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Topology Identification of Directed Graphs via Joint
Diagonalization of Correlation Matrices
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Abstract—Discovering connectivity patterns of directed net-
works is a crucial step to understand complex systems such as
brain-, social-, and financial networks. Several existing network
topology inference approaches rely on structural equation models
(SEMs). These presume that exogenous inputs are available, which
may be unrealistic in certain applications. Recently, an alternative
line of work reformulated SEM-based topology identification as
a three-way tensor decomposition task. This way, knowing the
exogenous input correlation statistics (rather than the exogenous
inputs themselves) suffices for network topology identification. The
downside is that this approach is computationally expensive. In
addition, it is hard to incorporate prior information of the network
structure (e.g., sparsity and local smoothness) into this framework,
while such prior information may help enhance performance when
handling real-world noisy data. The present work puts forth ajoint
diagonalizaition (JD)-based approach to directed network topology
inference. JD can be viewed as a variant of tensor decomposition,
but features more efficient algorithms, and can readily account for
the network structure. Different from existing alternatives, novel
identifiability guarantees are derived regardless of the exogenous
inputs or their statistics. Three JD algorithms tailored for network
topology inference are developed, and their performance is show-
cased using simulated and real data tests.

Index Terms—Structural equation models, tensor-based model,
joint diagonalization, directed network topology inference.

1. INTRODUCTION

ETWORK analytics play an essential role in modeling and
N understanding the behavior of complex systems, such as
financial markets, brains, and genomics, to name just a few. One
of the most important tasks in this context is network topol-
ogy identification [15, Ch. 7]. Prominent among the popular
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topology inference methods are structural equation models
(SEMs) that are capable of capturing causal (directed) dependen-
cies among complex system components [ 14]. These directional
effects are seldom revealed by approaches relying on symmet-
ric associations among endogeneous nodal variables, such as
those represented by covariances or correlations; see e.g., [11],
[12]. SEMs have well-documented merits in several learning
tasks requiring knowledge of the underlying graph topology;
see e.g., [3], [8], [13], [24]. In a nutshell, SEMs capture the
relationship among observed nodal processes and the unknown
causal connectivity. They can also account for exogenous or
confounding inputs in observed nodal processes, which turn out
to be critical in identifying directional dependencies—a critical
task in network analytics [5].

One challenge facing SEM identification is that available
methods require knowledge of the exogenous inputs that are
“injected” per node to stimulate responses. In certain scenarios,
measuring exogenous inputs can be costly or impractical, ren-
dering SEM identification infeasible. Take financial networks
as an example, where stocks of different companies are nodal
measurements and their cross-correlations are edge weights.
Publicly traded stock prices (endogenous) are known to depend
on investors’ purchases of stocks (exogenous inputs), whose
details are often unknown to the public for privacy reasons. To
cope with the unavailable exogenous inputs, novel tensor-based
approaches have been developed in [28], [29] that only require
second-order statistics of the exogenous inputs. However, there
are still several important challenges for this method: i) Even the
statistics of exogenous inputs may not be available in some real
world applications, e.g., brain networks; ii) prior information
of the network structure such as sparsity or smoothness is
not readily leveraged by tensor decompositions — but exploit-
ing such prior information is important for combating noise
and modeling errors present in real-world data; and iii) the
method in [28] employs the canonical polyadic decomposition
(CPD), which is not easy to scale up in the context of network
inference.

Topology identification has also been studied in graph signal
processing; see e.g., [10], [21], [26], where the focus is on
identifying undirected network topologies. SEM-based topolo-
gies of directed graphs have been also investigated, and found
identifiable using observations on all nodes [5]. This result is
elegant and plausible, but when nodal measurements are not
available (e.g., when there are missing observations or when
only some derived information such as the statistics of the
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measurements is available), it is unclear whether such methods
can still work.

The present paper approaches graph topology identification
using joint matrix diagonalization, which is a classic tool origi-
nally developed for source separation [6], [20], [22], [30]. It will
be seen that a topology can be identified by jointly diagonalizing
the slabs of a three-way tensor. This tensor is constructed using
second-order statistics of the nodal measurements, which makes
the method naturally robust to missing or noisy nodal measure-
ments. It will be also shown that the statistics of exogenous
inputs are no longer needed to guarantee identifiability of the
topology—if some other conditions are satisfied. For example,
if a small number of anchor nodes whose connectivity patterns
(specifically in-links) are known a priori are available, then
identifiability is ensured by JD solvers. The anchor node as-
sumption can be easily satisfied in certain applications—e.g., in
brain networks, where each node represents a certain region of
interest. Established domain knowledge can reveal connectivity
patterns among some particular regions.

Another benefit emanating from the new JD-based method is
thatiteffectively circumvents some computationally heavy oper-
ations. For example, large matrix-matrix multiplications in CPD
are no longer—unlike the existing tensor-based method [28].
Hence, the JD-based approach has a better potential to deal
with large-scale networks. Furthermore, JD can naturally in-
corporate prior knowledge on networks, e.g., sparsity and local
smoothness. This is important, since real-world network data
are often noisy, and using prior information as regularization
terms and/or constraints may help enhance the performance of
network inference.

JD is a well appreciated tool in computational linear algebra,
and finds applications in a number of signal processing appli-
cations, prominently in blind speech and audio separation [6],
[22], [32]-[34], [36], [37]. General-purpose off-the-shelf JD
algorithms can be also employed in our present context. To better
serve the goals of network topology inference however, three
new customized JD algorithms will be proposed: (i) JD-based
SEM for general topology identification from second-order
statistics; (ii) sparse-JD based SEM (S-JDSEM) designed for
sparse connectivity networks; and, (iii) robust (R)-JDSEM to
identify the network structure in the presence of abnormal nodes
or outliers. These variants can be flexibly applied depending
on the prior information available about the network structure or
the noise model. Compared with our conference precursor [27],
the present work is capable of exploring the prior structural
information such as sparsity, or presence of outliers. In addition,
identifiability analysis will be carried out to show that the JD
model is capable of identifying the underlying network structure
under mild conditions.

The rest of this paper is organized as follows. Preliminar-
ies and a formal statement of the problem are in Section II,
while Section III deals with JD of tensor correlation slabs, and
introduces three variants of the basic JD solver suitable for
different scenarios. Section IV presents identifiability results
for the proposed framework. Finally, corroborating numerical
tests on both synthetic and real data are presented in Section V,
while concluding remarks along with a discussion of ongoing
and future directions are the subject of Section VI.

Notation: Bold uppercase (lowercase) letters will denote
matrices (column vectors), while operators (-)" and Apax(*)
will stand for matrix transposition and maximum eigenvalue,
respectively. The identity matrix will be denoted by I, while
¢, and Frobenius norms will be denoted by ||.||, and |.|#,
respectively. The operator vec(.) will vertically stack columns
of its matrix argument, to form a vector. Finally, A ® B will
stand for the Kronecker product of matrices A and B, while
A © B will denote their Khatri-Rao product, namely, A © B :=
[a; ® by,...ay @ by], where A :=[a;,...,ay]| and B :=
[b1,...,bn].

II. PRELIMINARIES AND PROBLEM STATEMENT

In the present section, we will first introduce SEM-based
topology identification [14]. Following this, we will outline
tensor-based topology inference, before proceeding to our novel
JD-based approach.

A. Background

Consider a graph denoted as G(V, £) with N nodes and its
adjacency matrix A € RV*N having (i, j)th entry a;; that is
nonzero if and only if there is an edge linking node j to node
7. We allow G to be directed, meaning A can be asymmetric
(A # AT). Suppose this graph is an abstraction of a complex
system with measurable inputs and outputs that propagate over
the network following directed links. Let x;; denote the input
to node ¢ during time slot ¢, and y;; the ¢-th observation of
the propagating process measured at node i. The signals y;;
and z;4 can have different physical meanings depending on the
application. In the context of brain networks for example, y;;
represents the ¢-th time sample of a certain measuring scheme
(e.g., functional magnetic resonance imaging (fMRI)) at region
1, while z;; represents a stimulus exciting a specific region of
the brain. In financial networks, y;; denotes the closing price of
stock 7 on the ¢-th day, while x;; represents the money invested
to a specific stock on day .

1) SEM-Based Approach: Here, we generally postulate that
y;: depends on two classes of variables, namely: i) measurements
of the diffusing process {y;: };: (a.k.a. endogenous variables);
and ii) external inputs z;; (exogenous variables). SEM-based
approaches posit that y;; depends linearly on both {y;; } ;; and
;¢ that is,

Yit = Z @iyt + bisxi + e (D
J#i
where e;; denotes the term that captures unmodeled dynamics.
The coefficients {a;; } and {b;; } are unknown, and a,; # 0 signi-
fies that a directed edge from j to ¢ is present. Collecting nodal
measurements y¢:=[y1s ... yn¢| , and Xy:=[z14...2n¢]" per
slot ¢, the noise-free version of (1) can be written as

vyt = Ay + Bxy ()

where [A];; = 0 and B := Diag(b;1, ..., byn) denotes a diag-
onal matrix with b;; # 0,fori = 1,..., N asits diagonal entries.
Classic SEM-based approaches assume that {x;,y;}7_, are
available. If rank(Y') = N, then using that a;; = 0 and b;; # 0
Vi, matrices A and B turn out to be identifiable as the solution
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inputs (red arrows), upon which endogenous variables may depend [12].

of the linear system of equations [5], [8]
(I-A)YY =BX

where X := [x1,...,xr],and Y :=[y1,...,y7]

The conventional SEM-based approach solves the following
problem: Given X and Y, find A by solving the problem
mina g ||[Y — AY — BX||%. Sparsity of the network connec-
tivity was leveraged by [5] and [2] in order to improve identi-
fication performance. Note that the conventional SEM assumes
availability of nodal measurements.

2) Tensor-Based Approach: Here, the exogenous inputs
across nodes are not measurable, but are assumed to satisfy the
following.

(as0) Exogenous inputs {x\"™} are piecewise wide-
sense stationary over time segments ¢ € [Ty, i1 — 1], m =
1,...,M 41, each with a fixed correlation matrix R}, :=
E{x" (™))

(asl) Entries of x; are zero mean and spatially uncorrelated;
that is, E{z; 2.} = 0,Vi # j; and

(as2) Matrix (I — A) is invertible;

Under (as2), the model in (2) can be re-written as

y: = (I—-A)"'Bx; = Ax; 3)

where A := (I— A)"!'B, and superscript (m) has been
dropped with the understanding that ¢ stays within one segment,
and thus (3) holds Vm. The per segment correlation matrix
RY, := E{y;y/ } is thus given by [cf. (3) and (as0)]

RY, = ARZ A" t € [Ty, Tyt — 1] 4)

Under (as1), one can express (4) as the weighted sum of rank-one
matrices as

anma a 4)

where «; denotes the ith column of A, and p?, =
[PE ... pE ], with pZ . i=E(a?,), for t € [Ty, Tt — 1]

Consider the three-way tensor Ry € RVXNXM constructed
by setting the m-th slice [RY]..,, = RY,. Letting oj; SxiVii
denote the (7, k, 1) entry of the tensor outer product a; o 3; o ;,

where aj; := [a;]; (resp. B, and ~;), it turns out that RY can

RY, = ADiag(p},)A

An N-node directed network (blue links), with the ¢-th samples of endogenous measurements per node. SEMs explicitly account also for exogenous

be written as

N

R'=) ajoa;orf ©)

i=1

with entry (4, k, 1) given by

RY];, = Z T (7

where ¥ := [p?,...p%,.]". Interestingly, (6) amounts to the
partially symmetric CPD of RY into factor matrices \A, A, and
R? = [r?...r%] € RMN;seee.g., [16], [28]. Although RY,
is generally unknown it can be readily estimated using sample
averaging of endogenous measurements, as

Tm+1— 1

Z ytyt7 m:17"'7M- (8)

t=Tp

Ry —

" 7_m+1 —Tm
Supposing that second-order statistics of the network processes
are only available, the goal of the tensor based approach is to

find A and B given tensor R with {RY, } as its m th slab.

Specifically, relying on this three-way tensor constructed from
second-order statistics of the nodal measurements, [27] lever-
ages CPD to identify the latent topology \A; e.g., via alternating
least-squares (ALS) iterations. Under (as2), it is possible to
recover A, once A has been found as

A =1— (Diag(A ™) AL )

Despite the fact the CPD based SEM (CPSEM) is capable
of identifying the network structure without exact information
about the exogenous input of each node, it still faces several
important challenges:

1) The approach in [27] relies on the ALS algorithm to
perform the CPD for estimating .4, which leads to serious
scalability issues. The latent factor .4 in CPSEM has size
N x N, and the tensor rank is V. Hence, the key ALS
operation involving the matricized tensor times Khatri-
Rao product MTTKRP) costs O(N* M) flops; see [30].
Note that N can be millions in a complex network, and
MTTKREP is carried out three times in each iteration of
ALS for this particular problem.
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2) Matrix A does not capture the structure of A, e.g., sparsity,
since it is obtained by first inverting A; and,

3) Even though exact information of x, is no longer required
for the tensor-based algorithm to recover the network
topology, it is still necessary to know the second-order
statistics R, [27], which may not be available in certain
applications. To circumvent these challenges, we will
show how to leverage JD of the tensor slices.

B. Problem Setup

Different from conventional SEM settings, where exogenous
inputs {x;}7_, are assumed known, we consider here that such
information is not available. Instead, we assume that the connec-
tivity patterns of a small subset of nodes, referred to as anchor
nodes, are known. The problem statement can now be formally
stated as follows.

Problem statement: Given second-order statistics of {y; }Z_,
and the connectivity pattern of a few anchor nodes, the goal is
to recover the underlying directed network topology A while
exploiting the possibly available network structure, e.g., edge
sparsity.

A couple of examples to motiva40te this specific problem
setup are due next.

Example 1: In brain networks, although the stimuli {x; } are
not easy to measure, the interaction among some regions of the
brain are well understood, e.g., based on biological connectivity
using diffusion tensor imaging [18], or prior domain research
results. Such regions can be viewed as the anchor nodes.

Example 2: In a financial stock market, where each stock
denotes a node, y;; represents the stock price of stock 7 at time ¢,
and the exogenous input x;; is the money invested into stock ¢ at
time ¢. While stock prices can be observable, the investment over
time may not be accessible due to privacy concerns. However,
the influence of some stocks can be forecast based on historical
data; see e.g., [14].

II1. JD-BASED TOPOLOGY IDENTIFICATION

The topology inference problem will be formulated here as a
JD task using the notion of anchor nodes. The resultant solver
will be broadened to account for sparsity, and also gain resilience
to outliers.

A. Topology Inference With Anchor Nodes

To begin, consider rewriting (2) as
(I — A)yt = BXt (10)

and with H := I — A, write the per-segment correlation matrix
R?{n = E{yty;r}’ as

HRYH' = BR*B' (11)

where B and R¥, are unknown diagonal matrices as per (asl).
Clearly, (11) implies that RY , m =1, ..., M are jointly diag-
onalizable by H. In this noise-free setup, the latter yields

HRYH' = Diag HRY,H'), m=1,...,M. (12)

With h;; denoting the (i, j)th entry of H, it is easy to see that
h;j satisfies

hi =1, Vi (13a)
hij = —a;; Yi#]j (13b)
which suggests identifying H by solving
M
m&n; |HRY,H' — Diag(HRY,H")|%,
s.t. hyy =1, Vi (14)

Altough intuitively pleasing, further reflection on (14) reveals
that if H* is an optimal solution to (14), then any

H=HTIA

is also an optimal solution, where II denotes a permutation
matrix, and A is a nonsingular diagonal scaling matrix. This
is because column permutation and scaling ambiguities are
intrinsic to JD [6] (as in tensor and matrix decomposition), and
cannot be removed without extra information.

Nonetheless, permutation and scaling ambiguities are not
tolerable in network topology identification, since they make
isomorphic graphs indistinguishable. In order to resolve the
permutation ambiguity, [28] relies on additional information
about the second-order statistics of the exogenous variables, that
is R”. This idea can also be used in the JD-based approach.
However, the present paper introduces an alternative for ambi-
guity removal. To be specific, this work will utilize the notion
of anchor nodes to pin down the final estimate of the network
topology. Here, anchor refers to a node whose connectivity
patterns are known a priori (cf. Examples 1-2).

Specifically, we introduce the following.

(as3) A subset of [A];; entries with (7, j) € € is known.

Incorporating the known entries as constraints into (14) yields
the constrained least-squares problem

M
. y T _ ™ Y V|12
min E |[HR?Y H' — Diag(HRY H')||%

m=1

s.t. hy; =1 Vi, hij = —Qj V(Z,j) e Q. (15)

Through this formulation, it is possible under (as0), (as1) and
(as3) to estimate H, and then the adjacency matrix A. Detailed
identifiability analysis will be provided in Section IV.

Note that (15) is not a standard JD formulation because it
includes special constraints. Nevertheless, it can be tackled
following ideas from classic JD algorithms, e.g., via block
coordinate descent (BCD). Note that BCD converges to a critical
point of the optimization problem under certain conditions—
e.g., when the block subproblems are strictly convex; see [23],
[35]. A simple and intuitive algorithm can be derived, starting
with H := [hy, hy, ..., hy]", where h] denotes the nth row
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Algorithm 1: Topology Inference via Joint Diagonalization.

Imput: RE, {y:}, M. n

S1. Tensor construction:
Set m-th frontal slice of RY € RNXNXM 4
R%:Wﬁ Z;”i,i_1Ytyz7m:17""M

S2. Tensor decomposition via joint diagonalization:
Estimate H by solving (15), (21) or (27).

S3. SEM estimates for topology inference:
A=1-H

S4. Edge identification:
[Al;; # 0if [A];; > 0, otherwise [A];; = 0, ¥(i, )

of H. Supposing hy,...,h, 1, h,1,..., hy are fixed, the

subproblem w.r.t. h,, can be written as

min ||thn||§
h,

s.t. hyp = 1, Npj = —an; V(n,j) € Q (16)
where
W, = [QL e QIM]T
Qnm = anR};Jn
H ,:=h...h, th,;;...hy]". (17)

Problem (16) is an equality-constrained quadratic program,
which can be solved in closed form. To see this, let 2,, := {;j :
(n, j) € Q} denote the set that consists of column indices of the
known entries in the nth row of A.. In addition, define W,, as the
submatrix of W constructed by the columns of W, with indices
not in ©,,. Use h,, to represent the sub-vector of h,, collecting
entries indexed by €,,. One can now re-write (16) as

min |W, h,, + €,]2 (18)
h,

where
(19)

€n = § thnj + wy
JEQ,

with w,, denoting the nth column of W that is known per sub-
problem n. It is clear that for each sub-problem, the closed-form
solution is readily obtained as
h, = -Wle, (20)
where W := (W W,,)"'W,, is the pseudo-inverse of W,.
Remark 1: The per-iteration core complexity of this algo-
rithm mainly comes from (20), which is of the order O(N?3).
This is already at least two orders of magnitude lighter com-
pared to O(N* M) that was needed in CPSEM. Note that
the per-iteration complexity can be further reduced, leverag-
ing first-order optimization and inexact BCD—which will be
introduced in the ensuing subsections together with topology
structure-aware variants of the JD formulation.

B. Topology Inference via Sparse JD

To further capitalize on the JD formulation, the present section
studies the case where the network of interest exhibits edge spar-
sity. Such property is pervasive in real-world networks where
each node only has a small number of neighbors compared with
the total number of nodes in the network. It will be shown that the
novel JD-based approach can flexibly incorporate such structural
information without incurring high computational complexity.

Unlike the previous tensor-based approach which requires
matrix inversion to recover the network topology [c.f. (9)], factor
H in the JDSEM algorithm naturally inherits the sparsity pattern
of A [cf (13)]. Therefore, if the network is sparse, only a small
subset of {h;;}s will be nonzero, and the nonzero positions
correspond to the presence of an edge, meaning a;; # 0. Suchan
observation leads to the following sparsity regularized criterion

M
1 T : 1 Ty (I2
min o ZﬂHHR%H — Diag(HRY,H')[|% + A H])x

s.t. hy; =1 Vi, hij = —Qjj V(’L,j) e 21

where [[H||; := }_,; [hy;|. Similar to (15), a BCD iteration is
applied to solve (21). Clearly, it boils down to the per-row
subproblem [cf. (17)]

1
in =||W,h,||2 + A|/h,
mhin2|| 3+ Al

st hpp =1, hnj = —Qnj v] €Q, (22)

where A > 0 is the regularization parameter, and W,, is as in
(17). The problem in (22) is convex but nonsmooth, and several
off-the-shelf convex optimization solvers can be employed;
e.g., proximal splitting such as proximal gradient descent it-
erations [9], or, the alternating direction method of multipliers
(ADMM) [7], [25].

Although ADMM is a viable solution, it may involve large
matrix inversion in its updates that incurs O(N?) complexity.
Instead, the proximal gradient (PG) method is adopted here.
Specifically, by eliminating the constraints as before, (22) can
be written as the following unconstrained problem

1 _
*Hthn + ean +)‘||hn||1'

i 23
min 5 (23)
The PG algorithm results in the closed-form update
by, =Py, (bt = V(™) /L) (24)

with P, (.) denoting entry-wise soft thresholding given by
z

2 max(|2| - p,0).

2|
With V f(h*~1) denoting the gradient of the continuously dif-

ferentiable f(h,,) := 1||W,h,, + €,]|3, one arrives at

P,(z) := 25)

Vf(h,) =W, (W,h, +€,) (26)

which is Lipschitz continuous with constant Ly :=

Amin(wgwn)
Remark 2: The PG algorithm complexity largely depends
on that for computing the gradient in (26), which no longer
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requires computing a matrix inversion and incurs complexity of
O(N? M).

C. Robust Sparse JDSEM

In several challenging scenarios, the local covariance matrices
{R’y”} may not be jointly diagonalizable due to the presence of
outliers. This is a common challenge for real world networks,
due to adversarial nodes that generate abnormal signals. In social
networks for instance, spammers may be present sending out
malicious emails that can be viewed as outliers. Another example
could be malfunctioning nodes in power networks or abnormal
regions of interest in brain networks. To cope with such potential
outliers, a robust version of JDSEM (R-JDSEM) is developed in
the present subsection. The outliers present can be modeled as
sparse noise components in the matrix of second-order statistics
that cannot be jointly diagonalizable.

In order to account for the potential outliers, the ¢;-norm
fitting term can replace the LS one in (21), which leads to the
{1 -regularized minimum absolute value minimization

M
. v IrT ) v 1y T
mﬁnmgil |HRY H' — Diag(HRY H')||; + A||H|1

S.t. h,“ =1 VZ, hij = —Q4y V(Z,]> Y (27)

and the subproblem per block h,, in each BCD iteration can be
written as

min [[Why |1+ 5{[ha

Sthpn =1, hpj=—an; V(n,j) €Q.  (28)

Again, (28) is a convex and non-smooth problem that can
be solved via proximal splitting methods such as ADMM, or
BCD iterations; see Appendix A for detailed derivation. The
per-iteration computational complexity of the R-JDSEM solver
here is O(N3).

IV. IDENTIFIABILITY ANALYSIS

So far, we have seen that the directed network topology iden-
tification task can be cast into a joint diagonalization problem.
The present section aims at providing identifiability conditions
for the proposed model, which will be analyzed along the lines
of exact JD of tensors. As usual, identifiability of the network
topology will be analyzed in the noiseless case, where the local
covariance matrix can be exactly diagonalized. In this case, the
optimal solution H = T — A satisfies that

HRY H' = Diag(HRY,H")

s.t. hy; =1 Vi, hU = —Qjj V(Z,j) e Q. 29)

To proceed, we will need a couple of definitions.

Definition 1: The Kruskal rank of a matrix Z € RV*M (de-
noted hereafter as kr(Z)) is the maximum number k& of any
collection of k columns of Z forming a full-rank submatrix.

Definition 2: Essential uniqueness of a tensor factorization
refers to uniqueness up to scale and permutation ambiguities.

Let (U, V, W) denote the PARAFAC factors obtained by de-
composing a three-way tensor Z into K rank-one tensors. If an
alternative triplet (U, V, W) satisfies the PARAFAC decompo-
sition of Z, there must exist a permutation matrix IT, and diag-
onal matrices A1, Ay, Ag, so that AjAsAs = I, U = UTIA;,,
\7 = VHAQ, and W = WHA3

Without extra prior information, it is well known that only
essential uniqueness can be guaranteed when R, is fully avail-
able and kr(R?*) > 2; see [31] and [17] for further details. In
the present paper, the goal is to analyze the uniqueness in the
presence of anchor nodes with known connectivity patterns.
The following result asserts how many anchor nodes suffice to
guarantee JD-based reconstruction of the topology.

Theorem 1: If x,; and y; adhere to the SEM in (2), along
with (as0) and (asl), for t = 1,..., and if kr(R"*) > 2, then
A can be uniquely identified if the nonzero entries of A are
randomly drawn from a continuous distribution, and at least two
off-diagonal nonzero entries are known a priori in each column
of A.

Proof: It has been shown in [1] that uniqueness via exact JD
can be viewed as a special case of tensor factorization, and the
Kruskal’s condition is sufficient for essential uniqueness of the
estimated factors. Hence, recalling Kruskal’s condition [17], it
can be readily deduced that if the Kruskal ranks of H and R,
satisfy

kr(Rg) + 2kr(A) > 2N +2 (30)
essential uniqueness is guaranteed, meaning H satisfies
H = HAII (31)

where IT is a permutation matrix and A a diagonal scaling ma-
trix. Based on (as1) and (as2), A := (I — A) !B is invertible,
meaning that kr(.\A) = N. Hence, condition (30) is satisfied if
kr(R,) > 2.

Let N; denote the number of known entries in the jth column
of A, andlet hgz c RN+l represent the sub-vector of h; formed
by the a priori known entries, while flgz is the corresponding
sub-vector of flj . The constraints in (29) related to the jth column
can be written as

h), = hl,. (32)
Upon combining (31) with (32), we arrive at
h), - H)p; = O(N,+1)x1 (33)

where HY, denotes the sub-matrix of H formed by the rows
corresponding to the available entries in h'’, and p; € RY
represents the jth column of P := AII. Since ITis a permutation
matrix, each constituent column in I comprises zeros with
the exception of a single entry set to one. Letting 7;; denote
the (i,7)-th entry of I, assume without loss of generality
that7;; = land ; = 0, Vk # i. Consequently, withp; € R
representing column j of P := ITA, one can equivalently write

pj =[0,...,0,h7;,0,...,0]" (34)

~——

entry ¢
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where A ; denotes the j-th diagonal entry of Az. Combining (34)
with (33), one obtains

For i # j, (35) implies that h}, and hgl are linearly dependent.
On the other hand, if N; > 1, we have that the size of hgz is
at least N; + 1 > 2. However, since nonzero entries of A are
drawn from a continuous distribution, any two columns of H?2
are linearly independent with probability 1, which contradicts
(35). It further holds that hi, # 0 with probability 1 for all 7,
meaning A; # 0. Therefore, the trivial solution of A = 0 can be
avoided. To this end, for (35) to hold, it is necessary that i = j,
which is equivalent to requiring 7;; = 1 and A; = 1. Since this
holds for any 7, one deduces that

=1 A=1 (36)

Combining with (31), yields H= H, and also completes the
proof of Theorem 1. |

Note that the assumption requiring that at least two entries
are known a priori per column of A can be satisfied if there
exist two anchor nodes whose in-links have been obtained,
e.g., via prior domain study. Having two anchor nodes whose
in-links are known is a mild assumption in many applications.
For example, in brain network analysis, there might be already
established connectivity patterns of some specific areas, and thus
such information can provide the needed anchor nodes.

Remark 3 (Comparison with [28]): Different from the iden-
tifiability results in [28], Theorem 1 here asserts that exact
identification of network structure is possible, even when no
information on the x; statistics is available, as long as the in-links
of certain nodes are known a priori. Thus, the novel methods
here offer a useful alternative to existing approaches, in cases
when one has no access to statistics of external inputs. Also,
unlike [28], it turns out that our joint-diagonalization based
method does not require the matrix (I — A) to be invertible [c.f.
(as2)], because we directly find H = I — A. Moreover, without
the need of matrix inversion after the network identification
stage, it will be shown in Section V that the novel JD-based
methods are empirically more robust to different noise settings
as well as different data models.

V. NUMERICAL TESTS
In this section, the performance of the proposed algorithms is
tested on both synthetic and real datasets.

A. Synthetic Data Tests With Gaussian Noise

Data generation: A Kronecker random graph comprising
N = 64 nodes was generated from a prescribed “seed matrix”

00 1 1
11
sO::OO
010 1
1010

in order to obtain a binary-valued 64 x 64 matrix using Kro-
necker product operations to find S =Sy ® Sy ® Sp; see

NMSE
4

/
Ly

-4 I I I I
0 500 1000 1500 2000 2500 3000

Window length (L)

Fig. 2.
nodes.

NMSE of JDSEM for different window lengths, with N, = 5 anchor

also [19]. With the binary matrix S setting the positions of
zero and nonzero entries of the topology, a Kronecker graph
with adjacency matrix A was then constructed by randomly
sampling each entry from a uniform distribution with a;; ~
Unif(0.2s;5,0.5s,;). To generate endogenous measurements,
the observation horizon was set to 1" = M L time slots, which
were partitioned into M windows of fixed length L, using pre-
selected boundaries {Tm}%i_ll with y =1 and L := 741 —
Tm, for several values of L and M. Per t € [T, Trnt1 —
1], exogenous inputs were sampled as x; ~ A(0, 02,I), with
{om}M_, setto M distinct values. With e; sampled i.i.d. from
N(0,02T), vector y; was generated using the SEM, that is,
y: = (I — A)"}(Bx; + e;), where B is a diagonal matrix with
diagonal entries [B];; drawn uniformly from the interval [2, 3].

Test results: The performance of IDSEM is first tested versus
different window lengths, and different numbers of time seg-
ments or measurements. Fig. 2 illustrates the observed error per-
formance in terms of NMSE := [|A — A||%/||A||% over several
window lengths (L) when N, = 5 anchor nodes are present.
In addition, we test the performance when the identifiability
condition in Theorem 1 is not satisfied. Specifically, given the
generated random graphs, we randomly select one node, and
remove all edges connecting the selected node to other nodes,
except one. The NMSE performance in this case is illustrated
in Fig. 3. It can be observed that, compared with Fig. 2, the
NMSE obtained is slightly higher, but not significantly so. This
shows that the algorithm can still provide reliable performance
even if the identifiability conditions are not satisfied—this is
understandable since our identifiability condition is sufficient
but not necessary. Fig. 4 depicts the NMSE performance when
different numbers of anchor nodes are available. In all three
figures, there is a slowly decreasing trend in edge estimation
MSE with L increasing, since wider window lengths yield
improved estimates of the correlation matrices per window.
Meanwhile, it can be seen that collecting a moderate number
of time windows could already lead to reliable estimation, and
the performance does not change much as the number keeps
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Fig. 3. NMSE of JDSEM for different window lengths, with N, = 5 anchor

nodes, when the graph has a single-edge node.
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Fig. 4. NMSE plot of JDSEM for different window lengths and numbers of

anchor nodes, with M = 5 windows.

increasing (see M = 15 vs M = 20). Fig. 4 also reveals a much
better result when more anchor nodes are present, which better
helps resolve the permutation and scaling ambiguities. It can also
be readily observed that reliable performance can be obtained
with only 5 anchor nodes.

We further compare the proposed joint diagonalization
method with the CPSEM in [27] in terms of NMSE. Recall that
instead of introducing anchor nodes, CPSEM assumes availabil-
ity of R”, and for this reason we will assume full knowledge of
R? for CPSEM. One can observe from Fig. 5 that CPSEM does
not provide as good NMSE performance as the JIDSEM.

B. Topology Identification With S-JIDSEM

This subsection aims at testing the performance of sparse
JDSEM when the network structure is sparse structure, that is,
the number of neighbors is much smaller than the total number
of nodes.

102 T T
—— JDSEM (M=10)
ot CPSEM (M=10)
JDSEM (M=20)
«--- CPSEM (M=20)
—o— JDSEM (M=30)
B CPSEM (M=30)
10°%F E
PR N
17 B N
b= s e
LN, e T
ol N e
10-5 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Window length (L)
Fig. 5. Comparison of NMSE for JDSEM with N, = 10, and CPSEM with
fully observed exogenous inputs versus different window lengths.
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Fig. 6.  Comparison of recovery NMSE for JDSEM, S-JDSEM, CPSEM and

SEM versus window lengths, with N, = 3.

Data generation: A random unweighted directed network
of size 64 was generated with 6 outgoing links per node. The
weighted adjacency matrix A was then constructed with weights
drawn i.i.d. from the normal distribution A/ (0, 1), and the ex-
ogenous inputs x; and y; were generated as in the previous
experiment.

Test results: Fig. 6 illustrates the performance of S-JDSEM,
JDSEM and CPSEM in terms of recovery NMSE. It can be
readily observed that the novel JDSEM algorithms can recover
the network topology with better accuracy than CPSEM, and
the sparsity-aware S-JDSEM achieves the best performance
because it exploits sparsity in the network structure, and also
avoids matrix inversion. In addition, we compared our joint-
diagonalization based method with the conventional SEM,
where exact measurements of the nodal process are available,
and an ¢;-norm regularizer is introduced to promote the sparse
network connectivity, see e.g., [2], [4]. It can been seen that
using only statistical information, the S-JDSEM can afford
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Fig. 7. NMSE of R-JDSEM and CPSEM [28] for different window lengths,

with N, = 10 anchor nodes, crg =1.
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Fig. 8. NMSE of R-JDSEM and CPSEM [28] for different window lengths,
with N, = 10 anchor nodes, and ag = 5.

comparable recovery performance as SEM which has access
to the exact nodal measurements. This is possible due to the
existence of anchor nodes, and the fact that the model exploits
the information present in the second-order statistics.

C. Topology Identification With R-JDSEM

In the present experiment, the performance of R-JDSEM is
tested in the presence of outlying nodes.

Data generation: A random network with N = 64 nodes was
generated from a prescribed “seed matrix,” and endogenous
variables {y;} were generated using the SEM; that is, y; =
(I— A)"}(Bx; + e;), where B is an identity matrix. Vector e,
is sparse with 5% of nonzero entries signifying outlier nodes,
and with values of the nonzero entries drawn from a Gaussian
distribution A/(0, 02) having 0> = 1 for Fig. 7, and 02 = 5 for
Fig. 8; hence, they are comparable with the signal, and can thus
be considered to be sparse outliers.
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Fig. 9. Runtime performance with synthetic data.

Test results: Figs. 7 and 8 compare the performance of
CPSEM, R-JDSEM, and JDSEM. Evidently, R-JDSEM is the
most reliable one, while the JD-based algorithms outperform the
CPSEM. This confirms that R-JDSEM is capable of taking into
account the presence of outliers. All in all, we have demonstrated
that the proposed JDSEM approaches can indeed recover the
true network topologies with reliable performance even when
exogenous variables are completely unknown.

In addition, Fig. 9 illustrates the runtime comparison com-
peting alternatives. It can be observed that besides being most
efficient, the novel JD-based algorithms are more scalable than
the CPSEM in [27].

D. Tests on Real Stock Dataset

In this section, the performance of the proposed and algo-
rithms is tested on real financial networks.

Dataset description: To conduct tests on real-world networks,
we followed the procedure in [28], where historical stock price
data were downloaded through a free Yahoo application program
interface (API). Historical closing prices were obtained as time
series for dates ranging from December 23, 2011 to September
30, 2016 (1,200 days in total). The stock time series from two
groups of stocks were used: a) large technology companies
(Exxon-Mobil, Intel, Microsoft, Yahoo, and General Electric),
and b) online and brick-and-mortar retailers (Bon-Ton, E-bay,
Macy’s, and Nordstrom).

Test results: For this set of experiments, the combined
multivariate time series was adopted as endogenous variables
({y¢};2°), after a pre-processing step in which samples were
centered to have zero mean. Furthermore, money invested in
the stocks constitutes exogenous inputs ({xt}1 209, which are
not known in this case, since such information is generally
not public, hence Q = (). Furthermore, it was observed that
most stock prices tend to exhibit steady quarterly trends (rising
or falling), and the window length was consequently set to
L € {80,100, 120, 150,200}. The CPSEM method proposed
in [28] was run with Q = 0 to infer causal dependencies between
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Visualization of network topologies inferred from the stock price time series, depicting: a) technology companies; and b) online and “brick-and-mortar”

retailers. Notice the stronger dependencies between the two competing “brick-and-mortar” retailers, Macy’s (MCY) and Nordstrom (NDM) [28].

the selected stock prices. For the proposed JDSEM algorithms,
the anchor nodes were selected uniformly at random in each ex-
periment, of which the in-links were assumed known (obtained
from the CPSEM output).

We conducted 100 independent runs of CPSEM with random
initializations, while we randomly selected /N, anchor nodes
for S-JDSEM, and R-JDSEM. It turned out that most estimates
yielded identical support for A, with very slight variations in
actual values of the entries. The most frequent network topolo-
gies from 100 independent experiments were deemed as the
inferred network topologies. All algorithms reached the same
estimated topologies as reported in [28]; see Fig. 10. The figure
shows strong dependencies in the group of technology compa-
nies, while the second plot shows stronger inter-dependencies
between Macy’s and Nordstrom than the others. Note that both
Macy’s and Nordstrom are well-known “brick-and-mortar” re-
tailers and competitors. The stronger dependence between them
seems to agree with the expectation that changes in the price of
one would be expected to indirectly impact the other, which is
also consistent with the result in [28].

The corresponding runtime of the proposed and algorithms is
depictedin Figs. 11 and 12. Evidently, IDSEM and S-JDSEM are
much more scalable than CPSEM, while JDSEM and S-JDSEM
need less than 1% of that of CPSEM, which again corroborates
the effectiveness of the proposed method. Note that the runtime
comparison in Figs. 11 and 12 is clearly different from Fig. 9,
especially for R-JDSEM. The main reason for the difference in
the run time is that the algorithms involve iterative procedures,
and the convergence may largely depend on the property of data.
The longer runtime of R-JDSEM in Fig 9 and 10 is likely due
to the fact that the real data does not include significant outliers,
which leads to a slower convergence rate of the R-JDSEM.

We further tested the performance of R-JDSEM in the pres-
ence of outliers, where we randomly selected an outlier for the
retailer network, and treated the result of the CPSEM using
true data as ground truth. Fig. 13 shows the NMSE of JDSEM
and R-JDSEM, corroborating that the R-JDSEM is indeed more
robust than JDSEM in presence of outliers.
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Fig. 11. Runtime for technology companies involving different window

lengths (time segments), and N, = 2 anchor nodes.
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Fig. 12. Runtime for retailer companies involving different window lengths,
and N, = 2 anchor nodes.
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Fig. 13.  NMSE for retailer companies involving different window lengths in

presence of outlier.

VI. CONCLUSION

This paper put forth a novel framework for inferring network
topologies from statistics of nodal processes. The task was
formulated as a joint diagonalization problem. Novel algorithms
were developed and shown capable of leveraging prior knowl-
edge to account for edge sparsity and gain resilience to outliers.
Numerical tests on both synthetic and real data corroborated the
effectiveness of the proposed approaches.

To broaden the scope of this study, there are several intriguing
directions to pursue: a) more scalable algorithms for large-scale
networks; b) online real-time algorithms for time-varying net-
works; c) distributed implementations that are well-motivated
for large-scale networks, and d) nonlinear tensor-based network
topology inference.

APPENDIX

A. ADMM Solver for (28)

By applying ADMM, the non-smooth part of the objective
function, which is induced by the ¢; norm can be decoupled
from the smooth part. For each subproblem in (23), introducing
the auxiliary variable c,, leads to

min f[d[1 + Allen |

st. Wyh, +€, =d,, h, =c, . (37)

Hence, the augmented Lagrangian of (37) can be written as
Ln(ﬁna Cp, Up, dna Vn) = HdnHl + )‘HCnHl
+v, (W,h, +¢€, —d,)+u, (h, —c,)
+ LIWah, + e = dal3 + Sllb, — el (38)

where u,, denotes the Lagrange multiplier, while p is a posi-
tive scalar. ADMM essentially adopts alternating minimization
iterations over the variables h,, and c,,, followed by a gradient
ascent step over the multiplier u,, [7], [25]. During the (k + 1)st

Algorithm 2: ADMM Solver for (28).

Input: a,;, j € Q,, {RY,}, current estimates of {h,}
Initialization: ) = 0,c, =0,ul =0
Construct W, and €,, via (17) and (19).
fork=1,...do
hitl = (WI'W,, + pI) " (pck —ul unk — We,)
ekt — P, (B 4wt /)
dfﬁ_l = ,Pl/p(flfﬁl + Wnﬁn + €, + Vﬁ/p)
Wt (! el
vEr = vk 4 (W, RS €, — di)
end for
[hn]jgéﬂn = Fl{fl, hnj = —Qpj, je Qs b = 1.
Output: h,

N
i=1

iteration, updates of the variables are given by

hi ! = arg nﬁin L, (h,,ck uf dk vF) (39a)
chtl = arg ngin L, (b5 e, uk dF vF) (39b)
d"! = arg ngin L, (hEFL kL uk d,, vF) (39¢)
vl — vE 4 p(W,hE ! e, — dF ) (39d)
uftt = uk 4 (bR — k), (39%)

Per step, the augmented Lagrangian is minimized w.r.t. a
specific variable, with all the rest staying fixed to their most
recent updates, until convergence is attained.

Focusing on (39a) and differentiating w.r.t. h"**+1 yields

(Wlwn + pI) h, = pcfl — ufl — W:Len + W,den

= hFtl= (WIVanerI)il (pck—uf —W'e,+W/d,).

(40)
Next, the update of chH in (39b) can be cast as
ek = argmindea| + §lle, — L —ul/pl @D
which admits the following closed-form solution
cn = Puyp(b 4wy /p) (42)

where P.(.) denotes the entrywise soft thresholding operator
defined as

Pi(2) == — max(|z] — 2,0).

E

Similarly, d,, can be updated via

(43)

di = argmin [ld, |y + Zlldy — Wb — e — i/l
(44)

which can again be solved in closed form as
ditt =Py, (WhE + e, +vi/p) . (45)

Together with the gradient ascent step over the dual variables in
(39e) and (39d), Algorithm 2 summarizes the iterations resulting
from the developed ADMM solver for (28).
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