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Abstract—This work studies the model identifiability of a
class of post-nonlinear mixture models with dependent latent
components, in particular, components that form vectors residing
in the probability simplex. This problem is motivated by applica-
tions such as hyperspectral unmixing under nonlinear distortion
effects. Prior works tackle nonlinear component analysis using
statistical independence, which is no longer applicable in our
case. A recent work by Yang et al. offered a solution leveraging
functional equations, but the model identifiability conditions
are somewhat restrictive. The implementation there also has
difficulties; e.g., the function approximator used in their work
may not be able to approximate general nonlinear distortions
and the formulated optimization problem is hard to handle.
In this work, we substantially improve both the theoretical
and practical aspects. To be specific, we offer a much tighter
identifiability result and an easy-to-implement neural network-
based algorithm—without sacrificing function approximation
capabilities. Numerical experiments are employed to support our
design.

Index Terms—post-nonlinear mixture, dependent source, prob-
ability simplex, identifiability, neural networks

I. INTRODUCTION

Latent component analysis has been an essential tool for
a large variety of applications in signal processing (SP) and
machine learning (ML). Many component analysis tools have
been proposed, e.g., principal component analysis (PCA) [1],
independent component analysis (ICA) [2], [3], nonnegative
matrix factorization (NMF) [4], [5], dictionary learning/sparse
coding [6], and tensor decomposition models [7], just to name
a few.

One of the most important theoretical aspects pertaining
to component analysis is model identifiability—since these
tools are oftentimes associated with unsupervised learning and
blind signal processing tasks, e.g., topic model learning [8],
community detection [9], and blind source separation [2]. With
model identifiabilty, the latent components of interest can be
identified (often up to trivial ambiguities such as scaling and
permutation) through learning the model parameters of the
employed component analysis models from the observed data.

Establishing model identifiability is a nontrivial task. In a
nutshell, many component analysis models can be understood
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as matrix factorization models—which is in general non-
unique, thereby lacking identifiability. A common practice to
circumvent this issue is introducing structural information as
constraints, e.g., statistical independence in ICA, nonnegativity
in NMF, and sparsity in dictionary learning. The identifiability
analyses for these classic component analysis models are
elegant, and the model uniqueness results have improved many
core tasks in SP and ML; see [2], [4], [6], [7], [10].

On the other hand, the classic component analysis models
are mostly variants of matrix and tensor factorization models.
These models essentially assume that all the data vectors are
generated from a linear subspace (a Khatri-Rao subspace for
tensors). This is of course over-simplified for reality—since
nonlinear distortions happen ubiquitously. Starting from the
1980s, efforts have been made towards incorporating nonlinear
distortions into component analysis [11]. One notable line
of work is the so-called nonlinear independent component
analysis (nICA) [12]–[19]. The nICA framework considers
unknown nonlinear distortions on top of the ICA model. One
take-home point learned is that general nonlinear distortion
is not identifiable under the framework of ICA [12]. To
circumvent this, one may exploit certain structures of nonlinear
distortions—e.g., under the so-called post-nonlinear mixture
model [15]–[18] that is considered realistic for many sensing
problems. One may also utilize more prior information from
the data to remove nonlinear distortions, e.g., temporal corre-
lations; see [13], [14], [19].

The model identifiability results under the nonlinear ICA
frameworks are encouraging—showing that nonlinear distor-
tions may be provably removable, under some conditions.
However, assuming statistical independence among the latent
components may be stringent. To relax this assumption, the
recent work in [20] addresses the problem of dependent com-
ponent identification under the post-nonlinear mixture model.
To be specific, the authors of [20] considered a model where
the latent components are nonnegative and sum-to-one—which
is often considered in weighted mixture models such as soft
clustering [21] and hyperspectral imaging [22]. Working from
there, and combining insights from NMF identifiability, latent
component identifiability was shown.

However, some challenges remain. First, the work in [20]
assumes that the model parameters are all nonnegative, which
may restrict the applicability in some cases. Second, the



nonlinear model identifiability hinges on a special assumption
that the composition of the learned nonlinearity-compensating
function and the nonlinear distortion is convex or concave—
which is hard to verify or control, thereby being restrictive.
Third, the work in [20] utilizes a neural network (NN) to
approximate the “inverse” of the unknown nonlinear distortion,
but the NN used there has positive weights for regularity pur-
poses. This may cause performance losses—although NNs are
universal function approximators, the function-approximation
capacity of positive NNs is unknown.

In this work, we offer a new solution for the nonlinear
model identification problem in [20] and its extensions. Our
contribution is twofold: First, we offer a new identifiability
result that does not rely on the restrictive assumptions used in
[20]. This may substantially enlarge the range of applicable
cases for this nonlinear component analysis model. Second,
we propose a general-purpose neural network (other than a
special positive neural network) based implementation for the
formulated problem. This way, the risk of not being able
to approximate certain nonlinear functions is removed. The
associated optimization problem is also much easier to handle,
leveraging existing optimizers for NNs, e.g., Adam [23]—
which makes our implementation easily scalable. Extensive
experiments are employed to showcase the performance of the
proposed approach.

II. BACKGROUND

A. Linear and Nonlinear Independent Component Analysis

Many classic latent component analysis models start with
the following linear mixture model (LMM):

x` = As`, ` = 1, · · · , N (1)

where x` ∈ RM denotes the `th observed data sample,
A ∈ RM×K the “mixing system” (or the basis of the subspace
where x`’s reside), and s` ∈ RK the vector that holds the K
latent components.

Many latent component analysis models are concerned with
identifying A and {s`} from {x`}. Model identifiability has
been established under various conditions. For example, ICA
assumes sk,`’s are statistically independent [24], and NMF
models assume A and s` are element-wise nonnegative [4],
[25], [26]. Beyond the classic linear mixture models, nonlinear
mixtures have also been considered, mostly under the umbrella
of nonlinear ICA. The notable line of work in [12]–[14], [19]
considers the model

x` = g(s`), ` = 1, 2, . . . , N

where g(·) : RK → RK is an invertible continuous nonlinear
distortion applied on to the latent components. This model is
in general not identifiable, even if one assumes that sk,`’s are
statistically independent [12]. A series of additional structural
information on s` (e.g., temporal correlations) has been ex-
ploited to establish identifiability. Another way for establishing
model identifiability is to exploit structural information of the
nonlinear distortions, other than that of the latent components.

The post-nonlinear mixture (PNM) model is often considered
[15]–[18], [20], where we have

x` = g(As`), ` = 1, 2, · · · , N (2)

in which g = [g1(·), · · · , gM (·)]> and gm(·) : R → R
is a scalar-to-scalar nonlinear continuous invertible function.
The PNM model has many applications in sensing-related
problems, e.g., radar and biomedical sensing; see discussions
in [17]. Under the PNM model, the identifiability of s` has also
been established—mainly using the statistical independence of
the latent components [17], [18].

B. Nonlinear Dependent Component Analysis: Prior Art

Very recently, Yang et al. [20] considered an interesting
problem under the PNM model. Instead of having sk,`’s be
statistically independent, the model assumption is that

s` ∈ ∆, ∆ = {x ∈ RK |1>x = 1,x ≥ 0}. (3)

Under this model, the observations x`’s are generated as
weighted combinations of a1, . . . ,aN and then distorted by
g1(·), . . . , gM (·). Note that weighted combination is a particu-
larly important model that finds applications in topic modeling
[8], soft clustering [21], and hyperspectral unmixing [22].
The nonlinear distortion part is also important in modeling
additional distortions happening in practice—e.g., nonlinearity
is often observed in hyperspectral imaging [27]. Note that
since 1>s` = 1, the latent components are dependent—which
means that the classic results from nICA do not apply to this
case.

The work in [20] utilizes the sum-to-one structure to con-
struct a functional equation, and shows that under some con-
ditions a carefully constructed model identification criterion
can “remove” g(·) through learning a nonlinear function f .
Then, the problem for identifying s` becomes a classic NMF
problem. There are a number of caveats. First, the assumption
for g(·) removal might be too restrictive. The assumptions
include that A being nonnegative and incoherent, and the
learned function satisfies that f ◦ g is a convex or concave
function. This condition is particularly hard since one has no
control for it—or a way of checking it. Second, when imple-
menting the learning criterion, the authors in [20] uses a neural
network to represent f . However, the NN employed is with
positive network weights for enforcing function invertibility.
This construction makes optimization easier, but may have
hindered the function approximation capability of NNs.

III. PROPOSED APPROACH

In this work, we offer a new solution under the PNM model
and (3) that effectively circumvent the challenges in [20].

A. Proposed Formulation

Ideally, we expect to learn element-wise invertible nonlinear
function f such that the following holds:

1>f(x`) = 1>f ◦ g(As`) = 1>h(As`) = 1, (4)



for all `. Here h is also an element-wise function with hi =
fi ◦ gi. In other words, our learning objective is to find an
invertible function to reverse the distortions introduced by g
so that the sum-to-one condition can be satisfied.

Formally, we wish to have the following criterion satisfied
in terms of f -searching:

find f (5a)

s.t. 1>f(x) = 1, ∀x ∈ X (5b)
fi is invertible over X , ∀i, (5c)

where

X = {x ∈ RM | x = g(As), ∀s ∈ int∆, s ∈ RK}

in which int∆ means the interior of ∆. Note that the criterion
is identical to what was proposed in [20]. The difference lies
in model assumptions. In particular, Yang et al. assumed that
A is generic, nonnegative and incoherent in [20]. In this work,
we only require that A is generic (i.e., the entries are drawn
from any jointly continuous distribution). Yang et al. showed
the following

Theorem 1 [20] Consider the post-nonlinear mixture model
x` = g(As`) with the constraint s` ∈ int∆, where gm(·)
for all m are continuous and invertible. Assume that we have
infinite samples such that X is available. Assume that A ∈
RM×K is drawn from any joint continuous distribution. In
addition, assume that M ≥ K and that

1) A is nonnegative and is incoherent (see definition in
[20]); and that

2) by solving problem (5), the resulting hi’s are convex or
concave.

Then hi has to be an affine functions almost surely; i.e., any
fi satisfying (5) makes the following holds:

hi(x) = fi ◦ gi(x) = cix+ di, i = 1, . . . ,M,

where ci, di are constants. In addition, if
∑M

i=1 di 6= 0, we
have

hi(x) = fi ◦ gi(x) = αix, i = 1, . . . ,M, αi 6= 0, ∀i.

The theorem is of interest, since it for the first time showed
that the PNM model is identifiable even under dependent latent
components. The challenge is that both conditions 1) and 2)
may be restrictive—especially condition 2). In this work, we
show that the key conditions in 1) and 2) are in fact not needed.
To proceed, we show the following:

Lemma 1 Consider s = [s1, . . . , sK ]>∈ int∆K . The follow-
ing always holds true:

∂si
∂sj

= 0,

for i 6= j where i, j = 1, · · · ,K − 1.

Proof: Lemma 1 can be shown as follows. First, for s` ∈
int ∆K , we only have K − 1 free variables, i.e., without loss

of generality, si for i = 1, . . . ,K − 1. For any fixed s̄i, sj
can be any possible values in a nonempty continuous domain
(e.g., if si = 0.5 then the domain of sj is (0, 0.5) regardless
of other components). Hence, if one treats si as a function of
sj , then the sensitivity of si w.r.t. sj is defined as

∂si
∂sj

= lim
∆sj→0

si(sj + ∆sj)− si(sj)
∆sj

= lim
∆sj→0

s̄i − s̄i
∆sj

= 0.

This completes the proof.
This lemma is important for deriving our main theorem:

Theorem 2 (Nonlinearity Removal) Consider the post-
nonlinear mixture model x` = g(As`) with the constraint
s` ∈ int∆, where gm(·) for all m are continuous and
invertible. Assume that we have infinite samples such that X
is available. Assume that

M ≥ K ≥ 3

and that A ∈ RM×K is drawn from any joint continuous
distribution. Then, by solving problem (5), the resulting hi’s
are affine functions almost surely; i.e., any fi satisfying (5)
makes the following holds:

hi(x) = fi ◦ gi(x) = cix+ di, i = 1, . . . ,M,

where ci, di are constants. In addition, if
∑M

i=1 di 6= 0, we
have

hi(x) = fi ◦ gi(x) = αix, i = 1, . . . ,M, αi 6= 0, ∀i. (6)

The proof sketch is as follows. According to Lemma 1 we
have ∂si

∂sj
= 0 for s ∈ int ∆K . Then, by taking second order

derivatives of the equality constraint in (4) w.r.t. si and sj ,
it ends up with a system of linear equations that involves the
vector h′′ = [h′′1 , · · · , h′′M ]>, i.e., Hh′′ = 0. By utilizing the
assumptions, one can show that H has full column rank thus
it immediately implies h′′ = 0, which further leads to that all
hi’s are affine.

B. Latent Component Identification

Note that under (6), the following holds:

f(x`) = CAs` = Bs`, ` = 1, 2, . . . , N

where C = Diag(α1, . . . , αM ). This model is identical to the
structural matrix factorization model in [25], [28], [29], which
is identifiable if {s`} satisfies certain conditions, e.g., the
separability condition or the sufficiently scattered condition;
see details in [4], [25], [29], [30]. Hence, a simple strategy is to
first implementing the criterion in (4) for nonlinearity removal.
Then, any structural matrix factorization algorithm proposed
in the literature, e.g., those in [29], [30], can be employed
for identifying s` from f(x`). In this work, we utilize the
minimum-volume enclosing simplex (MVES) algorithm from
[30] for s`-identification after nonlinearity removal.



C. Neural Network-based Implementation

We have shown that solving Problem (5) removes the
nonlinear distortions. However, Problem (5) is not really
“workable” since it involves continuous functional searching.
To approach this formulation, we parameterize the function
f with neural networks due to their universal approximation
ability. Each fi is approximated by an individual neural
network. Hence, the practical formulation is as follows:

min
θf ,θg

N∑
`=1

(
1− 1>fNN(x`)

)2
+ λ

N∑
`=1

‖x` − gNN(fNN(x`))‖22

(7)

where two neural networks fNN = [f
(1)
NN , · · · , f

(M)
NN ] and

gNN = [g
(1)
NN , · · · , g

(M)
NN ] are parameterized by θf and θg ,

respectively. Note that gNN can be regarded as an estimate
of the ground-truth g.

To explain the above formulation, first note that the first
fitting term is for approximating the equality constraint in
(5b). The second term articulates the difference between our
implementation and that of [20]. The latter does not have the
second term in (7). Instead, a constraint

θf > 0

is employed. The reason is that under this positivity constraint,
the function fNN is always invertible, which satisfies the prob-
lem specification in (5c). However, this may be problematic
since positive NNs may not retain the universal approximation
property for nonlinear functions—which is the reason why one
uses NNs in the first place.

In our implementation, we use the second term in (7) to
promote invertibility of the learned fNN. It is straightforward
to see the following:

Lemma 2 Assume that there exists a function gNN such that
for all x ∈ X , the following holds:

x = gNN(fNN(x)),

then fNN is invertible over X .

Hence, when N is large, the regularization approximately
enforces invertibility over X .

Another benefit of employing our formulation other than
the positivity constraint formulation as in [20] is that un-
constrained optimization for NNs is much easier. We defer
detailed discussion on this aspect in a pertinent journal version.

IV. NUMERICAL RESULTS

We use two baselines in our simulations, i.e., nonlinear
matrix factor recovery (NMFR) [20] that was developed under
the same model and MVES [30] that does not consider
nonlinear distortion.

Our formulation is tackled by PyTorch-based Adam al-
gorithm [23] with the initial step size of 1e−3. Adam is
a stochastic gradient algorithm that works under mini-batch
settings. The batch size is 5, 000 in our simulations. The
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Fig. 1. Nonlinearity removal effects compared with baselines.

algorithm stops after running 5, 000 epochs. The parameter λ
is set to be 1e−5. For fNN and gNN, each channel is modeled
with a single hidden layer neural network with 256 neurons.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
input

0

2

4

6

8

10

ou
tp

ut
f1 g1
g1

2 1 0 1 2
input

0

2

4

6

8

10

ou
tp

ut f3 g3
g3

7.5 5.0 2.5 0.0 2.5 5.0 7.5
input

0

2

4

6

8

10

ou
tp

ut

f1 g1
g1

2 1 0 1 2
input

0

2

4

6

8

10

ou
tp

ut f3 g3
g3

7.5 5.0 2.5 0.0 2.5 5.0 7.5
input

0

2

4

6

8

10

ou
tp

ut

f1 g1
g1

2 1 0 1 2
input

0

2

4

6

8

10

ou
tp

ut f3 g3
g3

Fig. 2. Impact of N . From top to bottom, N is 5000, 10000 and 20000,
respectively.

For the first simulation, we set M = K = 3. The
three nonlinear functions are: g1(x) = 5sigmoid(x) + 0.3x,
g2(x) = −3tanh(x) − 0.2x and g3 = 0.4 exp(x). The
number of samples is 10, 000. The matrix A is drawn from
standard Gaussian distribution. The learned f

(i)
NN ◦ gi’s are

shown in Fig. 1. One can see that the proposed method works
remarkably better than the NMFR from [20]. Although the two
methods start with the same conceptual formulation in (5),
the performance difference may come from implementation
strategies: since Yang et al.’s implementation uses positive



TABLE I
MSE BETWEEN S AND ESTIMATED Ŝ AFTER OPTIMAL MATCH.

N Proposed NMFR MVES
5000 3.67e−3 ± 1.53e−3 1.30e−1 ± 4.48e−2 5.49e−2 ± 4.50e−3

10000 1.11e−3 ± 5.54e−4 9.68e−2 ± 2.84e−2 5.84e−2 ± 8.60e−3

20000 1.58e−4 ± 1.65e−4 8.01e−2 ± 1.78e−2 4.96e−2 ± 3.11e−3

NNs, it may not be able to approximate the true solution f ;
in addition, constrained optimization may be much harder than
dealing with our unconstrained formulation.

For the next simulation, we qualitatively show the influence
of the sample size N . With the same setting as in Fig. 1, we
randomly select two channels of the observations and show
the learned composite functions in Fig. 2. The figure clearly
illustrates that as more samples are available, the nonlinearity
removal performance improves substantially.

In the last simulation, we combine nonlinearity removal
and s`-identification, where the second phase is conducted
by applying MVES to fNN(x`) for ` = 1, . . . , N . The
performance measure here is the mean squared error (MSE)
of the estimated S = [s1, . . . , sN ]. The results are shown in
Tab. I, which is averaged over 10 random trials. It can be seen
from the table that the performance of the proposed approach
shows a notable margin over the baselines. In particular, the
MSE performance is one or two orders of magnitude lower
compared to NMFR and MVES.

V. CONCLUSION

In this work, we address the nonlinearity removal and
latent component identification problems under the post-
nonlinear model with nonnegative and sum-to-one dependent
components. Our contribution is two fold: First, we have
tightened the sufficient conditions under which the nonlin-
earity is removable—which offers substantially more relaxed
conditions relative to a recently derived result. Second, we
offer a new NN-based formulation that has better function
approximation ability and is easier to optimize. As a result,
the numerical performance is largely improved compared to
prior work.
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