
︸ ︷︷ ︸

Bf

. (44)

Then it follows that

Bf = log
(
λ̂(fs)/λ̂(f)

)
+

N∑
n=1

In∑
i=1

I(ds(n) = z(i)n ) log
(
Ân(i, fs)/Ân(i, f)

)
= log

(
λ(fs)

λ(f)

λ̂(fs)

λ(fs)

λ(f)

λ̂(f)

)
+

N∑
n=1

In∑
i=1

I(ds(n) = z(i)n ) log

(
An(i, fs)

An(i, f)

Ân(i, fs)

An(i, fs)

An(i, f)

Ân(i, f)

)

= log

(
λ(fs)

λ(f)

)
+ log

(
λ̂(fs)

λ(fs)

)
− log

(
λ̂(f)

λ(f)

)
+

N∑
n=1

In∑
i=1

I(ds(n) = z(i)n ) log

(
An(i, fs)

An(i, f)

)

+

N∑
n=1

In∑
i=1

I(ds(n) = z(i)n )

[
log

(
Ân(i, fs)

An(i, fs)

)
− log

(
Ân(i, f)

An(i, f)

)]
. (45)



To proceed, we can bound all the terms in (45). First we have

log

(
λ̂(fs)

λ(fs)

)
− log

(
λ̂(f)

λ(f)

)
≥ log (ρ2 − δ2) + log (ρ2)

= log (ρ2(ρ2 − δ2))

≥ 1− 1

ρ2(ρ2 − δ2)
, (46)

where the first inequality uses the results λ̂(f) ≥ ρ2 − δ2, λ(f) ≥ ρ2 and the facts λ̂(f),λ(f) ≤ 1. The last inequality is due
to the fact that log(x) > 1− 1

x for x > 0.
Similarly, we can bound

log

(
Ân(i, fs)

An(i, fs)

)
− log

(
Ân(i, f)

An(i, f)

)
≥ 1− 1

ρ1(ρ1 − δ1)
. (47)

Assuming that E1 happens, we have

Bf ≥
ND2

2
+ 1− 1

ρ2(ρ2 − δ2)
+
ND1

2
+N

(
1− 1

ρ1(ρ1 − δ1)

)
=
N(D1 +D2)

2
+ 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

)
,

where the first inequality is obtained by using the definitions of D2 and event E1, equations (46) and(47). Defining D := D1+D2

2 ,
we can have

Bf ≥ ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

)
. (48)

Combining (48) with (44), we have for every f 6= fs,

q̂s,f ≤ 1/ expBf ≤ exp

(
−
(
ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

)))
. (49)

Using (49) and
∑F
f=1 q̂s,f = 1 , we have

q̂s,fs = 1−
∑
f 6=fs

q̂s,f ≥ 1− F exp

(
−
(
ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

)))
. (50)

The inequalities in (49) and (50) can be summarized as follows:

|q̂s,f − I(fs = f)| ≤ exp

(
−
(
ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

))
+ log(F )

)
, ∀f, s, (51)

where we have used the fact that exp(·) is an increasing function.

APPENDIX F
PROOF OF LEMMA 3

The first result given in (27a) follows similar steps as in Lemma 9 from [10] which is detailed below using the notations in
our case:

According to the M-step update (22), we can write

Ân(i, f) =
A

B
,

where A :=
∑S
s=1 q̂s,f I(ds(n) = z

(i)
n ) and B :=

∑In
i′=1

∑S
s=1 q̂s,f I(ds(n) = z

(i′)
n ).

Assuming that the event E2 holds true, we can have

|A− Sλ(f)pAn(i, f)| ≤ |
S∑
s=1

I(fs = f)I(ds(n) = z(i)n )− Sλ(f)pAn(i, f)|

+ |
S∑
s=1

q̂s,f I(ds(n) = z(i)n )−
S∑
s=1

I(fs = f)I(ds(n) = z(i)n )|

≤ Stnif + Sβ, (52)



where the last result is obtained from the definition of E2 and (24).
Assuming that the event E3 holds true, we can have

|B − Sλ(f)p| ≤ |
S∑
s=1

I(fs = f)I(ds(n) 6= 0)− Sλ(f)p|

+ |
In∑
i′=1

S∑
s=1

q̂s,f I(ds(n) = z(i
′)

n )−
S∑
s=1

I(fs = f)I(ds(n) 6= 0)|

≤ Stnif + Sβ (53)

where the last inequality is obtained by assuming that event E3 holds true and using (24).
Combining the bounds for A and B, we can get∣∣∣Ân(i, f)−An(i, f)

∣∣∣ =

∣∣∣∣AB −An(i, f)

∣∣∣∣
=

∣∣∣∣Sλ(f)pAn(i, f) +A− Sλ(f)pAn(i, f)

Sλ(f)p+B − Sλ(f)p
−An(i, f)

∣∣∣∣
=

∣∣∣∣A− Sλ(f)pAn(i, f)−An(i, f)(B − Sλ(f)p)

Sλ(f)p+B − Sλ(f)p

∣∣∣∣
≤ |A− Sλ(f)pAn(i, f)|+An(i, f) |(B − Sλ(f)p)|

|Sλ(f)p+B − Sλ(f)p|

≤ 2Stnif + 2Sβ

Sλ(f)p− Stnif − Sβ
,

where the last inequality is by the fact that An(i, f) ≤ 1 and the bounds from (52) and (53).
For the second result, consider the M-step update for λ̂ given by (22). One can write λ̂(f) = C/D where

C =

S∑
s=1

q̂s,f , D =

F∑
f ′=1

S∑
s=1

q̂s,f ′ .

Assume that the event E4 happens, using (24), we have

|C − Sλ(f)| ≤

∣∣∣∣∣
S∑
s=1

I(fs = f)− Sλ(f)

∣∣∣∣∣+

∣∣∣∣∣
S∑
s=1

q̂s,f −
S∑
s=1

I(fs = f)

∣∣∣∣∣
≤ Scf + Sβ.

In addition, we have

|D − S| ≤

∣∣∣∣∣∣
F∑

f ′=1

S∑
s=1

I(fs = f ′)− S

∣∣∣∣∣∣+

∣∣∣∣∣∣
F∑

f ′=1

S∑
s=1

q̂s,f ′ −
F∑

f ′=1

S∑
s=1

I(fs = f ′)

∣∣∣∣∣∣ ≤ SFβ.
Combining the bounds for C and D, we obtain

|λ̂(f)− λ(f)| =
∣∣∣∣CD − λ(f)

∣∣∣∣
=

∣∣∣∣ (C − Sλ(f)) + Sλ(f)

(D − S) + S
− λ(f)

∣∣∣∣
=

∣∣∣∣ (C − Sλ(fs))− λ(f)(D − S)

(D − S) + S

∣∣∣∣
≤ Scf + Sβ + SFβ

S − SFβ
,

where the last inequality is by using triangle inequality and the fact that λ(f) ≤ 1.



APPENDIX G
PROOF OF LEMMA 4

Consider the below term in (23) from Lemma 2:

ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

)
=

N

D2 + 1− 1

ρ1(ρ1 − δ1)︸ ︷︷ ︸
E

+
ND

2
+ 1− 1

ρ2(ρ2 − δ2)︸ ︷︷ ︸
F

.

In order to bound the term E as below

E :=
D

2
+ 1− 1

ρ1(ρ1 − δ1)
≥ D

4
,

δ1 has to be bounded such that

δ1 ≤ ρ1 −
4

ρ1(4 +D)

=
4ρ21 +Dρ21 − 4

ρ1(4 +D)
. (54)

Similarly, in order to bound F as below

F :=
ND

2
+ 1− 1

ρ2(ρ2 − δ2)
≥ ND

4
,

δ2 has to be bounded such that

δ2 ≤ ρ2 −
4

ρ2(4 +ND)

=
4ρ22 +NDρ22 − 4

ρ2(4 +ND)
. (55)

Without loss of generality, we can fix values to δ1 and δ2 such that the conditions (54) and (55) get satisfied respectively.
Since D ≥ max

{
8−4ρ21
ρ21

,
8−4ρ22
Nρ22

}
, 4ρ21 +Dρ21 ≥ 8 and 4ρ22 +NDρ22 ≥ 8 hold true. Therefore

δ1 :=
4

ρ1(4 +D)
, δ2 :=

4

ρ2(4 +ND)
(56)

satisfy the conditions (54) and (55). Note that since D ≥ 8−4ρ21
ρ21

, δ1 := 4
ρ1(4+D)

≤ ρ1
2 ≤ 1 and is a valid assignment. Similarly,

we can observe that δ2 := 4
ρ2(4+ND)

≤ ρ2
2 ≤ 1. Therefore, using the assigned values of δ1 and δ2, we have

ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

)
≥ ND

2
. (57)

Then, we have

|q̂s,f − I(fs = f)| ≤ exp

(
−
(
ND + 1− 1

ρ2(ρ2 − δ2)
+N

(
1− 1

ρ1(ρ1 − δ1)

))
+ log(F )

)
≤ exp

(
−ND

2
+ log(F )

)
≤ tmin/2, (58)

where tmin = min{{tnif}, {cf}} and the first inequality is by Lemma 2, the second inequality is by using (57) and the third
inequality is from the condition (26).

From (26), we have tnif ≤ pρ2
8 ≤

pλ(f)
8 . Combining this with Lemma 3, we get∣∣∣Ân(i, f)−An(i, f)

∣∣∣ ≤ 2Stnif + 2Sβ

(7/8)Sλ(f)p− Sβ
,



where β is defined such that |q̂s,f − I(fs = f)| ≤ β, ∀f, s.
From (58), the scalar β can be assigned a value such that β = tmin/2. Then,∣∣∣Ân(i, f)−An(i, f)

∣∣∣ ≤ 2Stnif + Stmin

(7/8)Sλ(f)p− Stmin/2

≤ 3Stnif
(7/8)Sλ(f)p− Stmin/2

,

where the last step is obtained by using tmin ≤ tnif . By using the condition tmin ≤ pρ2
8 ≤

pλ(f)
8 from (26), we get∣∣∣Ân(i, f)−An(i, f)

∣∣∣ ≤ 3Stnif
(7/8)Sλ(f)p− Sλ(f)p/16

≤ 4tnif
λ(f)p

.

Since
4tnif
λ(f)p

≤ 4tnif
pρ2

≤ 1

2F
min

(
4

ρ1(4 +D)
,

4

ρ2(4 +ND)

)
≤ 4

ρ1(4 +D)
= δ1,

the estimation error of the newly updated An as given in (22) is at least no worse than the initial estimation error δ1.
Next, consider the result (27b) from Lemma 3. Assigning β = tmin/2,

|λ̂(f)− λ(f)| ≤ Scf + Sβ + SFβ

S − SFβ
≤ Scf + Stmin/2 + SFtmin/2

S − SFtmin/2

≤ 2Scf + Stmin + SFtmin

2S − SFtmin
≤ 2Scf + Scf + SFcf

2S − SFtmin

≤ 4SFcf
2S − SFtmin

≤ 4SFcf
S − SFtmin

≤ 8Fcf ,

where we have used the fact that tmin ≤ 1/2F according to (26).
The above inequality also implies that

|λ̂(f)− λ(f)| ≤ 8Fcf ≤ pρ2 min

(
4

ρ1(4 +D)
,

4

ρ2(4 +ND)

)
≤ 4

ρ2(4 +ND)
= δ2.

That is, the estimation error of the newly updated λ as given in (22) is at least no worse than the initial estimation error δ2.

APPENDIX H
LEMMATA

In this section, we present a collection of lemmata that are used in our proofs.

Lemma 5 [13] Let δ ∈ (0, 1] and let X̂jk be the empirical average of Sjk independent co-occurrences of random variables
Zj and Zk. Then the following holds

Pr

[
‖X̂jk −Xjk‖F ≤

1 +
√

log(1/δ)√
Sjk

]
≥ 1− δ, (59)

Theorem 3 [4] Under the described NMF model in Eq. (5), assume that ‖N(:, q)‖2 ≤ ε for all q ∈ {1, . . . ,K}, if the below
holds:

ε ≤ σmin(W )min
(

1

2
√
F − 1

,
1

4

)(
1 + 80κ2(W )

)−1
,

then SPA identifies an index set Λ̂ = {l̂1, . . . l̂F } such that

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥W (:, f)− X̃(:, l̂f )
∥∥∥
2
≤ ε
(
1 + 80κ2(W )

)
, (60)

where κ(W ) = σmax(W )
σmin(W ) is the condition number of W .

Lemma 6 [9] Consider a vector x ∈ RL and the corresponding estimate of the vector x̂ such that x̂ = x + n where n
represents the noise vector and x, x̂ ≥ 0. Assume that ‖x̂‖1 ≥ η where η > 0 and ‖n‖1 < ‖x‖1. Suppose, the vector x̂ is
normalized with respect to its `1 norm. The normalized version can be represented as

x̂

‖x̂‖1
=

x

‖x‖1
+ ñ,



where ‖ñ‖1 ≤ 2‖n‖1
η .

Lemma 7 [9] Let ρ > 0, ε > 0, and assume that the rows of H ∈ RK×F are generated within the (F − 1)-probability
simplex uniformly at random (and then nonnegatively scaled). If the number of rows satisfies

K = Ω

(
ε−2(F−1)

F
log

(
F

ρ

))
, (61)

then, with probability greater than or equal to 1− ρ, there exist rows of H indexed by l1, . . . lF such that

‖H(lf , :)− e>f‖2 ≤ ε, f = 1, . . . , F.


