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Abstract—Unit-modulus least squares (ULS) problems arise in
many applications, including phase-only beamforming, sensor net-
work localization, synchronization, phase retrieval, and radar code
design. ULS formulations can always be recast as unit-modulus
quadratic programs, to which semidefinite relaxation (SDR) can be
applied, and is often the state-of-the-art approach. However, SDR
lifts the problem dimension (i.e., the number of variables) from N
to N 2 , which drastically increases the memory burden and com-
putational cost when the problem size is already large—e.g., when
designing phase-only beamformer weights for massive multiple-
input-multiple-output systems. This paper focuses on scalable first-
order algorithms for the ULS problem and some of its variants. It
advocates using simple gradient projection (GP) as a starting point
for solving the ULS problem, establishes global convergence of GP
to a Karush–Kuhn–Tucker point for this NP-hard problem, and
bounds its iteration complexity. Then it proposes ULS extensions
tailored to reflect practical beamformer design objectives, bringing
in and exploiting new degrees of freedom to improve the beampat-
tern designs. Simple variants of GP are proposed to deal with
these extended ULS problems. Simulations are used to showcase
the effectiveness of the proposed algorithms in both the plain ULS
problem and in the context of phase-only beamforming.

Index Terms—Unit-modulus least squares, unit-modulus
quadratic programming, MaxCut, constant modulus beamform-
ing, per-antenna power constraint, massive MIMO.

I. INTRODUCTION

UNIT-MODULUS LEAST SQUARES (ULS) optimization
problems have many contemporary engineering applica-

tions. Signal processing applications of ULS include sensor
network localization [2], phase retrieval [3], [4], and radar code
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design [5]–[7]. Phase-only beamforming restrains the power of
each antenna to be a constant and uses the phases of the weights
associated with the antenna elements to form the desired beam-
pattern. Designing such beamformers can also be posed as a
ULS problem. Phase-only arrays have gained renewed attention
recently [8]–[11]; the driving force behind this resurgence is po-
tential uses in massive multiple-input-multiple-output (MIMO)
systems, where it is costly and impractical to employ a separate
power amplifier for each antenna, and there is a need to control
the peak-to-average power ratio (PAPR) as well.

Although the ULS/UQP problem is non-convex and NP-hard
in its general form [12] due to the unit-modulus constraints, it
is also a special case of non-convex quadratically constrained
quadratic programming (QCQP), to which a popular relaxation
technique known as semi-definite (rank) relaxation (SDR) [13]
can be readily applied. When SDR returns a rank-one solution,
this is optimal for the original problem as well. When SDR re-
turns a higher-rank solution, many approaches can be used to
obtain a feasible solution to the ULS problem, e.g., randomiza-
tion [13].

Although SDR has been successively applied to a large vari-
ety of applications, a major drawback is that it is not well-suited
for large-scale problems. If the original ULS/UQP problem
has N optimization variables, SDR requires lifting the prob-
lem to N 2 dimensions. As a result, the resulting computational
complexity is O(N 7) flops if a general-purpose interior-point
solver is used. Additionally, this approach is quite inefficient
in terms of memory usage. Storage of N 2 variables may be
impractical and costly when N is large. Moreover, when high-
rank solutions are obtained by SDR, it becomes more difficult
for randomization to return good feasible rank-one solutions
as the problem size increases [14], [15]. On the practitioner’s
side, many modern applications of ULS/UQP do have a large
number of variables and require scalable optimization meth-
ods in terms of both computational resources and memory. For
example, MIMO communication systems have been of inter-
est for over 15 years, due to the performance improvements
that they enable. Arrays with multiple antennas enable higher
data rates, as well as longer reach and improved link reliabil-
ity [16], [17]. At present, massive MIMO systems promise to
play a major role in the evolution toward fifth-generation (5G)
wireless technology. One of the emerging 5-G paradigms en-
visions equipping each base station with many more antennas
than the number of active users in its service cell [18]. Applica-
tions such as radar code design may likewise entail very high-
dimensional optimization, especially in high-resolution scenar-
ios with many antennas. Because of the high-dimensional na-
ture of these problems, many of the previously developed ap-
proximation methods like SDR become impractical. Therefore,
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there is substantial motivation to find more memory-efficient and
computationally advantageous alternatives for dealing with the
ULS problem.

Our work is motivated by the problem of phase-only beam-
former design for massive MIMO systems, where computa-
tionally heavy algorithms like SDR are no longer practical
due to their high computational and memory costs. A desired
spatial beampattern is typically synthesized by appropriately
picking the modulus and phase of each element of the complex-
valued beamforming vector. This corresponds to using a sepa-
rate phase shifter and power amplifier for each antenna, which
is costly. In many applications, especially those involving ‘mas-
sive’ antenna arrays and/or small form-factor / low power mo-
bile devices, it is preferable to use a single power amplifier
for all antennas, and rely on per-antenna phase shifters to steer
the beam in the direction(s) of interest. This gives rise to a
constant-modulus constraint on the beamforming vector. Sev-
eral algorithms have been proposed for phase-only beamform-
ing, such as phase perturbation methods [19], [20]. Thompson
[5] utilized a gradient-search method (with an explicit angle
parametrization of the unit-modulus constraint) for adaptively
adjusting the phase shifters. Smith [21] proposed a combina-
tion of conjugate gradient and Newton algorithms for phase-
only adaptive nulling, where optimization is performed over the
N -dimensional unit-modulus torus (with an angle paramateri-
zation of the unit-modulus constraint). The conjugate gradient
algorithm is employed to first approach the solution, followed
by multiple Newton refinements. The algorithm requires calcu-
lation and inversion of the Hessian matrix at every iteration, and
thus is not ideal for large-scale problems. Choi and Sarkar [22]
devised a direct data domain least squares algorithm, which
adaptively adjusts the phase weights from snapshots of com-
plex voltages at each antenna element via a conjugate gradient
algorithm (also with an angle parametrization).

A common denominator of early approaches is that they
employ an explicit angle parametrization of the unit-modulus
constraint that enables classic unconstrained optimization
methods such as gradient descent to be applied to this
non-convex and (NP-)hard problem. SDR [13] is a much
more advanced approach for this type of problem, and often
exhibits superior performance in practice. A closely related
phase-only beamforming formulation employing a linearly
constrained minimum variance (LCMV) criterion has been
considered in Lu et al. [6], who proposed to apply SDR as its
approximation.

Motivated by applications in unit-modulus (constant-
envelope) radar code design, Soltanalian and Stoica [7] proposed
a monotonically error-bound improving technique (MERIT), as
well as a power method-like iteration for UQP optimization
problems. MERIT is comparatively complex, but it provides a
sub-optimality guarantee that is sometimes tighter than that pro-
vided by SDR. The power-like iteration in [7] can be used to
improve any initial estimate at a relatively low (second-order)
cost, but the ultimate result depends a lot on initialization.

Contributions: In this paper, we propose several low-
complexity first-order algorithms for ULS/UQP and certain ex-
tended ULS/UQP problems that arise in beamforming. We begin
with the classical ULS problem and propose to employ a sim-
ple gradient projection (GP) algorithm to handle it when the
problem size is large. The motivation is twofold:

� First-order methods are well-suited for large-scale prob-
lems since they avoid computing the Hessian and its inverse

in each iteration, and thus have much lower per-iteration
complexity relative to interior-point methods. They also
do not lift the problem dimension as SDR does, and thus a
lot of memory and computational resources can be saved.
Gradient-based methods can also exploit signal and data
sparsity, which is critical when dealing with big problems.

� Projection to the unit-modulus manifold is easy – this oper-
ation can be expressed in closed form and requires almost
negligible computational cost.

On the other hand, applying GP to nonconvex constraints may
seem naive – there is no guarantee of decreasing the cost, and
one may even risk divergence. Despite these apparent difficul-
ties, using some nice properties of the ULS cost function such
as Lipschitz continuity of its gradient, we show that the so-
lution sequence of the proposed algorithm globally converges
to a Karush-Kuhn-Tucker (KKT) point of the original NP-hard
problem. Here, global convergence refers to convergence of the
whole solution sequence produced by an iterative algorithm, as
opposed to convergence of subsequences of the solution iter-
ates. Subsequence convergence results (e.g., every limit point
is a KKT point) are more often encountered in the literature,
however these are weaker compared to global converegence.
In addition, we carefully analyze the iteration complexity of
getting to a KKT point using the proposed GP algorithm. Our
analysis shows that a metric that measures the optimality gap
between the current iterate and a KKT point shrinks to at most
O(1/T ) after T iterations.

Our second contribution lies in algorithms that are tailored
for phase-only array beamforming for massive MIMO systems.
We consider a scenario where a unit-modulus complex weight
vector should be designed for a large number of antennas such
that a pre-specified transmit beampattern (e.g., “pencil” beams
or sector beams) is synthesized. The weights are constrained
to have the same modulus since a common power amplifier is
used to drive all transmit antennas, and one relies only on an-
tenna phase shifters to realize the desired spatial beampattern.
Rather than sticking to plain ULS, more appropriate application-
specific formulations are introduced that take into account addi-
tional degrees of freedom in global scaling and the spatial phase
response, which yield enhanced performance in terms of beam-
pattern synthesis accuracy. Following the insight of GP for ULS,
alternating optimization algorithms that iterate between updat-
ing the antenna weights and the scaling and phase response
factors are proposed. The update of the weight vector is a sim-
ple GP step, as for plain ULS; the subproblem with respect to
the other variables can be solved to optimality. Convergence
properties of these algorithms are also discussed. We exemplify
the comparative advantages of these first-order methods (both
in terms of cost minimization and runtime complexity) relative
to existing popular approaches such as SDR and MERIT.

An earlier conference version of part of this work appears
in [1]. Relative to [1], this journal version includes more ma-
ture convergence analysis (global convergence, iteration com-
plexity) that is also more broadly applicable; proofs (which
were entirely missing from [1]); and a comprehensive suite of
experiments.

Notation: We use X, x and x to denote a matrix, a vector,
and a scalar, respectively; H ,∗ and T are used to denote Hermi-
tian, conjugate and transpose operators, respectively; λmax(X)
denotes the largest eigenvalue of X; −1 and † denotes the in-
verse and pseudo-inverse operator, respectively; x � y is the
element-wise (Hadamard) product of x and y; Diag(x) is a di-



TRANTER et al.: FAST UNIT-MODULUS LEAST SQUARES WITH APPLICATIONS IN BEAMFORMING 2877

agonal matrix that holds the elements of x to be the diagonal
elements.

II. MOTIVATION, PROBLEM STATEMENT AND PRIOR ART

A. Motivation and Problem Formulation

In receive beamforming, complex-valued weights are ap-
plied to the signals coming from the different antennas before
combining them, to create a desired spatial beampattern that
enhances signals from specified directions of interest and atten-
uates those from other directions. In transmit beamforming, a
common information-bearing signal is fed to multiple antennas,
using a different complex weight (corresponding to separate
power amplification and carrier phase shift) per antenna. Trans-
mit beamforming can be unicast (pointing to a single receiver of
interest) or multicast (pointing to multiple receivers, interested
in a common information stream). In both cases, the objective
is to steer power in the direction(s) of interest while mitigating
interference to other users within transmission range. Although
many classical beamforming scenarios apply both magnitude
and phase weighting to the antenna elements, there are many ad-
vantages to phase-only beamforming [6], [23], [24], especially
for massive MIMO systems where phase-only beamforming
is important from a hardware complexity, cost, and form fac-
tor (size/weight) point of view, as it does not require a separate
power amplifier for each up/down conversion chain, it can allevi-
ate peak-to-average power ratio (PAPR) problems, and improve
energy-efficiency [8]–[11].

For simplicity, let us consider a uniform linear array (ULA)
comprising N antennas with equidistant spacing (λ/2, where λ
is the wavelength of the carrier frequency) (our formulation can
handle any beamforming scenario with a known array manifold).
Let θ denote an M × 1 vector representing a discretization of
the angle space, i.e.,

θ =
[
0,

2π

M
,
4π

M
, . . . ,

2(M − 1)π
M

]
. (1)

In a ULA scenario, the N × 1 steering vectors have Vander-
monde structure a(θi) = [1, e−jθi , e−j2θi , . . . , e−j (N −1)θi ]T .
We can then construct our design matrix A = [a(θ1), . . . ,
a(θM )]H , and formulate the following ULS optimization prob-
lem

min
w∈CN

‖y − Aw‖2
2

subject to |wi |2 = 1, i = 1, . . . , N, (2)

where wi is the i-th element of the beamforming weight vector
w, and y denotes our desired target response (see Section III-B
for details regarding the choice of y). Figs. 1 and 2 illustrate an
example multicast beampattern aimed towards two users in the
directions {−20°, +20°}; note that the geometry of the ULA
scenario will result in symmetry about the axis defined by the
ULA.

In this work, we begin by considering Problem (2), motivated
by phase-only beamformer design for arrays comprising many
antennas. Problem (2) has numerous other applications, so our
results are of broader interest; but phase-only beamforming is
fertile ground for pertinent extensions as well. We propose two
custom formulations that take into account additional degrees
of freedom in global scaling and the spatial phase response,
resulting in better beampattern synthesis accuracy.

Fig. 1. Polar beam pattern example, M = 360, N = 16 for angles {−20°,
+20°}.

Fig. 2. |aH (θi )w|2 for M = 360, N = 16 for angles {−20°, +20°}.

B. Prior Art: Semidefinite Relaxation and Others

It is well-known that the ULS problem in (2) can be trans-
formed to the following UQP [13]

min
w̄∈CN + 1

w̄H Rw̄ (3)

subject to |w̄i |2 = 1, i = 1, . . . , N + 1,

where

R :=

[
AH A −AH y

−yH A yH y

]
, w̄ :=

[
w

t

]
. (4)

Conversely, UQP can likewise be expressed as ULS if R is
positive semidefinite. To see this, consider the square root de-
composition of a positive semidefinite matrix R = RH/2R1/2

and the following partitioning:

R1/2 = [A,−y].
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Consequently, we have

w̄H Rw̄ =
[
wH e−jθ e−jθ

][ AH A −AH y

−yH A ‖y‖2
2

][
wejθ

ejθ

]

= wH AH Aw − yH Aw − wH AH y + ‖y‖2
2 . (5)

Even if R is not positive semidefinite, it is easy to see that, owing
to the unit-modulus constraint, one can add diagonal loading to
make it positive semidefinite, without changing the problem.

To deal with UQP, the most popular approach is arguably
semidefinite relaxation (SDR) [13]. Consider the UQP problem

min
w∈CN

wH Rw (6)

subject to |wi |2 = 1, i = 1, . . . , N.

Writing wH Rw = Trace(wH Rw) = Trace(RwwH ), we can
define a matrix W := wwH and equivalently write (6) as

min
W

Trace(RW) (7)

subject to Wii = 1, i = 1, . . . , N

W = wwH .

The constraint W = wwH is equivalent to W � 0 (positive
semi-definite) and rank(W) = 1. The rank(W) = 1 constraint
is non-convex; dropping it yields a relaxation form that is con-
vex. However, the optimal Wo of the relaxed problem will (in
general) not be rank one. To extract a feasible solution of (6)
from Wo , one can follow the randomization procedure in [25].

SDR has been very successful in dealing with nonconvex
QCQP problems including UQP. However, in the era of
massive antenna arrays, implementing SDR is challenging.
First, SDR lifts the problem dimension to N 2 , which means
that a general-purpose interior point method needs O(N 7)
flops and O(N 2) memory to solve the corresponding SDP.
These demands make SDR unappealing for applications like
massive MIMO systems – although there are faster solvers
for special SDP problems like (7) [26], their flop count is still
heavy, and the memory cost cannot be reduced. In the following
sections, we will propose algorithms that do not lift the problem
dimension and only use first-order information for handling
the ULS/UQP problem. Consequently, the computational and
memory burdens are substantially alleviated.

Before moving on, we note that earlier work on phase-
only beamforming [5], [21] considered an explicit wi = ejθi

parametrization of the unit modulus constraint, and proposed
using unconstrained derivative-based methods, such as gradient
descent and Newton’s method to address the resulting optimiza-
tion problem. Algorithms in this genre are generally simpler
than SDR. However, such explicit parametrization changes the
cost function from a nice convex quadratic to a non-convex one,
and does not seem to work well in our experience.

III. PROPOSED ALGORITHMS

A. Gradient Projection (GP)

Different from earlier attempts, we propose keeping the unit-
modulus constraint and using projected gradient descent (or,
gradient projection (GP)) instead of unconstrained gradient de-
scent. The details are provided in Algorithm 1.

Algorithm 1: Gradient Projection.

1: Initialization: Set k = 0, α = β
λm a x (AH A) , β ∈ (0, 1),

w(0) = ej∠(A †y)

2: Repeat
3: ζ(r+1) = w(r) + αAH

(
y − Aw(r)

)
; (Gradient)

4: w(r+1) = ej∠(ζ( r + 1 ) ) ; (Projection)
5: r = r + 1;
6: until convergence

Algorithm 1 is nothing but a GP algorithm – what is special is
that the projection step involves a non-convex set – the element-
wise unit modulus constraint, in particular. In Algorithm 1, α
is the step size along the opposite direction of the gradient. The
motivation of Algorithm 1 is simple: gradient descent has the
advantage of scalability, and is able to exploit data (i.e., A and y)
sparsity. In addition, it is much more memory-efficient relative
to SDR. These traits are well-suited for large-scale problems.
In addition, projection onto a unit modulus constraint admits a
closed-form solution (cf. line 4 in Algorithm 1), and the entire
procedure can be carried out very efficiently. On the other hand,
the concern is that projection onto a non-convex set may in fact
increase the cost value, and thus tends to be problematic in terms
of optimization.

We wish to show that the solution sequence of w(r) con-
verges to a KKT point. To that end, let us consider a real-valued
parametrization of the ULS problem [13], i.e.,

ỹ =

[
Re{y}
Im{y}

]
, w̃ =

[
Re{w}
Im{w}

]
, Ã =

[
Re{A} −Im{A}
Im{A} Re{A}

]
,

leading to

min
w̃∈R2 N

(1/2)
∥∥∥ỹ − Ãw̃

∥∥∥2

2

subject to w̃2
n + w̃2

N +n = 1, n = 1, . . . , N.

(8)

Note that Problems (2) and (8) are equivalent, and applying
GP to Problem (8) results in exactly the same algorithm as in
Algorithm 1. Therefore, in the following, we will analyze con-
vergence of GP applied to Problem (8) for notational simplicity.
The KKT conditions of Problem (2) are

ÃT Ãw̃ − ÃT ỹ + 2λ � w̃ = 0, (9a)

w̃2
n + w̃2

N +n = 1, n = 1, . . . , N, (9b)

where λ ∈ R2N is a Lagrangian multiplier. Let us define

Q(w̃(r+1) , w̃(r) ,λ(r+1)) = ‖ÃT Ãw̃(r) − Ãy

+ 2λ(r+1) � w̃(r+1)‖2
2 .

We first show that
Lemma 1: Q(w̃(r+1) , w̃(r) ,λ(r+1)) → 0 implies that w̃(r)

approaches a KKT point of Problem (8).
The proof can be found in Appendix A. According to

Lemma 1, the speed of Q(w̃(r+1) , w̃(r) ,λ(r+1)) approaching
zero can be used as a measure of the iteration complexity. Based
on this observation, we provide the following theorem:

Theorem 1: Assume that α < 1/L, where L = λmax

(ÃT Ã). Then, Algorithm 1 has the following convergence prop-
erties:
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a) (Global Convergence) The whole solution sequence
{w̃(r)} converges to a set K which consists of all the
KKT points of Problem (8).

b) (Iteration Complexity) Assume that ε > 0 is some small
number, and T is the number of iterations that are needed
for Q(w̃(r+1) , w̃(r) ,λ(r+1)) ≤ ε to hold for the first time.
Then, there exists a constant v such that

ε ≤ v

T − 1
;

that is, the algorithm converges to a KKT point at least
sublinearly.

The proof can be found in Appendix B. Theorem 1 assures that
the solution sequence converges to a meaningful point. In the
proof, one can see that when α < 1/L, GP in fact reduces the
objective at each iteration, which is another desired property in
practice. More interestingly, the b) part gives a time complexity
bound for GP to shrink the gap between the current iterate to
a KKT point – it shows that for a certain measurement of the
gap (i.e., the Q-function in Lemma 1) to reach ε, the number
of iterations needed is at most O(1/ε). We should mention that
this bound is based on worst-case analysis and the algorithm
may perform much faster in practice. We also note that the
convergence of GP-like methods for manifold-constrained QP
was also considered in [27]–[29], where specific QP problems,
e.g., sparse principal component analysis, were considered. The
insights of the convergence proofs in [27]–[29] can be modified
to show part a) of Theorem 1. Our new proof of part a), however,
takes a successive upper bound minimization viewpoint, and
thus can potentially cover many more applications and more
general majorization minimization algorithms than GP.

B. Auto-Scaling Formulation

Algorithm 1 is simple and effective in addressing general
ULS/UQP problems, as we will show in Section IV. However,
in the beamformer design problem, there is a subtle factor that
greatly affects the performance, namely, the scaling of y. Con-
sider the following choice of y for receive beamformer design:

yi =

{
1 if i ∈ J ,

0 otherwise,
(10)

where J denotes the set containing the indices i corresponding
to the direction(s) of interest in θ. The y in (10) specifies the
beampattern that we want to produce. However, note that

|aH (θi)w| =

∣∣∣∣∣∣
N∑

j=1

a∗
j (θi)wj

∣∣∣∣∣∣ ≤
N∑

j=1

|a∗
j (θi)wj | = N, (11)

and, from the Cauchy-Schwarz inequality, the maximum is
achieved if and only if w = ejεa(θi). Thus there is an upper
bound on the array gain in any direction, and if we ask for
the highest possible gain in one direction we completely lose
all degrees of freedom to shape the beampattern in other di-
rections. In practice, it is more common that multiple angles
are of interest, and the ‘optimal scaling’ of y is unclear under
such circumstances. In general, what we often desire is a good
relative beampattern that concentrates power in the directions
of interest; to that end, we can introduce an additional scaling

Algorithm 2

1: Initialization: Set k = 0, β ∈ (0, 1), w(0) = ej∠(A †y)

2: Repeat
3: s(r+1) = (w(r))H AH y/‖Aw(r)‖2

2
4: α(r+1) = β/λmax(|s(r+1) |2AH A)
5: ζ(r+1) = w(r) + α(r+1)(s(r+1))∗AH (y − s(r+1)

Aw(r));
6: w(r+1) = ej∠(ζ( r + 1 ) ) ;
7: k = k + 1
8: until convergence

variable s ∈ C to obtain

min
w∈CN,s∈C

‖y − sAw‖2
2

subject to |wi |2 = 1, i = 1, . . . , N. (12)

Variable s can be regarded as an ‘automatic normalization’ fac-
tor, which addresses the aforementioned scaling issue. Note that,
by separability, we may compute and substitute the optimal s as
a function of w:

sopt =
wH AH y
‖Aw‖2 , (13)

Using (13), we can ‘embed’ the tuning of s in each iteration of
Algorithm 1, leading to Algorithm 2. This modified algorithm
is an instance of alternating optimization (AO) with respect to
(w.r.t.) w and s. For the subproblem w.r.t. w, we solve it inex-
actly by taking a projected gradient step. Since s can be easily
computed, Algorithm 2 has only a marginal complexity increase
relative to Algorithm 1, but can better address the scaling issue
in beampattern design.

It is interesting to investigate the convergence properties of
Algorithm 2. This algorithm can be considered as an inexact
alternating optimization approach; i.e., we alternate between
solving subproblems with respect to s and w, while fixing the
other variable. During the updates, the subproblem with respect
to s is optimally solved, while the subproblem with respect to
w is not solved to optimality at each iteration – we only update
w using a single iteration of gradient projection, for efficiency.
Fortunately, this type of two-block inexact alternating optimiza-
tion can be shown to converge to a KKT point. Specifically, we
show that

Proposition 1: (Global Convergence) Assume that α(r) <
1/λmax(|s(r) |2AH A) for all r. Then, the whole solution se-
quence produced by Algorithm 2 converges to a set K which
consists of all the KKT points of Problem (12).

The proof of Proposition 1 is relegated to Appendix C. The
insight of the proof is to treat the optimization procedure as
alternating upper bound minimization, and use the continuity of
the cost functions to establish asymptotic convergence.

C. Additional Degrees of Freedom in Transmit Beamforming

At this point it is worth highlighting an important differ-
ence between transmit and receive beamforming. In the receive
beamforming scenario, we may be required to control the phase
response as a function of θ, e.g., for phase coherence or con-
structive combining of specular multipath components. In trans-
mit (including multicast) beamforming, however, it is sufficient
to specify a desired magnitude for each direction or general
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Algorithm 3

1: Initialization: Set k = 0, obtain initial w(0) from
Algorithm 2, initialize u(0) = ξ(0) = 1, β ∈ (0, 1),
α2 = β/λmax(YH Y)

2: Let J = {i : yi �= 0}, Y = Diag(y), Ỹ = Diag(y(J ))
3: Repeat
4: s(r+1) = (w(r))H AH Yu(r)/‖Aw(r)‖2

2

5: α
(r+1)
1 = β/λmax(|s(r+1) |2AH A)

6: ζ(r+1) = w(r) + α
(r+1)
1 (s(r+1))∗AH (Yu(r)

−s(r+1)Aw(r));
7: w(r+1) = ej∠(ζ( r + 1 ) ) ;
8: ξ(r+1) = ξ(r) ;
9: ξ(r+1)(J ) = u(r)(J ) − α2ỸH (Ỹu(r)(J )

−s(r+1)A(J , :)w(r+1));
10: u(r+1) = ej∠(ξ( r + 1 ) ) ;
11: k = k + 1
12: until convergence

channel vector of interest, as the receiver will have to perform
any necessary phase estimation/correction anyway, due to local
oscillator phase mismatch. We can mathematically model this
situation by considering the modified optimization problem

min
w∈CN , θ∈RM,s∈C

‖y � ejθ − sAw‖2
2

subject to |wi | = 1, i = 1, . . . , N, (14)

where θ represents the additional degrees of (phase response)
freedom. Let u = ejθ; we can equivalently express (14) as

min
w∈CN,u∈CM,s∈C

‖Yu − sAw‖2
2

subject to |wi |2 = 1, i = 1, . . . , N,

|ui |2 = 1, i = 1, . . . , M, (15)

where Y = Diag(y). Performing alternating optimization on
w, u and s (projecting w and u onto the unit-modulus space
after each iteration), we obtain Algorithm 3.

Note that for the u update, only the elements corresponding
to the non-zero values of y are of interest. As such, the set J
has been defined as the set of indices where yi �= 0 and A(J , :)
denotes a matrix comprised of the rows of A corresponding to
the indices in J . Thus, only the elements of u(J ) are updated
(steps 6 and 7 of the algorithm). Algorithm 3 can also be inter-
preted as an alternating upper bound minimization algorithm,
and thus decreases its cost value monotonically.

Remark 1: One may also consider the conceptually simpler
formulation

min
z∈CM + N

‖Bz‖2
2

subject to |zi |2 = 1, i = 1, . . . , M + N, (16)

where

B := [Y −sA ] , z :=
[

u
w

]
. (17)

Algorithm 2 can be directly applied to this formulation. How-
ever, the step size for GP in (16) is a function of the largest
eigenvalue of BH B; depending on the scaling of Y and A,
the freedom that Algorithm 3 provides (with respect to employ-
ing different step sizes for the w and u updates) yields faster

convergence, as demonstrated in the supplementary material
that accompanies this paper.

Remark 2: Typically, first-order methods feature low per-
iteration complexity, but the number of iterations required to
converge may be high. For convex optimization, a common trick
for reducing the number of iterations it to employ Nesterov’s
acceleration scheme, known as ‘extrapolation’ [30]. Extrapola-
tion can also be used in Algorithms 1–3. For example, applying
extrapolation to (2), the resulting algorithm is defined by the
following updates (with w(1) = z(1)):

z(r+1) = w(r) − α∇f(w(r))

= w(r) − αAH (y − Aw(r))

w(r+1) = γ(r)z(r+1) + (1 − γ(r))z(r) (18)

with

Γ(0) = 0, Γ(r) =
1 +

√
1 + 4(Γ(r−1))2

2
, γ(r) =

Γ(r−1)

Γ(r+1) .

(19)
The update for z(r+1) is effectively identical to a simple gradient
step; the w(r+1) update then leverages the momentum from the
previous iteration to descend further in the direction of z(r) . The
derivation of the sequences defined in (19) can be found in [31].
Empirically, using extrapolation provides measurable gains in
terms of runtime complexity, as we will illustrate in Section IV.

IV. SIMULATIONS

We first test the performance of Algorithm 1 by considering
the generative signal model y = Aw + n, where n is circularly
symmetric zero-mean unit-variance i.i.d. Gaussian noise. The
elements of A ∈ CM ×N are drawn from NC(0, I); each w is
also drawn from NC(0, I), but is then projected onto the unit-
modulus torus. To find our estimate ŵ, we can consider the ULS
formulation as in (2). The noise variance for the desired SNR
was obtained via the relationship

SNR = 10 log10
E

[
trace(AH AwwH )

]
Mσ2 . (20)

The algorithms under test are compared both in terms of
mean squared error and runtime performance; the results are
all averaged over 100 independent Monte Carlo trials. In the
simulations, we fix the step size α = 0.999 × (1/L), where
L = λmax(AH A).

In this section, we mainly use the the FastSDR algorithm
(FastSDR (w/Rand)) [26] as a baseline. FastSDR solves the
relaxed SDP using a very efficient block coordinate descent
algorithm and is state-of-the-art. In the simulations, we use 1000
randomization trials after solving the relaxed SDP. The result of
MERIT that was reported to exhibit good performance in solving
UQP [7] is also presented when applicable. Note that under the
described generative model, the result given by (2) is in fact a
maximum likelihood estimator of w (MLE) under the model
y = Aw + n. Therefore, in the simulations, the Cramér-Rao
bound (CRB) of this generative model is also used as a baseline.
The CRB with respect to the angles in w can be shown to be
(see Appendix D for derivation)

CRB =
σ2

2
[
Re

{
diag(w)H AH Adiag(w)

}]−1
. (21)

Remark 3: Note that using the CRB to evaluate the perfor-
mance of algorithms for non-convex and NP-hard estimation
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Fig. 3. The MSEs of Algorithm 1 and FastSDR under various N ’s; SNR
=10 dB.

problems is common, but bringing in the CRB to assess algo-
rithmic performance for pure optimization (or, design) prob-
lems unrelated to estimation seems like an unexplored idea. For
ULS/UQP, SDR provides a generally unattainable (optimistic)
lower bound on the least squares cost for each instance of this
NP-hard problem, and we can take the average of these lower
bounds as a bound on the average least squares cost. This, how-
ever, tells us nothing about how far the design variables are
from the optimal ones. An alternative to using the SDR lower
bound as a gauge is to think of our design problem as arising
from maximum likelihood (ML) estimation for the generative
signal model y = Awo + n, where A is given, wo is known
to have unit-modulus elements but is otherwise unknown, and
n is circularly symmetric i.i.d. Gaussian. ML estimation for
this model boils down to ULS, and the associated CRB pro-
vides a lower bound on the variance of unbiased estimators of
wo . Under certain conditions (M >> N , appropriate signal to
noise ratio), ML approaches the CRB, which makes the latter
predictive of ML performance. This way, the CRB can serve as
a benchmark on the average attainable distance of the design
variables from their optimal settings for our design problem. Of
course, this bound will only be valid if we generate design prob-
lem instances from the given generative signal model, i.e., if
we indeed draw desired response patterns from y = Awo + n.
Note that any y can be written in this way if we allow for low-
enough signal to noise ratio in the generative model, but then the
CRB will not be as predictive of the average attainable perfor-
mance – albeit still a lower bound. This gives us an alternative
way to explore algorithm performance for our NP-hard design
problem.

Figs. 3 and 4 compare the above algorithms for the described
general ULS/UQP for N = 2, . . . , 200. Here, we set M = 144
and SNR =10 dB, and observe the mean-squared-error (MSE)
of the angles of the estimated ŵ as our performance measure.
We see that both GP and its accelerated counterpart (GP accel; cf
Remark 2) exhibit better MSE performance relative to FastSDR
and MERIT in this simulation, which is rather encouraging. Fur-
thermore, GP is approximately 10 times faster than FastSDR for
all N considered and is more than 1000 times faster compared
to MERIT when the number of antennas N ≥ 25. One thing
that we noticed is that MERIT does exhibit better MSE per-
formance relative to FastSDR when N increases, but it is not
as scalable as FastSDR and GP for larger N ’s – we were only

Fig. 4. Run times of Algorithm 1 and FastSDR under various N ’s; SNR
=10 dB.

Fig. 5. CRB/MSE comparison for M = 102 , . . . , 104 , SNR = 10 dB.

able to test MERIT for N ≤ 75 since it is too slow for larger
N ’s. The accelerated implementation of GP provides a twofold
improvement over GP when N is large, as shown in Fig. 4. GP
and the extrapolated version of GP also approach the CRB quite
closely, which means that the estimation result is nearly opti-
mal (although the estimator is biased). Another remark is that
FastSDR is known to be a surprisingly fast algorithm for ap-
proximating UQP, which has demonstrated around 1000 times
speed improvement from using interior point methods in some
applications [2], and our results show that GP is even more
promising in dealing with ULS/UQP.

Figs. 5–6 show the results under various M ’s when N is fixed
to 144. One can see that GP and its accelerated version always
approach the CRB, while FastSDR has a large gap between its
estimation MSEs and the CRB when M ≤ 1, 000. In terms of
runtime, the proposed algorithms are faster than FastSDR for
all M , especially when M ≤ 1, 000.

Starting from Fig. 7, we test the algorithms that are tai-
lored for beamforming, i.e., Algorithm 2 and Algorithm 3.
We test the algorithms versus the number of antennas rang-
ing from N = 2 to N = 200 with the angle space discretized
into 36 and 144 regions (resulting in A of dimension 36 × N
and 144 × N , respectively). The ULA scenario is consid-
ered, with rows of A admitting the Vandermonde structure
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Fig. 6. Runtime comparison for simulation in Fig. 5, N = 144, M =
102 , . . . , 104 , SNR = 10 dB.

Fig. 7. Matching error for Vandermonde A ∈ C36×N , N = 2, . . . , 200.

[1, ejθi , ej2θi , . . . , ej (N −1)θi ] for each row i in A. 100 inde-
pendent Monte Carlo trials were performed for each N , and a
K = 2 receiver multicast beamforming scenario is considered.
We impose per-antenna power constraints on all the antennas,
resulting in unit-modulus constraints on wi . The two user an-
gles are randomly drawn in each problem instance, with each y
constructed in accordance with (10).

Figs. 7–8 present a simulation of phase-only beamform-
ing for a ULA, where A is Vandermonde (A ∈ C36×N and
A ∈ C144×N , respectively). We compare Algorithms 2–3 with
FastSDR in this simulation. We plot the values of cost functions
associated with FastSDR, Algorithm 2, and Algorithm 3, re-
spectively. These cost values reflect the matching errors between
the designed and desired beam patterns, and thus are meaning-
ful in the context of beamformer design. As shown in Fig. 7,
Algorithm 2 performs comparably with FastSDR for N ≤ M ,
and increasingly outperforms FastSDR for N > M in terms of
the matching errors. Note that it is challenging to incorporate
an automatic scaling factor in SDR, and this may explain the
performance of FastSDR – it also serves as evidence that adding
s to the formulation is very helpful in this special ULS problem.
Algorithm 3 yields even slightly lower costs compared to that
of Algorithm 2 since it explores additional degrees of freedom.

Fig. 8. Matching error for Vandermonde A ∈ C144×N , N = 2, . . . , 200.

Fig. 9. Trial runtime comparison for Vandermonde A ∈ C36×N , N =
2, . . . , 200.

The companion plots illustrating runtime complexity are
shown in Figs. 9 and 10. The proposed algorithms clearly out-
perform FastSDR. The performance gap widens as the number
of antennas increases. Further, the accelerated version of the
proposed algorithms (i.e., with extrapolation) perform similarly
to their unaccelerated counterparts in terms of cost, and we see
modest gains in terms of runtime performance (1.1–1.5 times
faster).

As expected, Algorithm 3 performs worse than Algorithm 2
in terms of runtime (particularly as the number of antennas in-
creases) since it has one more block to update. However, even
though we are only introducing K = 2 additional degrees of
freedom (since the additional freedom to conveniently set the
phase response can only be exercised at angles where the target
magnitude response is nonzero), we observe a noticeable differ-
ence in matching error performance between the two proposed
algorithms. To test a case with more degrees of freedom, we
next consider a sector beamforming scenario with many more
non-zero entries in y.

Consider the scenario where rather than attempting to
design a beamformer that confines the energy to selected
discrete directions (i.e., pencil beamformer), a symmetric
wedge spanning [−40°, 40°] and its reflection is chosen as the
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Fig. 10. Trial runtime comparison for Vandermonde A ∈ C144×N , N =
2, . . . , 200.

Fig. 11. Sector beamforming illustration, M = 144, J = {1 . . . 18, 55 . . .
90, 127 . . . 144}.

desired magnitude response. For M = 144, this is equivalent
to J = {1 . . . 18, 55 . . . 90, 127 . . . 144}, with yi = 1 for
all i ∈ J . Fig. 11 is a polar plot of the resulting transmit
beampattern. In this scenario, we again have N + K degrees
of freedom in (15), but now K >> 2; as such, it is reasonable
to expect improved performance relative to (12) compared
to the previously considered ‘pencil beam’ scenario. Indeed,
we observe a substantial improvement for Algorithm 3, as
shown in Fig. 12. To summarize, the alternating optimization
algorithm for the formulation in (15) provides performance
gains (in terms of least squares cost), even with the introduction
of very few additional degrees of freedom (K). Further, these
improvements become increasingly pronounced as K increases
(as in the sector beamforming scenario).

Although the beamforming examples discussed so far em-
ployed a ULA (Vandermonde steering vectors), it is natural to
consider the case where A is complex Gaussian, modeling a
Rayleigh fading scenario. The simulations shown in Figs. 7–10
are repeated for A which is circularly symmetric Gaussian with
unit variance. As shown in Figs. 13 and 14, all the proposed algo-
rithms outperform FastSDR in terms of matching error. Again,
accelerated methods demonstrate modestly improved average
trial times with respect to their plain versions (cf. Figs. 15–16).

Fig. 12. Matching error comparison for sector case, M = 144, N = 2,
. . . , 200.

Fig. 13. Matching error comparison for Gaussian A ∈ C36×N , N = 2,
. . . , 200.

Fig. 14. Matching error comparison for Gaussian A ∈ C144×N , N = 2,
. . . , 200.
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Fig. 15. Trial runtime comparison for Gaussian A ∈ C36×N , N = 2,
. . . , 200.

Fig. 16. Trial runtime comparison for Gaussian A ∈ C144×N , N = 2,
. . . , 200.

V. CONCLUSION

In this paper we have considered the ULS/UQP problem and
certain extensions that arise in phase-only beamforming, with
emphasis on emerging massive MIMO applications. To circum-
vent the scalability issues of using SDR for handling ULS, a
gradient projection-based algorithm has been proposed. Conver-
gence properties of the algorithm have been carefully studied.
To enhance the performance of large-scale beamformer design,
two variants of the plain-vanilla ULS formulation have been
proposed, which introduce more degrees of freedom to the de-
sign problem. Generalizations of the GP algorithm have been
proposed, and their convergence properties have been discussed
as well. The proposed algorithms have been carefully compared
against state-of-art methods such as SDR and MERIT, and have
been found to perform at least as well in terms of accuracy, and
even better in several scenarios at significantly lower runtime
complexity.

APPENDIX A
PROOF OF LEMMA 1

The gradient projection step can be written as follows:

w̃(r+1) ∈ arg min
w̃∈W

f(w̃(r)) + 〈∇f(w̃(r)), w̃ − w̃(r)〉

+
1
2α

‖w̃ − w̃(r)‖2
2 , (22)

where we define

W = {w̃ | w̃2
i + w̃2

N +i = 1, i = 1, . . . , N}.
By arranging terms, one can verify that the solution of Prob-
lem (22) can be obtained via the following equivalent form:

w̃(r+1) ∈ arg min
w̃∈W

∥∥∥w̃ −
(
w̃(r) − α∇w̃f

(
w̃(r)

))∥∥∥2

2
,

which is exactly a GP step. The above implies that w̃(r+1)

satisfies the KKT conditions of the right hand side (RHS) of
Problem (22), i.e.,

0 = ∇f(w̃(r)) +
1
α

(w̃(r+1) − w̃(r)) + 2w̃(r+1) � λ(r+1)

(23a)

⇒ ‖∇f(w̃(r)) + 2w̃(r+1) � λ(r+1)‖2
2

=
1
α2 ‖w̃(r+1) − w̃(r)‖2

2 . (23b)

From the above, one can see that

‖∇f(w̃(r)) + 2w̃(r+1) � λ(r+1)‖2
2 → 0

⇒ ‖w̃(r+1) − w̃(r)‖2
2 → 0

⇒ ‖∇f(w̃(r)) + 2w̃(r) � λ(r+1)‖2
2 → 0

which implies that the KKT conditions are satisfied since w̃(r)

is always feasible. Note that to show the last equation above, it
is required that the elements of |λ(r+1) | be bounded as r → ∞,
which can be readily seen from (23a). Specifically, we see that

ÃT Ãw̃(r) − ÃT ỹ +
1
α

(w̃(r+1) − w̃(r))

+ 2w̃(r+1) � λ(r+1) = 0.

Note that in the above every term is bounded since Ã and ỹ
are bounded (which are given measuring matrix and design
objective in practice and thus cannot be unbounded) and w̃
satisfies (w̃n )2 + (w̃n+N )2 = 1 for all n (by feasibility), which
implies that λ is also bounded.

APPENDIX B
PROOF OF THEOREM 1

Let us prove the a) part first. The proof follows the insight
of the convergence proof of the successive upper bound min-
imization (SUM) algorithm in [32], with modifications to ac-
commodate the nonconvex constraints. Let us first relate the
gradient projection algorithm to SUM. Note that the cost func-
tion of Problem (8) has Lipschitz continuous gradients and
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L = λmax(ÃT Ã) is its smallest Lipschitz constant. Then, we
have

f(w̃(r)) ≤ u(w̃; w̃(r)) = f(w̃(r)) + 〈∇f(w̃(r)), w̃ − w̃(r)〉

+
1
2α

‖w̃ − w̃(r)‖2
2 , ∀w̃,

since α < 1/L. So u(w̃; w̃(r)) is an upper bound on f(w̃). Note
that

f(w̃(r)) = u(w̃(r) ; w̃(r)) (24)

∇f(w̃(r)) = ∇u(w̃(r) ; w̃(r)). (25)

As we have seen in (22), the GP algorithm can be considered as
solving the following upper-bound problem:

w̃(r+1) ∈ arg min
w̃∈W

u(w̃; w̃(r)).

Such a procedure is the so-called majorization minimization
(MM) algorithm or SUM, and by the properties of MM, we
have

f(w̃(r)) = u(w̃(r) ; w̃(r)) (26a)

≥ u(w̃(r+1); w̃(r)) (26b)

≥ f(w̃(r+1)); (26c)

i.e., the cost function decreases at each iteration. Assume that
there is a subsequence {rj}j that converges to a limit point, i.e.,
w̃(rj ) → w̃
 . We have

u(w̃; w̃(rj )) ≥ u(w̃(rj +1); w̃(rj )) (27a)

≥ f(w̃(rj +1)) (27b)

≥ f(w̃(rj + 1 )) (27c)

= u(w̃(rj +1); w̃(rj +1)), (27d)

where (27c) holds since rj+1 ≥ rj + 1 (as rj indexes a subse-
quence). Taking j → ∞, and by the continuity of u(·) we see
that

u(w̃; w̃
) ≥ u(w̃
 ; w̃
), ∀w̃ ∈ W. (28)

The above means that there exists a λ ∈ R2N where λi = λN +i

for i = 1, . . . , N such that w̃
 satisfies

∇u(w̃
 ; w̃
) + 2λ
 � w̃
 = 0, w̃
 ∈ W,

since w̃
 is a minimizer of u(w̃; w̃
) over W . By (25), we have

∇f(w̃
) + 2λ
 � w̃
 = 0, w̃
 ∈ W.

Therefore, every limit point of {w̃(r)}r is a KKT point of Prob-
lem (8). In addition, since w̃(r) lives in a compact set, we further
claim that the whole solution sequence (instead of every con-
vergent subsequence) converges to K which consists of all KKT
points of (8). Indeed, suppose that {w̃(r)} does not converge to
K. Since w̃ lives in a compact set, there exists a subsequence
indexed by rj converging to a point z such that d(z,K) ≥ γ
where γ > 0. However, we have just shown that every limit
point is a KKT point, which is a contradiction. Therefore, we
have d(w̃(r) ,K) → 0.

Now we show that the b) part holds. Due to the Lipschitz
continuity of ∇f(w̃), we have

f(w̃(r+1)) ≤ f(w̃(r)) + 〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉

+
L

2
‖w̃(r+1) − w̃(r)‖2

2 . (29)

we also have

〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉 +
1
2α

‖w̃(r+1) − w̃(r)‖2
2

≤ 〈∇f(w̃(r)), w̃(r) − w̃(r)〉 +
1
2α

‖w̃(r)−w̃(r)‖2
2 , ∀w̃ ∈ W,

since w̃(r+1) is a minimizer of u(w̃; w̃(r)) over W (also see
(22)). The above implies that

〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉 +
1
2α

‖w̃(r+1) − w̃(r)‖2
2 ≤ 0

⇒ 〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉 ≤ − 1
2α

‖w̃(r+1) − w̃(r)‖2
2 .

(30)

Plugging (30) into (29), we have

f(w̃(r+1)) − f(w̃(r)) ≤
(

L

2
− 1

2α

)
‖w̃(r+1) − w̃(r)‖2

2 .

(31)

Summing up over r = 0 to r = T − 1, we have

f(w̃(T )) − f(w̃(0)) ≤
T −1∑
r=0

(
L

2
− 1

2α

)
‖w̃(r+1) − w̃(r)‖2

2

Following (23b), the above means that

−f(w̃(T )) + f(w̃(0)) ≥
T −1∑
r=0

(
−L

2
+

1
2α

)
α2‖∇f(w̃(r))

+ 2w̃(r+1) � λ(r+1)‖2
2 .

By the definition of T , we have(
1
2α

− L

2

)
α2ε

≤
∑T −1

r=0

( 1
2α − L

2

)
α2‖∇f(w̃(r)) + 2w̃(r+1) � λ(r+1)‖2

2

T − 1

≤ f(w̃(0)) − f(w̃(T ))
T − 1

⇒ ε ≤ v

T − 1
,

where

v =
f(w̃(0)) − f


α2
( 1

2α − L
2

) ,

where f
 denotes the global optimal value of Problem (8).

APPENDIX C
PROOF OF PROPOSITION 1

Let us denote
f(w, s) = ‖y − sAw‖2

2 .
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We can then define the surrogate upper bound

g(w;w(r) , s(r)) = f(w(r) , s(r))+〈∇f(w(r) , s(r)),w − w(r)〉

+
1

2α(r) ‖w − w(r)‖2
2 .

It follows that
f(w, s(r)) ≤ g(w;w(r) , s(r)), ∀w (32)

f(w(r) , s(r)) = g(w(r) ;w(r) , s(r)) (33)

∇wf(w(r) , s(r)) = ∇wg(w(r) ;w(r) , s(r)), (34)

where the first inequality is due to the fact that α(r) < 1/
λmax(|s(r) |AH A). Our updates can therefore be expressed as

wr+1 = arg min
|wi |=1

g(w;w(r) , s(r)) (35a)

s(r+1) = arg min
s

f(w(r+1) , s) =
(w(r+1))H AH y
‖Aw(r+1)‖2 . (35b)

The objective function decreases monotonically because the
following holds:

f(w(r) , s(r)) = g(w(r) ;w(r) , s(r)) (36a)

≥ g(w(r) ;w(r+1) , s(r)) (36b)

≥ f(w(r+1) , s(r)) (36c)

≥ f(w(r+1) , s(r+1)), (36d)

where (36a) follows (33). (36b) is obtained because
of (35a), (36c) holds due to the property in (32), and (36d)
is obtained by the fact that the subproblem w.r.t. s is optimally
solved via (35b).

Assume that {rj} signifies the index set of a convergent sub-
sequence, and that {w(rj ) , s(rj )} converges to (w
 , s
). Then,
we have

g(w;w(rj ) , s(rj )) ≥ g(w(rj +1);w(rj ) , s(rj )) (37a)

≥ f(w(rj +1) , s(rj )) (37b)

≥ f(w(rj +1) , s(rj +1)) (37c)

≥ f(w(rj + 1 ) , s(rj + 1 )) (37d)

= g(w(rj + 1 ) ;w(rj + 1 ) , s(rj + 1 )), (37e)

where (37b) holds because of (32) (i.e., g(w;w(r) , s(r)) upper
bounds f(w, s(r)) for all w), (37d) is obtained by the fact that
rj+1 ≥ rj + 1 since rj indexes a subsequence. Taking j → ∞
and by the continuity of g(·), we see that

g(w;w
 , s
) ≥ g(w
 ;w
 , s
). (38)

The inequality in (38) means that w
 is a blockwise minimizer
of g(w;w
 , s
). Therefore, it satisfies the partial KKT condition
w.r.t. w, i.e.,

∇wg(w
 ;w
 , s
) + 2λ
 � w
 = 0. (39)

By (34), we have

∇wf(w
 , s) + 2λ
 � w
 = 0. (40)

Similarly, by the update rule in (35b), we have

f(w(rj ) , s) ≥ f(w(rj ) , s(rj )),

and thus
f(w
 , s) ≥ f(w
 , s
).

Then, the argument for s
 satisfying the KKT conditions fol-
lows. Therefore, every limit point of the solution sequence is
a KKT point. We also notice that both s and w live in com-
pact sets. Therefore, repeating the arguments as in Theorem 1,
one can show that the whole solution sequence converges to K,
which completes the proof.

APPENDIX D
DERIVATION OF CRAMÉR-RAO BOUND (21)

Consider the generative signal model y = Aw + v, where
w is constrained to the unit-modulus torus and v ∼ N (0, σ2I).
We can explicitly parameterize in terms of the vector of angles
θ as y = Aejθ + v, hence y ∼ N (Aejθ, σ2I). The Fisher In-
formation Matrix for this model can be expressed as [33]

[F]k,l =
2
σ2 �

{(
∂Aejθ

∂θk

)H (
∂Aejθ

∂θl

)}
, (41)

where parameter vector θ = [θ1 , . . . , θN ]T . We then obtain the
derivative with respect to each θi as ∂Aej θ

∂θi
= jejθi ai , where ai

denotes the i-th column of A. It follows that

[F]k,l =
2
σ2 Re

{
e−jθk aH

k ale
jθl

}
, (42)

from which we can construct the Fisher Information Matrix as

F =
2
σ2 Re

{
Diag

(
e−jθ

)
AH ADiag

(
ejθ

)}
. (43)

Thus, the CRB on θ can be compactly written as (w = ejθ)

CRB = F† =
σ2

2
[
Re

{
Diag(w)H AH ADiag(w)

}]†
. (44)
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power method for sparse principal component analysis,” J. Mach. Learn.
Res., vol. 11, pp. 517–553, Feb. 2010.

[30] Y. Nesterov, “A method for solving the convex programming problem
with convergence rate O(1/k2 ),” Dokl. Acad. Nauk SSSR, vol. 27, no. 2,
pp. 543–547, 1983.

[31] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[32] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis
of block successive minimization methods for nonsmooth optimization,”
SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.

[33] S. Kay, Fundamentals of Signal Processing: Estimation Theory. Upper
Saddle River, NJ, USA: Prentice-Hall, 1993.

John Tranter (S’12) received the B.E.E. and
M.S.E.E. degrees from the University of Minnesota,
Minneapolis, MN, USA, in 2014 and 2016, while
serving as a Research Assistant in the Department
of Electrical and Computer Engineering. He received
the Ph.D. degree in musical arts from the University
of Minnesota, in 2008, where he is an Affiliate Pro-
fessor of music. He also has served as a Teaching
Assistant and as the Instructor in the Communication
Systems Laboratory. In addition, he currently holds
an electrical engineering position at Abbott Labo-

ratories (formerly Saint Jude Medical). His research interests include signal
processing and cognitive radio, with a recent emphasis on beamforming design.
He received the Best Student Paper Award at ICASSP 2014.

Nicholas D. Sidiropoulos (F’09) received the
Diploma in electrical engineering from the Aris-
totelian University of Thessaloniki, Thessaloniki,
Greece, in 1988, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Mary-
land, College Park, MD, USA, in 1990 and 1992,
respectively. He served as an Assistant Professor at
the University of Virginia (1997–1999); an Associate
Professor at the University of Minnesota, Minneapo-
lis (2000–2002); a Professor at the Technical Univer-
sity of Crete, Greece (2002–2011); and a Professor

at the University of Minnesota, Minneapolis (2011-present), where he currently
holds an ADC endowed chair in digital technology. His current research focuses
primarily on signal and tensor analytics, with applications in cognitive radio,
big data, and preference measurement. He has served as the IEEE SPS Distin-
guished Lecturer (2008–2009), and the Chair of the IEEE Signal Processing
for Communications and Networking Technical Committee (2007–2008). He
received the NSF/CAREER award (1998), the IEEE Signal Processing Society
(SPS) Best Paper Award (2001, 2007, 2011), and the IEEE SPS Meritorious
Service Award (2010). He received the Distinguished Alumni Award of the
Department of Electrical and Computer Engineering, University of Maryland,
College Park in 2013, and was elected EURASIP Fellow in 2014.

Xiao Fu (S’12–M’15) received the B.Eng. and
M.Eng. degrees in communication and information
engineering from the University of Electronic Sci-
ence and Technology of China, Chengdu, China, in
2005 and 2010, respectively. In 2014, he received the
Ph.D. degree in electronic engineering from the Chi-
nese University of Hong Kong (CUHK), Hong Kong.
From 2005 to 2006, he was an Assistant Engineer at
China Telecom Co. Ltd., Shenzhen, China. He is cur-
rently a Postdoctoral Associate in the Department of
Electrical and Computer Engineering, University of

Minnesota, Minneapolis, MN, USA. His research interests include signal pro-
cessing and machine learning, with a recent emphasis on factor analysis and its
applications. He received the Oversea Research Attachment Programme 2013
of the Engineering Faculty, CUHK, which sponsored his visit to the Depart-
ment of Electrical and Computer Engineering, University of Minnesota, from
September 2013 to February 2014. He received a Best Student Paper Award at
ICASSP 2014, and coauthored a Best Student Paper Award at CAMSAP 2015.

Ananthram Swami (F’08) received the B.Tech. de-
gree from IIT-Bombay, Mumbai, India, the M.S. de-
gree from Rice University, Houston, TX, USA, and
the Ph.D. degree from the University of Southern Cal-
ifornia (USC), Los Angeles, CA, USA, all in electri-
cal engineering. He has held positions with Unocal
Corporation, USC, CS-3, and Malgudi Systems. He
was a Statistical Consultant to the California Lot-
tery, developed a MATLAB-based toolbox for non-
Gaussian signal processing, and has held visiting fac-
ulty positions at INP, Toulouse, and Imperial College,

London. He is with the U.S. Army Research Laboratory (ARL). where he is the
Senior Research Scientist (ST) of network science; he is an ARL Fellow. He
currently serves on the Steering Committee for IEEE TNSE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


