
1

Efficient and Distributed Generalized Canonical
Correlation Analysis for Big Multiview Data

Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, Hyun Ah Song,
Partha Talukdar, Nicholas D. Sidiropoulos, Christos Faloutsos, and Tom Mitchell

Abstract— Generalized canonical correlation analysis (GCCA) integrates information from data samples that are acquired at multiple
feature spaces (or ‘views’) to produce low-dimensional representations – which is an extension of classical two-view CCA. Since the
1960s, (G)CCA has attracted much attention in statistics, machine learning, and data mining because of its importance in data
analytics. Despite these efforts, the existing GCCA algorithms have serious complexity issues. The memory and computational
complexities of the existing algorithms usually grow as a quadratic and cubic function of the problem dimension (the number of
samples / features), respectively – e.g., handling views with ≈ 1, 000 features using such algorithms already occupies ≈ 106 memory
and the per-iteration complexity is ≈ 109 flops – which makes it hard to push these methods much further. To circumvent such
difficulties, we first propose a GCCA algorithm whose memory and computational costs scale linearly in the problem dimension and
the number of nonzero data elements, respectively. Consequently, the proposed algorithm can easily handle very large sparse views
whose sample and feature dimensions both exceed ≈ 100, 000. Our second contribution lies in proposing two distributed algorithms for
GCCA, which compute the canonical components of different views in parallel and thus can further reduce the runtime significantly if
multiple computing agents are available. We provide detailed convergence analyses of the proposed algorithms and show that all the
large-scale GCCA algorithms converge to a Karush-Kuhn-Tucker (KKT) point at least sublinearly. Judiciously designed synthetic and
real-data experiments are employed to showcase the effectiveness of the proposed algorithms.

F

1 INTRODUCTION

Canonical Correlation Analysis (CCA) [1] has been an es-
sential tool in data analytics and machine learning, which
is used to extract low-dimensional representations from two
views of the same set of entities in different ”feature spaces”
– e.g., areas of technical expertise and social network data
for a set of authors. A view is a high-dimensional repre-
sentation of an entity in a certain feature domain – e.g., the
English word “car” and its translation in Spanish “coche”
are two views of the same entity in different domains, and
both car and coche can be represented as high-dimensional
feature vectors, e.g., using co-occurrences with other English
and Spanish terms, respectively. The applications of multi-
view analysis span a wide spectrum, including clustering
[2], [3], regression [4], brain imaging [5], natural language
processing [6], [7], and many other topics; also see [8],

X. Fu is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331, USA. email:
xiao.fu@oregonstate.edu.

K. Huang is with the Department of Computer and Information Science
and Technology, University of Florida, Gainesville, FL 32605, USA. email:
kejun.huang@ufl.edu

N. D. Sidiropoulos is with the Department of Electrical and Computer
Engineering, University of Virginia, Charlottesville, VA 22904, USA email:
nikos@virginia.edu.

H. Song, C. Faloutsos and Tom Mitchell are with the Machine Learning
Department at Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA. e-mail (hyunahs,christos+,tom.mitchell)@cs.cum.edu

E. E. Papalexakis is with the Computer Science & Engineering Department
at the University of California Riverside, 900 University Ave, Riverside, CA
92521, USA. email epapalex@cs.ucr.edu

P. Partha is with Department of Computational and Data Sciences and
Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India 560012, email ppt@iisc.ac.in

This work was supported in part by the National Science Foundation under
projects NSF ECCS 1808159, NSF IIS-1247632 and NSF IIS-1247489.

[9], [10], [11]. Classical CCA focuses on the two-view case.
Generalized Canonical Correlation Analysis (GCCA) that
aims at handling more than two views has also drawn much
attention since in many applications GCCA arises naturally
[12], [13], [14], [15], [16], [5], [17].

1.1 Related Work and Challenges
Computationally, GCCA poses very challenging optimiza-
tion problems. Starting from the 1960s, different for-
mulations and algorithms of GCCA have been consid-
ered [12], [18], [19], [17], such as the sum-of-correlations
(SUMCOR), sum-of-squared-correlations (SSQCOR) and
maximal-variation (MAX-VAR) formulations, to name a few.
In recent years, along with the increasing ability of collect-
ing more and more multiview data and the demand for
integrating and analyzing such data, the study of GCCA
algorithms has been gaining renewed interest [13], [14], [20],
[21], [15]. Horst proposed a power method-like algorithm
to deal with the SUMCOR problem [19]. This method was
further studied by Zhang et al. in [21], where some special
cases were investigated and optimality conditions of the
Horst algorithm in those cases were presented. Tenenhaus
et al. proposed a block coordinate descent (BCD)-based
algorithm combined with local linearization to deal with
different formulations of GCCA [13], and later extended
the framework to sparse GCCA [14] – which seeks sparse
canonical components. Rupnik et al. proved that the SUM-
COR problem is NP-hard, and proposed using semidefinite
relaxation to approximate it [15]. Recently, Rastogi et al. [7]
and Fu et al. [22] proposed efficient algorithms to handle the
MAX-VAR problem.

Despite the long history of GCCA research, some old
challenges remain, and new one arise in this era of big

2

0 2 4 6 8 10

L ×104

10-1

100

101

102

103

104

105

95
 ti

m
e

(s
ec

.)

CSR-BCD
LasCCA
DisCCA-MBI
DisCCA-GP

Out Of Memory

Fig. 1. 95time (runtime for capturing 95% of the total sum of pairwise
correlations among the views) versus size of the views. 5 components
are sought; 5 views; each view is a L × 0.8L matrix; data density ρ =
5 × 10−3. LasCCA, DisCCA-MBI, and DisCCA-GP are the proposed
algorithms; CSR-BCD is a competitor which uses whitening.

data. First, the aforementioned algorithms mostly consider
extracting the first canonical component of each view, and
then use a deflation method to find the other ones (i.e., sub-
tracting the previously found component from the data and
repeating). Deflation is known to suffer from error propaga-
tion and can easily destroy sparsity, which is usually relied
upon to process large-scale data. Second, many (G)CCA
algorithms employ a whitening process (i.e., multiplying
the square roots of the correlation matrices of the views to
the data; cf. Eqs. (2)–(3)). This destroys sparsity, can easily
exhaust memory resources, and also requires a large number
of flops when the size of the views is even moderate (e.g.,
when both dimensions of the view matrices are ∼ 10, 000).
The whitening process thus poses serious scalability prob-
lems in terms of both memory and computation. There has
recently been interest in designing scalable algorithms for
CCA in the machine learning community [23], [24], [25],
[26], [27], but mostly focusing on the two-view case. One
possible workaround is the algorithm in [7], which uses
rank-truncated data to circumvent the scalability issues and
can extract multiple canonical components simultaneously
– albeit the truncation pre-processing also filters out po-
tentially useful information, which degrades performance.
The method in [22] makes use of data sparsity to handle
large-scale MAX-VAR, but heavily relies on the special
formulation of MAX-VAR GCCA, which is not easy to be
generalized to other formulations of GCCA, e.g., SUMCOR.
Third, to the best of our knowledge, no distributed algo-
rithm for GCCA has appeared in the literature. Designing
distributed algorithms for GCCA is well-motivated by a
number of reasons, including privacy, confidentiality, and
data security/integrity concerns, in addition to better scal-
ing, faster computation, and suitability for cloud computing
implementation.

1.2 Contributions

In this work, we consider designing scalable and distributed
algorithms for GCCA. Specifically, our interest lies in the
SUMCOR formulation where pairwise highly correlated

reduced-dimension views are sought. Our design is under
a setting where the views are large sparse matrices. Such
a scenario is well-motivated in practice. For example, when
applying GCCA to find common latent structure of multilin-
gual views, the views are word-word co-occurrence matrices
of different languages which are very large and very sparse.
Our contributions are as follows:
• Scalable GCCA: We propose a SUMCOR GCCA algo-
rithm that scales very gracefully with the problem dimen-
sion (i.e., the number of samples/features) when the data
is sparse. We carefully reformulate the SUMCOR problem
to an equivalent optimization problem. Working with this
reformulation, the proposed algorithm does not need to
explicitly instantiate the correlation matrices and whitening
matrices, resulting in substantial memory savings. Compu-
tationally, the key components of the algorithms are sparse
matrix-vector multiplications and singular value decompo-
sition of (typically very) “thin” matrices, which are both
lightweight and suitable for big data analytics. A sneak peek
of the experimental results is provided in Fig. 1, where one
can verify that our method (LasCCA) scales seamlessly to
bigger views, while the competitor using whitening runs
out of memory when the size of the views gets large.
Besides scalability, the proposed algorithm can simultane-
ously extract any number of canonical components, which
is preferred over deflation-based approaches.
• Distributed GCCA: Based on the same reformulation,
we also propose two distributed GCCA algorithms for
SUMCOR. To the best of our knowledge, these are the
first distributed algorithms for SUMCOR GCCA. In the
distributed framework, the views are stored in different
nodes of a network, and only a small amount of infor-
mation needs to be exchanged between the nodes and a
coordinator. Most of the computations are carried out locally
and in parallel at the nodes. We propose two different
distributed algorithms under the same network settings,
namely, DisCCA-MBI and DisCCA-GP. DisCCA-MBI re-
quires less communication overhead but more computa-
tional resources, while DisCCA-GP uses twice as much
overhead as that of DisCCA-MBI but utilizes the computa-
tional resources in a more efficient way. By exploring more
nodes/cores, running time can be further reduced by the
distributed algorithms by at least 30% compared to that of
the proposed scalable algorithm in our experiments.
• Analysis and Validation: The convergence properties of
the proposed algorithms are investigated. Specifically, we
show that both the centralized and distributed algorithms
produce solution sequences that converge to a Karush-
Kuhn-Tucker (KKT) point of the SUMCOR problem. We
also show that the algorithms shrink the gap from an
initial solution to a KKT point (measured by a poten-
tial function) at a sublinear rate – i.e., the gap shrinks
to ε after O(1/ε) iterations. As for validation, we first
employ judiciously designed synthetic-data experiments to
showcase the effectiveness of the proposed algorithms. We
then apply the algorithms to multilingual document data,
namely, the RCV2 corpus, and a four-language word-word
co-occurrence dataset to evaluate the performance.
Reproducibility: We open-source our code at the authors’
websites, where a MATLAB demo is available.

A preliminary version of this work was presented at

3

IEEE International Conference on Data Mining (ICDM 2016)
[28]. In this journal version, the original algorithms in [28]
are modified to provide convergence guarantees; a new
distributed algorithm that has significantly better runtime
performance is proposed; detailed and comprehensive con-
vergence analyses of the algorithms are presented; practical
issues such as judicious centering of the data to avoid
memory explosion and diagonal loading to circumvent the
ill-conditioning problem of correlation matrices are taken
into consideration, and more comprehensive synthetic and
real-data experiments are provided.

Notation: x ∈ Rn and X ∈ Rm×n denote a real-valued
n-dimensional vector and a real-valued m × n matrix, re-
spectively. The Frobenious norm and the matrix 2-norm are
denoted by ‖X‖F and ‖X‖2, respectively. Tr(X) denotes
the trace of the square matrix X . nnz(X) counts the number
of non-zero elements in X . In denotes an identity matrix of
size n× n. R(X) denotes the range space of X .

2 PROBLEM STATEMENT

Let Yi ∈ RL×Mi denote the ith (centered) view, where Yi(`, :
) corresponds to the `th data point (or entity) in the ith view,
L is the number of entities, and Mi denotes the number of
features of the ith view. The SUMCOR GCCA problem can
be expressed as below [29]:

max
{Qi∈RMi×K}Ii=1

I∑
i=1

I∑
j 6=i

Tr(QT
i X

T
i XjQj) (1a)

s.t. QT
i

(
XT
i Xi

)
Qi = IK , ∀i; (1b)

where Xi = (1/
√
L)Yi ∈ RL×Mi denotes the ith normalized

view, Qi ∈ RMi×K , and K is the number of canonical com-
ponents that we seek. By this normalization, (XT

i Xi) is an
estimate of the auto-correlation matrix of the ith view and
(XT

i Xj) an estimate of the cross-correlation matrix between
the ith and the jth views; i.e., we seek K-dimensional repre-
sentations of the views such that they are pair-wisely highly
correlated, and we aim to extract K canonical components
simultaneously. Our approach starts with the idea of block
coordinate descent (BCD) – i.e., separately updating Qi for
i = 1, . . . , I when fixing other Qj ’s for j 6= i. By doing so,
the subproblem w.r.t. Qi can be expressed as

max
Qi

Tr

QT
i X

T
i

∑
j 6=i

XjQj

 (2a)

s.t. QT
i

(
XT
i Xi

)
Qi = IK . (2b)

To solve the subproblem (2), it is tempting to do the follow-
ing whitening-based reformulation: Assume that XT

i Xi

has full rank (which is reasonable since views of real data
usually contain noise) and thus admits a square root de-
composition, i.e., XT

i Xi = (XT
i Xi)

1/2(XT
i Xi)

1/2. Then,
let Qi = (XT

i Xi)
−1/2Zi. We can re-write (2) as

max
Zi: ZT

i Zi=I
Tr

ZT
i (XT

i Xi)
−1/2XT

i

∑
j 6=i

XjQj

 . (3)

In some existing approaches such as those in [13], [14], [15],
the key steps are essentially identical to the above change of
variables – although they consider the simplest case where
K = 1.

The upshot of this reformulation is that Problem (3) is
essentially a Procrustes projection problem [30], i.e.,

min
Zi

‖Zi − Ti‖2F

s.t. ZT
i Zi = I,

(4)

where Ti = (XT
i Xi)

−1/2XT
i

∑
j 6=iXjQj , since the second-

order terms in the objective function of (4) do not affect the
solution and thus (4) and (3) are equivalent. The Procrustes
projection problem can be solved to optimality by applying
singular value decomposition (SVD) to Ti. Such a method
works well when Mi is small. However, instantiating the
whitening matrix (XT

i Xi)
−1/2 poses serious complexity

issues: first, the matrix (XT
i Xi)

1/2 is very likely to be
dense even when Xi is sparse. Consequently, computing
its inverse requires O(M3

i) flops (e.g., when Mi = 100, 000,
this step requiresO(1015) flops). More importantly, storing a
dense and largeMi×Mi matrix is almost prohibitive – when
Mi = 100, 000, storing (XT

i Xi)
1/2 needs 75 GB memory. In

this work, we will propose algorithms that completely avoid
instantiating (XT

i Xi)
−1/2, and thus are highly scalable in

terms of both memory and computational complexity.

3 LARGE-SCALE GCCA (LASCCA)
Instead of applying the change of variables Qi =
(XT

i Xi)
−1/2Zi and reformulating (2) to (3), we let

Gi = XiQi, ∀i.

Note that Gi ∈ RL×K is a very “thin” matrix since in
practice L � K holds and K , i.e., the number of canonical
components sought, is usually small and can be controlled
by the designer.

We wish to change the variables of Problem (2) from Qi

to Gi, so that we can get rid of the difficult constraints, i.e.,
QT
i X

T
i XiQi = IK . To this end, we will make use of the

following lemma:

Lemma 1 Consider Gi = XiQi. When rank(Xi) = Mi, we
have

Gi = XiQi ⇔ Qi = (XT
i Xi)

−1XT
i Gi, Gi(:, k) ∈ R(Xi), ∀k.

Proof: The “⇒” part is trivial to prove. To show the
“⇐” part, first notice that Gi(:, k) ∈ R(Xi) for all k implies
that Gi = XiΘi holds for a certain Θi ∈ RK×K . Then, we
have

Qi = (XT
i Xi)

−1XT
i (XiΘi).

The above results in Qi = Θi when rank(Xi) = Mi.
Using Lemma 1, Problem (2) can be written as

max
Gi

Tr

GT
i Xi(X

T
i Xi)

−1XT
i

∑
j 6=i

Xj(X
T
j Xj)

−1XT
j Gj

s.t. GT

i Gi = IK , (5a)
Gi(:, k) ∈ R(Xi), ∀k. (5b)

4

The key difference between our reformulation in (5) and
that in (3) is that we avoided using the square root decom-
position of the correlation matrices, i.e., (XT

i Xi)
−1/2. As

we will verify later, such a change will significantly reduce
memory cost and computational complexity when the views
are large and sparse.

There are several difficulties for solving the subproblem
in (5). First, let us denote

Hi = Xi(X
T
i Xi)

−1XT
i

∑
j 6=i

Xj(X
T
j Xj)

−1XT
j Gj .

Some components that constitute Hi, e.g., (XT
i Xi)

−1, are
difficult to compute and store because of the (·)−1 operator.
Second, even if we have obtained Hi, solving (5) seems
nontrivial: At first glance, the orthogonality constraint in
(5a) and the subspace constraint in (5b) together make the
optimization problem w.r.t. Gi quite complicated. For now,
let us assume that Hi can be somehow computed and first
look at the problem of solving Problem (5). Here, we show
that

Lemma 2 The following Gi is a global optimal solution to
Problem (5):

Gi = UiV
T
i , UiΣiV

T
i = svd(Hi), (6)

where svd(Hi) denotes the economy-size SVD of Hi.

Proof: First, let us consider Problem (5) without the
constraint (5b). Then, the relaxed problem is equivalent to
solving a Procrustes projection problem as follows

min
Gi: GT

i Gi=I
‖Gi −Hi‖2F . (7)

An optimal solution of the above is given in (6). It remains
to show that the solution in (6) still stays in R(Xi). Indeed,
since Hi(:, k) ∈ R(Xi) by its definition, it follows that
Ui(:, k) ∈ R(Xi) and thus the solution in (6) also resides in
the range space of Xi. Since the solution in (6) is an optimal
solution of the constraint-relaxed version of Problem (5), it
is also an optimal solution of Problem (5).

Using Lemma 2, one natural thought is to update Gi

using (6) when fixing Gj for j 6= i and perform this
cyclically w.r.t. each Gi. This strategy falls into the category
of the so-called Gauss-Seidel type block coordinate descent
(BCD) [31]. The concern here is that, when dealing with non-
convex constraints (e.g., GT

i Gi = I), Gauss-Seidel BCD
cannot guarantee convergence of the solution sequence in
general [31]. To circumvent this situation, we propose to
update Gi using the following simple modification:

G
(r+1)
i = UiV

T
i , UiΣiV

T
i = svd(Hi + σG

(r)
i), (8)

where G
(r)
i denotes Gi obtained at the rth iteration and

σ > 0 is a real-valued positive scalar (and G(0) denotes the
initialization of the iterations which will be specified later).
Note that adding the extra term σG

(r)
i does not change

the complexity of this step, since the SVD is still applied
to a thin matrix. More interestingly, as will be seen later,
this minor modification allows us to analyze convergence
properties of the algorithm rigorously. As preparation for
our forthcoming proof, we show that

Algorithm 1: LasCCA

input : {Xi}Ii=1; K
1 Qi = randn(Mi,K);
2 UiΣV T

i = svd(XiQi,K,
′ econ′), G(0)

i = Ui;
3 r ← 1;
4 repeat
5 for i = 1 : I do
6 G(r)i = {G(r+1)

1 , . . . ,G
(r+1)
i−1 ,G

(r)
i+1, . . . ,G

(r)
I }

7 H
(r)
i ← H_Compute

(
{Xi}Ii=1,G

(r)
i

)
;

8 U
(r)
i Σ

(r)
i V

(r)
i ← svd(H

(r)
i + σG

(r)
i); O(LK2)

9 G
(r+1)
i ← U

(r)
i (V

(r)
i)T ;

10 end
11 r ← r + 1;
12 until some stopping criterion is reached;

output: {Gi}

Corollary 1 The update of G(r+1)
i in (8) is an optimal solution

to
min
Gi

− Tr(GT
i Hi)+

σ

2

∥∥∥G(r)
i −Gi

∥∥∥2
F

s.t. GT
i Gi = I, Gi(:, k) ∈ R(Xi), ∀k,

(9)

given that G
(r)
i (:, k) ∈ R(Xi) for all k holds.

Proof: By expanding the objective and discarding the
constants, the optimization problem becomes

min
Gi

− Tr

((
Hi + σG

(r)
i

)T
Gi

)
s.t. GT

i Gi = I, Gi(:, k) ∈ R(Xi), ∀k,
(10)

Applying the result of Lemma 2, one can see that the solu-
tion in (8) is an optimal solution to the above if Hi+G

(r)
i ∈

R(Xi). Using the assumption that G
(r)
i (:, k) ∈ R(Xi), we

complete the proof.
We should mention that the assumption G

(r)
i (:, k) ∈ R(Xi)

for all k is not hard to fulfill in practice: By initializing
G

(0)
i ∈ R(Xi) (e.g., using the truncated SVD which has

linear complexity in nnz(Xi)), this assumption can always
be satisfied in the subsequent iterations.

The overall BCD algorithm is presented in Algorithm 1,
which we name large-scale generalized CCA (LasCCA). One
can see that the SVD step in (8) is not difficult in terms of
both computational and memory costs. In fact, Hi ∈ RL×K
is a very “thin” matrix (recall thatK is usually much smaller
than L) – meaning that the memory burden is very light. In
addition, computing SVD of Hi costs O(LK2) flops, which
is merely linear in L, i.e., the number of data samples. At
this point, we have not elaborated how to compute Hi but
only put an operator called H_Compute(·, ·) there (cf. line
2 in Algorithm 1). In the next subsection, we will focus on
computing Hi.

3.1 Building Block: Iterative Least Squares
Let us now turn attention to the problem of computing Hi.
As we have mentioned, computing and storing (XT

j Xj)
−1

may not be affordable when constructing Hi at each step.
Fortunately, explicit computation of this term is not nec-
essary when calculating Hi. In fact, what has been used
for constructing Hi is (XT

j Xj)
−1XT

j Gj for different j’s,

5

which is, again, a very thin matrix that only costs O(LK)
memory. To obtain this thin matrix, consider the following
unconstrained linear least squares (LS) problem

min
Rj

‖XjRj −Gj‖2F . (11)

Assume that rank(Xj) = Mj and L ≥Mj . It is well-known
that the optimal solution R?

j can be written in the following
form:

R?
j = (XT

j Xj)
−1XT

j Gj . (12)

Eq. (12) means that to obtain the key ingredient of building
up Hi, what one needs to do is to solve an associated LS
problem. The merit of looking at the problem of finding
(XT

j Xj)
−1XT

j Gj from a LS point of view is that the LS
problem, although admitting a closed-form solution as in
(12), can also be solved iteratively using very lightweight
iterations that can also take advantage of sparsity. When the
problem size is small, this line of thinking is unnecessary
and is more cumbersome compared to directly inverting
(XT

j Xj). However, when L and Mj are large, inverting
(XT

j Xj) is no longer feasible, as we mentioned before.
On the other hand, the LS problem can be solved very
efficiently using many iterative algorithms if Xj is sparse.
All the first-order algorithms such as gradient descent [31],
stochastic gradient [32] and accelerated gradient descent
[33] can be applied to obtain (XT

j Xj)
−1XT

j Gj without
instantiating (XT

j Xj)
−1. These algorithms all exploit the

sparsity of Xj and thus the per-iteration complexity is very
low. In this work, we propose to employ a powerful tool for
unconstrained LS – the conjugate gradient (CG) algorithm.
There is rich literature on CG since it has been the workhorse
for solving large-scale LS problems for decades, and we
refer the reader to [34], [35] for details; but we highlight
some points that are highly relevant for our objectives, in
the following remarks.

Remark 1 To solve Problem (11), CG only requires mul-
tiplications of Xj and a matrix with size Mj × K – if
Xj is sparse, such multiplications can be easily carried
out with a per-iteration complexity of O(nnz(Xj)K) flops
(see Appendix A). Another advantage of using CG is that
even in the worst case, CG is provably convergent to the
desired solution within a finite number of iterations [34];
in practice, CG almost always converges to a very good
accuracy level within 20 iterations even when the size of Xi

reaches 100, 000 × 100, 000. We should mention that using
an “intermediate” LS problem to find the (pseudo-)inverse
of a large sparse matrix is a classic technique, whose usage
in two-view CCA can be traced back thirty years ago [36],
[37], although how to extend this idea to GCCA was not
clear – and our proposed algorithm fills this gap by using
the reformulation in (5).

Using CG, Hi can be computed efficiently. The corre-
sponding algorithm is presented in Algorithm 2. In short,
we first use CG to form Rj = (XT

j Xj)
−1XT

j Gj as we
explained. Then, Cj = Xj(X

T
j Xj)

−1XT
j Gj can be formed

via multiplying Xj by Rj . If Xj is sparse, then this step is
easy. Then, the matrix Pi =

∑
j 6=iXj(X

T
j Xj)

−1XT
j Gj can

be obtained by summation over the index set {1, . . . , I}/{i}.
By solving

Ei = arg min
E
‖Pi −XiE‖2F

using CG we obtain Ei = (XT
i Xi)

−1XT
i Pi. Finally, by

another multiplication of a sparse matrix Xi and the thin
matrix Ei, we get Hi.
Complexity: We factor out each iteration’s processing de-
tails in the H Compute method. One can see that the major
computations all have the same complexity order – and it
is linear in nnz(Xi). Therefore, if the views are sufficiently
sparse, the computation of Hi can be very efficient. Recall
that in LasCCA, the other major operation is taking a thin
SVD of Hi which costs O(LK2). Combining, one can see
that the LasCCA algorithm consists of operations that have
computational complexity that is linear in L (number of
samples) or nnz(Xi), which is clearly a favorable property.
In terms of memory complexity, only thin matrices of size
Mi × K and L × K are involved. When K is small, the
memory cost can be very low.

3.2 Convergence Properties
It is first noted that LasCCA monotonically increases the
objective value of

∑T
i=1

∑I
j 6=i Tr(GT

i Hi) if CG solves the
associated LS problems. This is by the nature of BCD – each
update improves the objective value [31], [38], [39]. There-
fore, the objective sequence converges since it is bounded
from above and monotonic.

It is also of great interest to study the convergence
properties of the solution sequence {G(r)

i }r for all i. Note
that since the constraint sets of SUMCOR are not convex,
classical BCD convergence results such as those in [31], [38]
do not apply to LasCCA. Here, we perform custom analysis
for the LasCCA algorithm. As one will see, the augmentation
parameter σ plays an essential role in showing convergence
and iteration complexity of LasCCA.

As we have been dealing with the reformulated problem
after the change of variables, i.e.,

max
{Gi}

I∑
i=1

Tr
(
GT
i Hi

)
s.t. GT

i Gi = IK , Gi(:, k) ∈ R(Xi), ∀k, (13)

where Hi = Xi(X
T
i Xi)

−1XT
i

∑
j 6=iXj(X

T
j Xj)

−1XT
j Gj ,

instead of the original SUMCOR problem in (2), a natural
question is that whether or not a KKT point of Problem (13)
is also a KKT point of Problem (2). Note that the answer is
not obvious: what we have relied upon to handle large-scale
GCCA is the fact that the two problems are equivalent at
the global optimal solutions, but this does not necessarily hold
at any KKT point. To address this question, we first show
that

Lemma 3 Let {G∗i }Ii=1 be a KKT point of Problem (13). Then,
{Q∗i = XiG

∗
i }Ii=1 is a KKT point of Problem (2).

Proof: The proof is relegated to Appendix C.
Given Lemma 3, it suffices to show that LasCCA reaches

a KKT point of Problem (13). We show that:

6

Algorithm 2: H Compute

input : {Xi}; Gi.
1 for j = 1, . . . , I do
2 if j 6= i then
3 Rj ← CG(Xj ,Gj); O(nnz(Xj)K)
4 Cj ←XjRj ; O(nnz(Xj)K)
5 end
6 end
7 Pi ←

∑
j 6=i Cj ;

8 Ei ← CG(Xi,Pi); O(nnz(Xi)K)
9 Hi ←XiEi; O(nnz(Xi)K)

output: Hi

Proposition 1 Assume that rank(Xi) = Mi and 0 < σ <
+∞. Then, the LasCCA algorithm has the following convergence
properties:

a) (Subsequence Convergence) Every limit point of the so-
lution sequence produced by LasCCA is a KKT point of
Problem (2).

b) (Global Convergence) The whole solution sequence pro-
duced by LasCCA converges, i.e, G(r+1)

i → G
(r)
i for all

i; in addition, the sequence converges to a set K which
consists of all the KKT points of Problem (2).

c) (Iteration Complexity) We have

I∑
i=1

‖G(r+1)
i −G

(r)
i ‖

2
F = O(1/r);

i.e., LasCCA converges to a KKT point at least sublin-
early.

Proof: Please see Appendix D.

Remark 2 A practical issue here is how to choose σ? In
proximal term-augmented BCD, a relatively large σ is some-
times employed to improve the conditioning of the associ-
ated subproblems. The trade-off here is that if σ is set to
be too large, it means that G

(r+1)
i is confined to be close

to G
(r)
i , which may result in slow convergence; if σ is too

small, the subproblems may be still ill-conditioned and hard
to be solved efficiently. In our case, fortunately, we do not
need a large σ to improve conditioning of the subproblem
– our subproblem w.r.t. Gi can be easily solved. Therefore,
one empirically effective choice is to use a small σ > 0, e.g.,
σ = 10−8, which will not restrict the algorithm to small step
sizes but can offer theoretical guarantees of convergence.

4 DISTRIBUTED GCCA (DISCCA)
In practice, there are many scenarios in which distributed
computing is desirable. For example, sometimes the views
(i.e., {Xi}i=1,...,I) may be collected and stored at differ-
ent nodes within a network, and directly exchanging the
views Xi may not be allowed for security and/or legal
reasons. Another reason is multi-core parallel computing-
based acceleration: instead of computing Gi sequentially as
in Algorithm 1, it may be more appealing to compute Gi

for all i in parallel in a distributed fashion – which may
well expedite the whole process when I is large. In this
section, we propose a distributed implementation that is

C1

P1

C2 P2

C3

P3

C4 P4

master agent 1

agent 2

agent 3

agent 4

Fig. 2. Architecture of the considered network for DisCCA and informa-
tion exchange among distributed nodes in DisCCA.

a greedy variant of Algorithm 1. The proposed approach
uses a master to coordinate the nodes or cores (cf. Fig. 2),
and most computations happen locally at the nodes; in
addition, the information exchanges only involve small-size
thin matrices. Convergence analysis will be used to back this
implementation in the next section.

Let us consider a network structure as in Fig. 2. There,
the nodes can be machines that are located in different
places or cores within one machine. The views are stored at
the nodes and are not allowed to be exchanged. The master
is a coordinator who collects and distributes some derivative
information, and we wish to leave the heavy computations
to the nodes. To see how we approach this problem, let us
consider the following modification to LasCCA. Specifically,
instead of updating Gi sequentially and cyclically as in
Algorithm 1, the nodes update locally Gi simultaneously
based on the previous iterate, which results in the following
update strategy:

H
(r)
i ←Xi(X

T
i Xi)

−1XT
i

∑
j 6=i

Xj(X
T
j Xj)

−1XT
j G

(r)
j

(14a)

U
(r)
i Σ

(r)
i V

(r)
i ← svd

(
H

(r)
i + σG

(r)
i

)
(14b)

G
(r+1)
i ← U

(r)
i (V

(r)
i)T . (14c)

Note that the update in (14) is different from that in Algo-
rithm 1: in LasCCA (Algorithm 1), the update of G(r)

i uses
the information of G(r+1)

j for j < i and G
(r)
j for j > i, while

this update in (14) only uses G(r)
j for all j 6= i. By this slight

modification, a significant part of (14) can be computed in
parallel at different nodes.

After all G
(r+1)
i ’s are computed by different nodes, a

natural question is which one to update. A simple and
straightforward way is to update the Gi that brings maxi-
mal improvement to the objective function of (5). Using this
idea, we obtain the distributed CCA (DisCCA) algorithm
that is presented in Algorithm 3. One can see that the lines
25-30 implement the idea of selecting a block to update. In
optimization theory, adding these lines makes the algorithm
fall into the maximum block improvement (MBI) framework
[40] which is a greedy variant of the Gauss-Seidel (GS)-
type BCD. To distinguish MBI-based distributed GCCA with
the one that will be proposed later, we call Algorithm 3
DisCCA-MBI.

7

Compared to GS-type BCD (cf. LasCCA), every update
of DisCCA-MBI gives a larger improvement of the objective,
which is clearly favorable. Another motivation of using MBI
is that it has very low communication overhead between the
nodes and the master. Specifically, after every iteration (in-
dexed by r), only the node who has updated its associated
G

(r)
i needs to send out C

(r)
i (cf. line 16 in Algorithm 3),

and the other nodes do not have to send out anything. In
the broadcasting stage, the master node sends Pi’s to the
agents, which are also thin matrices. When communication
is expensive, such a strategy is quite economical— since
sending Ci and Pi only costs O(KL) overhead and K
is usually quite small. On the other hand, DisCCA-MBI
“wastes” most of the computations since it computes all the
blocks but updates only one. Hence, there is clearly an in-
teresting resource-time trade-off between choosing LasCCA
and DisCCA-MBI in practice.
Complexity: The computational and memory complexities
of DisCCA-MBI are the same as those of LasCCA, since all
the basic operations are the same, except that DisCCA-MBI
employs multiple computing agents. The communication
overhead that arises in the distributed algorithm is in the
order of O(LK) in each iteration, as mentioned. Since K is
usually much smaller than L, this amount of overhead is
easily affordable in most cases.

4.1 Convergence Properties of DisCCA-MBI

Unlike LasCCA that uses a GS-type BCD updating rule
for the blocks, DisCCA-MBI employs the so-called Gauss-
Southwell rule. As a consequence, DisCCA-MBI needs
slightly weaker conditions to establish subsequence conver-
gence and global convergence (i.e., the a) and b) parts in
Theorem 1). To be specific, to show subsequence and global
convergence of DisCCA-MBI, we do not need to assume
σ > 0 – any value of σ ≥ 0 suffices to establish these results.
In fact, these results can be directly obtained by applying the
convergence analysis of the maximum block improvement
strategy as in [40]. To show iteration complexity of DisCCA,
on the other hand, σ > 0 will be needed. To be specific, we
have the following properties of DisCCA-MBI:

Proposition 2 Assume that rank(Xi) = Mi. Then, the Dis-
CCA algorithm has the following convergence properties:

a) (Subsequence Convergence) When σ ≥ 0, every limit
point of the solution sequence produced by DisCCA-MBI
is a KKT point of Problem (2).

b) (Global Convergence) When σ ≥ 0, the whole solu-
tion sequence produced by DisCCA-MBI converges, i.e,
G

(r+1)
i → G

(r)
i for all i; in addition, the sequence

converges to a set K which consists of all the KKT points
of Problem (2).

c) (Iteration Complexity) Assume σ > 0, we have

I∑
i=1

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F

= O(1/r);

i.e., DisCCA-MBI converges to a KKT point at least
sublinearly.

Proof: Please see Appendix E.

Algorithm 3: DisCCA-MBI

input : {Xi}Ii=1; K
1 Qi = randn(Mi,K);
2 UiΣV T

i = svd(XiQi,K,
′ econ′), G(0)

i = Ui;
3 r ← 0;
4 repeat
5 if r = 0 then
6 R

(r)
i ← CG(Xi,G

(r)
i); (node)

7 C
(r)
i ←XiR

(r)
i ; (node)

8 node i for all i sends Ci to master;
9 P

(r)
i ←

∑
j 6=i C

(r)
j ; (master)

10 master sends Pi to node i;
11 E

(r)
i ← CG(Xi,P

(r)
i); (node)

12 H
(r)
i ←XiE

(r)
i ; (node)

13 else
14 R

(r)

i(r−1) ← CG
(
Xi,G

(r)

i(r)

)
; (node i(r))

15 C
(r)

i(r−1) ←XiR
(r)

i(r−1) ; (node i(r))
16 node i(r) sends C

(r)

i(r−1) to master;
17 P

(r)
i ← P

(r)
i −C

(r−1)

i(r−1) +C
(r)

i(r−1)

for i 6= i(r−1); (master)
18 master sends P

(r)
i to node i for i 6= i(r−1);

19 P
(r)

i(r−1) ← P
(r−1)

i(r−1) ; (node)
20 E

(r)
i ← CG(Xi,P

(r)
i); (node)

21 H
(r)
i ←XiE

(r)
i ; (node)

22 end
23 U

(r)
i Σ

(r)
i V

(r)
i ← svd

(
H

(r)
i + σG

(r)
i

)
. (node)

24 G
(r+1)
i ← U

(r)
i (V

(r)
i)T . (node)

25 v
(r)
i ← Tr((G

(r+1)
i)TH

(r)
i); (node)

26 node i sends v(r)i to master;
27 i(r) ← argmaxi∈{1,...,I} v

(r)
i ; (master)

28 master sends an update command to node i(r);
29 G

(r+1)

i(r)
← G

(r+1)

i(r)
; (node)

30 G
(r+1)
i ← G

(r)
i for i 6= i(r); (node)

31 r ← r + 1;
32 until some stopping criterion is reached;

output: {Gi}

Remark 3 Like LasCCA, DisCCA-MBI offers monotonically
increasing objective values of Problem (13). This is by the
nature of MBI and straightforward to show. This is im-
portant in practice, because it ensures that every iteration
makes progress towards our goal of capturing more sum-
of-correlations. Note that Propositions 1–2 summarizes the
convergence properties of LasCCA and DisCCA-MBI under
any positive integer I ≥ 2. One interesting question is that,
when I = 2, where the SUMCOR CCA problem is solvable,
do the large-scale algorithms lose optimality? The answer
is no—and the algorithms converge to a global optimal
solution at a linear rate (which is in general much faster com-
pared to sublinear rate convergence). This is reminiscent of
the orthogonal iteration algorithm [35] for computing leading
eigenvectors of a symmetric matrix; see the supplementary
materials (Appendix F) for details.

5 DISCCA VIA GRADIENT PROJECTION

As mentioned, DisCCA-MBI tends to “waste” most of the
computational resources since it computes all potential up-
dates of the Gi’s but only implements one block. This

8

raises a natural question: is there a way to update Gi for
i = 1, . . . , I in parallel? The answer is affirmative – if one is
willing to afford more communication overhead.

To explain the approach, let us re-write the GCCA prob-
lem in (13) as the following:

min
G

Tr
(
GTBG

)
s.t. GT

i Gi = IK , Gi ∈ R(Xi), ∀i,
(15)

where G = [GT
1 , . . . ,G

T
I]T , and

B = −

0, S1S2, . . . , S1SI

S2S1, 0, . . . , S2SI
...

...
...

...
SIS1, SIS2 . . . , 0

 , (16)

and Si = Xi(X
T
i Xi)

−1XT
i . Instead of resorting to block

coordinate descent, let us consider optimizing Problem (15)
w.r.t. all the variables at once, i.e., G. We propose the
following gradient projection (GP) procedure:

G(r+1) ← PG
(
G(r) − α∇f(G(r))

)
, (17)

where f(G) denotes the objective function of (15), PG(·)
denotes the operator of projecting to the set G, where G =
{G | GT

i Gi = I,Gi ∈ R(Xi), ∀i}, i.e., the constraint set
of (15), and α > 0 is the step size of GP. The motivation
of employing GP is distributed implementation. To explain,
one can show that

∇f(G(r)) =

[(
∇f1(G

(r)
1)
)T

, . . . ,
(
∇fI(G(r)

I)
)T]T

,

and ∇fi(G(r)
i) = −H(r)

i , where

H
(r)
i = Xi(X

T
i Xi)

−1XT
i

∑
j 6=i

Xj(X
T
j Xj)

−1XT
j G

(r)
j

is defined as before. Therefore, the update rule in (17) is
completely separable w.r.t. each of the Gi’s. In fact, the
updates w.r.t. Gi’s are very similar to those in LasCCA and
DisCCA. We have the following

Lemma 4 Assume that G
(r)
i ∈ R(Xi). Then, the following

solution
UiΣiV

T
i ← svd

(
G

(r)
i + αH

(r)
i

)
G

(r+1)
i ← UiV

T
i , ∀i,

(18)

is optimal for (17).

Proof: The projection problem in (17) can be written
as

min
G

∥∥∥G− (G(r) − α∇f(G(r)
)∥∥∥2

F

s.t. GT
i Gi = I, Gi(:, k) ∈ R(Xi), ∀k, i.

By noting that the above is separable w.r.t. Gi, solving the
above amounts to solving

min
Gi

∥∥∥Gi −
(
G

(r)
i + αH

(r)
i

)∥∥∥2
F

s.t. GT
i Gi = I, Gi(:, k) ∈ R(Xi), ∀k, i.

Algorithm 4: DisCCA-GP

input : {Xi}Ii=1; K
1 UiΣV T

i = svds(Xi,K), G(0)
i = Ui; (node)

2 r ← 0;
3 repeat
4 R

(r)
i ← CG(Xi,G

(r)
i); (node)

5 C
(r)
i ←XiR

(r)
i ; (node)

6 node i for all i sends Ci to master;
7 P

(r)
i ←

∑
j 6=i C

(r)
j ; (master)

8 master sends Pi to node i;
9 E

(r)
i ← CG(Xi,P

(r)
i); (node)

10 H
(r)
i ←XiE

(r)
i ; (node)

11 U
(r)
i Σ

(r)
i (V

(r)
i)T ← svd

(
αH

(r)
i +G

(r)
i

)
. (node)

12 G
(r+1)
i ← U

(r)
i (V

(r)
i)T . (node)

13 r ← r + 1;
14 until some stopping criterion is reached;

output: {Gi}

for all i. Now, using the assumption that G(r)
i ∈ R(Xi) and

the same arguments as in Proposition 2 and Corollary 1, one
can see that the solution in (18) solves the above problem to
optimality.

By Lemma 4, we can implement a gradient projection
algorithm for Problem (15) in a distributed manner very
easily – see the details in Algorithm 4. We name this
algorithm DisCCA-GP. The algorithm looks very similar
to DisCCA-MBI, with some slight differences: first, all the
nodes update their own Gi’s in each iteration, which results
in high efficiency in terms of utilizing the computational
resources. Second, all the nodes send out Ci and receive
an updated Pi after each iteration, which leads to as much
as twice the communication overhead compared to that of
DisCCA-MBI. In cases where communication overhead is
not a serious concern, DisCCA-GP is clearly a good choice.
Complexity: As DisCCA-MBI, DisCCA-GP does not in-
crease the computational and memory complexities com-
pared to LasCCA. The communication overhead, however,
is O(2LK) in each iteration which is twice as needed in
DisCCA-MBI. The reason is that each node needs to update
its own Ci to the master in the GP algorithm, while only the
node updated Gi needs to report to the master in the MBI
algorithm.

5.1 Convergence Properties of DisCCA-GP

When using gradient projection over a nonconvex set, a
critical consideration is convergence. In general, GP is not
guaranteed to converge when the constraint is nonconvex.
In fact, it is not even guaranteed to decrease the objective
function under such cases. Fortunately, our objective func-
tion in (15) has special structure that one can exploit to
ensure convergence and monotonicity. To explain, we first
show that

Lemma 5 Assume that rank(Xi) = Mi and α is chosen such
that α < 1. Then, DisCCA-GP ensures the following holds:

f
(
G(r)

)
− f

(
G(r+1)

)
≥
(

1

2α
− 1

2

)
‖G(r) −G(r+1)‖2F .

9

Proof: The key of the proof is to show that the objec-
tive function in (15) has a 1-Lipschitz continuous gradient,
or, largest eigenvalue of the matrix B can be bounded by 1.
To this end, let us re-write B as

B = −

S1

S2

...
SI

 [S1, . . . ,SI] +

S1, 0, . . . , 0
0, S2, . . . , 0
...

...
...

...
0, 0 . . . , SI

 , (19)

where we have used the fact that SiSi = Si since Si is an
orthogonal projector. Another property of Si is that all the
eigenvalues are 1. Indeed, Let Xi = UXi

ΣXi
V T
Xi

. One can
see that Si = UXiU

T
Xi

. Consequently, the later matrix is
congruent with the identity matrix I . Notice that the first
term in the right hand side of (19) is negative semidefinite
since its a Gram matrix with a minus sign. Therefore, the
matrix B satisfies

λmax(B) ≤ 1.

Relying on the above, now we are ready to show that f(G)
has sufficient decrease at each iteration. We first notice that

f(G(r+1)) ≤ f(G(r)) +
〈
BG(r),G(r+1) −G(r)

〉
+

1

2
‖G(r) −G(r+1)‖2F , (20)

by the Lipschitz continuity of the gradient of the objective
[38]. In addition, we have〈

BG(r),G(r+1) −G(r)
〉

+
1

2α
‖G(r) −G(r+1)‖2F

≤
〈
BG(r),G(r) −G(r)

〉
+

1

2α
‖G(r) −G(r)‖2F , (21)

since G(r+1) satisfies

G(r+1) = arg min
GTG=I

f(G(r)) +
〈
BG(r),G−G(r)

〉
+

1

2α
‖G−G(r)‖2F (22)

following the upper-bound interpretation of gradient pro-
jection [38]. Combining (20)-(22), the proof is completed.

Leveraging Lemma 5, we show the following:

Proposition 3 Assume that rank(Xi) = Mi and α is chosen
such that α < 1. Then, the DisCCA-GP algorithm has the
following convergence properties:

a) (Subsequence Convergence) Every limit point of the solu-
tion sequence produced by DisCCA-GP is a KKT point of
Problem (2).

b) (Global Convergence) The whole solution sequence pro-
duced by DisCCA-GP converges to a setK which consists
of all the KKT points of Problem (2).

c) (Iteration Complexity) We have
I∑
i=1

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F

= O(1/r);

i.e., DisCCA-GP converges to a KKT point at least
sublinearly.

Proof: The algorithm is gradient projection over non-
convex smooth manifolds. The proof follows the recent
work in [41]. The key of the proof in [41] is that the objective

function has a Lipschitz continuous gradient and every
iteration yields sufficient decrease of the objective function
– which we have shown in Lemma 5. The other steps are the
same as those in [41] and thus is omitted.

In Table 1, we summarize properties of the proposed
three algorithms, where we consider a single-core im-
plementation of LasCCA and an I-core implementation
of DisCCA-MBI and DisCCA-GP, respectively. The dif-
ference between DisCCA-MBI and DisCCA-GP is that
DisCCA-MBI has lower communication overhead and also
lower “block update efficiency” – it only updates one Gi

in iteration r; DisCCA-GP, on the other hand, has twice
as much communication overhead relative to DisCCA-MBI,
but it updates all Gi’s in iteration r – which means
higher efficiency of computational resource usage. Practi-
tioners should to choose from LasCCA, DisCCA-MBI, and
DisCCA-GP according to the resources that they have.

TABLE 1
Summary of properties of proposed algorithms.

Algorithm Distributed No. of Cores Overhead Updated Blocks/Iter.
LasCCA 7 one – I (No. of views)

DisCCA-MBI 3 I (No. of views) O(KL) one
DisCCA-GP 3 I (No. of views) O(2KL) I (No. of views)

Remark 4 We presented LasCCA, DisCCA-MBI, and
DisCCA-GP under several assumptions, e.g., Xi is already
centered and rank(Xi) = Mi for all i. In practice, these are
necessarily automatically satisfied and directly applying the
proposed algorithms may be problematic. For example, if
the uncentered data Xi is sparse, subtracting the mean of
the data samples from all rows of Xi (i.e., centering) will
make the centered data very dense – which is disastrous
for the subsequent processing. In addition, if Xi is rank-
deficient, computing (XT

i Xi)
−1 may lead to numerical

problems. Nevertheless, these problems can be circum-
vented by carefully modifying the proposed algorithms –
please see Appendix B for details.

6 EXPERIMENTS

In this section, we use synthetic and real-data experiments
to showcase the effectiveness of LasCCA and DisCCA. All
the algorithms are implemented in MATLAB and are tested
on a Linux server with multiple 2GHz cores and 128 GB
RAM.
• Baselines. We employ the GCCA algorithms in the lit-
erature that can deal with large-scale multiview data and
extract multiple canonical components simultaneously. To
serve these purposes, we first employ the algorithms that
use a strategy for change of variables as proposed in [13],
[14], [15]. The algorithm follows a BCD strategy where each
subproblem is as in (3). The difficulty of applying the exact
algorithms in [13], [14] here is that those algorithms were
not designed to handle the K > 1 case. But this can be fixed
by solving each subproblem in (3) using a Procrustes projec-
tion. This baseline will be referred to as correlation square
root-based block coordinate descent (CSR-BCD). In addition,
we also use the multiview latent semantic analysis (MVLSA)
algorithm that was proposed by Rastogi et al. [7]. We should

10

mention that MVLSA aims at solving the MAX-VAR GCCA
problem, which has a different objective function:

min
GTG=IK ,{Qi}

I∑
i=1

‖XiQi −G‖2F (23)

The formulation in (23) enforces a common latent structure
on the different views, which may lose generality if SUM-
COR is sought since pairwise similarity does not imply an
overall similarity. Nevertheless, MAX-VAR and SUMCOR
conceptually share the same goal – which is to seek highly
correlated XiQi’s – and thus using it as a baseline is
reasonable. More importantly, the MVLSA algorithm scales
very well. We run DisCCA-MBI and DisCCA-GP using
a multi-core implementation – i.e., we use I cores if we
have I views. Through this section, the maximal number
of iterations of CG is fixed to be 20 in our algorithms. For
LasCCA and DisCCA-MBI, we set σ = 10−8; and we let
α = 0.99 for DisCCA-GP.

6.1 Synthetic-Data Experiments
• Data Generation. We generate the synthetic data as fol-
lows: First, we let Z ∈ RL×M be a common latent factor
of different views, where Z is a randomly generated sparse
matrix whose non-zero entries follow the i.i.d. zero-mean
unit-variance Gaussian distribution. Then, a sparse matrix
Ai ∈ RM×M is multiplied to Z, resulting in Xi = ZAi.
The overall sparsity level of Xi is controlled to satisfy ex-
periment specifications. This way, the views have a perfectly
correlated common latent factor, i.e., Z, and this fact can
be used to benchmark the performance of the algorithms,
as will be seen shortly. In the synthetic-data simulations,
we fix M1 = . . . = MI = M , and test the algorithms
under different sizes and sparsity levels of Xi, where the
sparsity level ρi is defined as ρi = nnz(Xi)/LM, and we let
ρ1 = . . . = ρI = ρ in this section.
• Evaluation. We evaluate the synthetic data experiment by
observing the captured sum of pairwise correlations (“cor-
relation captured” in short) between the views. We generate
data that are perfectly correlated in some latent domain, and
thus the optimal correlation value is known. Specifically, the
optimal value of Problem (5) is vopt = I(I−1)K when AiQi

for all i’s are all aligned to a same right singular vector
space of Z – under such a scenario XiQi’s are all perfectly
correlated with each other. Therefore, this value can be used
to benchmark all the algorithms. We also define a metric
called “95time”, which records the time that is needed for
an algorithm to capture 95% of the optimal value of the total
sum of correlations, i.e., I(I − 1)K.
• Results. Table 2 shows the performance of the algorithms
of different L’s (and Mi’s). Here, we fix ρ = 5 × 10−3 and
change L andM , whereM is set to beM = 0.8×L. We seek
K = 5 canonical components for each of the I = 5 views.
MVLSA requires first truncating the rank of the views to a
certain number, and thus we use the first 100 singular values
and vectors to approximate each view. Note that under the
above settings, the optimal value of sum of correlations is
vopt = 100. We let all the iterative algorithms run for 20
iterations in this experiment, and the results are averaged
over 10 random trials where in each trial Z and Ai are
randomly generated. We initialize CSR-BCD, LasCCA and

TABLE 2
Average correlations captured of the algorithms. M = 0.8× L; K = 5;

I = 5; ρ = 5× 10−3; “†” means “out-of-memory”; vopt = 100.

Algorithm measure
L(×103)

1 5 10 50 100

LasCCA
corr. cap. 99.86 99.30 99.07 99.04 99.07

95time (sec.) 0.35 2.40 5.58 158.68 684.62

DisCCA-MBI
corr. cap. 99.66 98.26 97.88 97.80 97.85

95time (sec.) 1.41 2.60 6.44 127.50 596.18

DisCCA-GP
corr. cap. 99.73 98.73 98.37 98.31 98.30

95time (sec.) 0.18 0.43 1.33 55.55 239.86

CSR-BCD
corr. cap. 100 100 100 † †

95time (sec.) 10.83 2841.81 25828.17 † †

MVLSA (50)
corr. cap. 94.23 51.92 28.27 6.47 3.31
time (sec.) 0.09 0.72 1.89 55.01 312.26

MVLSA (250)
corr. cap. 100.00 81.75 57.56 13.33 6.60
time (sec.) 1.17 12.16 60.82 170.57 800.46

DisCCA using the same initialization which is randomly
generated within R(Xi) – i.e., we use G

(0)
i = Ui where

UiΣiV
T
i = svd(XiQi) and Qi is randomly generated.

As one can see from the table, in terms of captured
correlations, the CSR-BCD algorithm, which uses the change
of variables suggested in [14], [13], [15], gives the best
performance when L ≤ 10, 000 – it always reaches the
optimal objective value, although the problem is non-convex
and NP-hard. However, when L = 50, 000, the algorithm
exhausts the memory of our machine, since it needs to
calculate I dense matrices with a size of Mi ×Mi and store
them. To be precise, this method needsO(2.5×109) memory
space for instantiating each (XT

i Xi)
−1/2 when L = 50, 000.

The proposed algorithms, i.e., LasCCA, DisCCA-MBI and
DisCCA-GP, give slightly lower objective values compared
to that of CSR-BCD, which are already very good – they both
capture around 98% of the total correlations, even in the
cases where CSR-BCD cannot run, i.e., when L = 50, 000
and L = 100, 000. Another observation is that when
L = 1, 000, MVLSA works very well, i.e., most correlations
are captured when truncating the ranks of Xi’s to 50 and
250, respectively (cf. the results of MVLSA (50) and MVLSA
(250), respectively). However, when L increases, the per-
formance degrades rapidly since the approximation of the
views becomes much coarser.

In terms of 95time, as one can see from the same table
(also see Fig. 1), the runtime of CSR-BCD grows rapidly with
L increasing. The reason is now clear: besides the difficulty
of calculating (XTX)−1/2 (a full eigen-decomposition of
a dense matrix which costs O(1.25 × 1014) flops), many
operations in the algorithm, e.g., (XT

i Xi)
−1/2Zi, are large

dense matrix-matrix multiplications, which are very difficult
to compute. On the other hand, the proposed algorithms
scale well. In particular, DisCCA-GP gives the best 95time
performance using a multi-core implementation, which is
240 seconds when L = 100, 000. DisCCA-MBI uses slightly
more than twice of the time used by DisCCA-GP, i.e., 596
seconds, under the same settings to capture 95% of the sum-
of-correlations, but also only uses half of the communication
overhead that DisCCA-GP uses. LasCCA is slower com-
pared to the multi-core algorithms when L ≥ 50, 000 since it
only uses one core, but it captures more sum-of-correlations
compared to that of DisCCA-GP and DisCCA-MBI.

Table 3 shows the captured correlations of a larger prob-
lem (i.e., L = 120, 000 and Mi = 100, 000) for various
sparsity levels of Xi. We also set I = 5 and K = 5.
In this simulation, CSR-BCD cannot start to run; it runs

11

TABLE 3
The average correlations captured after 20 iterations under different

ρ’s. L = 120, 000; M = 100, 000; K = 5; I = 5; “†” means
“out-of-memory”; vopt = 100.

Algorithm measure
ρ (×10−5)

0.5 0.75 1 2.5 5

LasCCA
corr. cap. 99.95 99.93 99.91 99.76 99.62

95time (sec.) 16.93 17.14 18.00 23.03 29.14

DisCCA-MBI
corr. cap. 99.79 99.73 99.69 99.36 99.06

95time (sec.) 11.31 11.49 11.91 14.01 21.14

DisCCA-GP
corr. cap. 99.87 99.82 99.79 99.52 99.27

95time (sec.) 3.35 3.40 3.56 4.34 5.74

CSR-BCD
corr. cap. † † † † †

95time (sec.) † † † † †

MVLSA (50)
corr. cap. 60.39 55.60 45.57 46.89 36.18

time 31.88 37.57 38.09 51.19 58.12

MVLSA (250)
corr. cap. 99.66 99.00 98.54 89.04 88.74

time 367.47 454.18 469.46 502.01 530.42

0 20 40 60 80 100

time (sec.)

0

10

20

30

40

50

60

70

80

90

100

ob
je

ct
iv

e

LasCCA
DisCCA-MBI
DisCCA-GP

Fig. 3. Captured correlations versus iterations. L = 120, 000; M =
100, 000; K = 5; I = 5; ρ = 5× 10−5; vopt = 100.

out-of-memory for all the ρ’s since it destroys sparsity at
the very first step. The proposed algorithms, on the other
hand, work well for all the different ρ’s: all three algorithms
give objective values that are larger than 99 (recall that
vopt = 100) for all ρ’s. The performance of MVLSA (250)
is also reasonable when ρ ≤ 10−5, but rapidly decreases
along with ρ increasing. We also notice that although MVLSA
makes the compromise to work with reduced-dimension
(approximated) data via rank truncation, it still costs signifi-
cantly much more time relative to the proposed algorithms.

Table 3 also shows the corresponding 95time perfor-
mance of the algorithms. First, one can see that both of the
multi-core algorithms, i.e., DisCCA-MBI and DisCCA-GP
still outperform LasCCA in terms of runtime. Second, the
runtimes of the proposed algorithms grows (roughly) lin-
early with ρ, which is consistent with our analysis – the
major computations in the proposed algorithms have com-
plexity order of O(nnz(Xi)K) flops. Fig. 3 gives a clear
picture of how the objective values of the algorithms evolve
with time when ρ = 5 × 10−5. Here, we plot the objective
values of the algorithms after every update of any Gi. One
can see that the captured sum-of-correlations of DisCCA-GP
grows much faster compared to that of the other two –
since DisCCA-GP updates all the Gi’s simultaneously. Also,
we can see that the objective of DisCCA-MBI climbs faster
relative to LasCCA. The reason is that DisCCA-MBI updates
the Gi that gives the maximal increase of the objective,
while LasCCA updates every Gi cyclically.

6.2 Real Experiment: Reuters RCV2 Corpus

• Data Description. In this subsection, we test the pro-
posed algorithm on the Reuters Corpora Volume 2 (RCV2)
Multilingual document data. Specifically, we employ the
version provided by Amini et al. in [42]. The dataset contains
five sets of documents. The five subsets are collections of
documents originally written in English, German, French,
Spanish, and Italian, respectively, and then translated to the
other four languages. Therefore, each set of documents with
translations has five views – the original documents and
their translations. We denote the five datasets as “EN”, “FR”,
“GR”, “IT”, and “SP”, respectively, according to the original
language of the documents. Every view Xi is a “document
× vocabulary” matrix; i.e., every document is defined in the
features spaces that are vocabularies of different languages.
The sizes of views Xi for i = 1, . . . , I are determined as
follows: If the vocabulary size of a language is larger than
the number of L, the number of documents in the original
language, then we set the corresponding Mi = 0.95 × L
by dropping the columns of Xi with small norms; other-
wise, we keep the default vocabulary size. We summarize
of the sizes of the views in Table 4. The features of the
views are the standard term-frequency-inverse-document-
frequency (tf-idf) representation of documents that is widely
used in text analytics.
• Evaluation. Since the views are translated version of
different documents, it is believed that the views are per-
fectly correlated at some latent space. Thus, we evaluate
the performance of the algorithms as in the synthetic data
experiments by observing the sum-of-correlations captured
by XiQi. We also observe the 95time performance.
• Results. Table 5 shows the results that are obtained on
RCV2 using the algorithms. Here, we set K = 5 and thus
the optimal objective value is 100 if the views share a
common latent representation as in the synthetic experiment
case. One can see that for the five different experiments,
LasCCA gives the best captured sum of correlations which
are larger than 99 – this verifies our guess that the views
of the documents share an (almost) common latent space.
DisCCA-GP and DisCCA-MBI also both give good objective
values, and the former performs slightly better. The baseline
algorithm MVLSA does not perform as well as the proposed
algorithms. In terms of the runtime performance, one can
see that DisCCA-GP is the fastest as before. Similar results
can also be observed in Table 6, where K = 10 is used (and
thus the optimal objective value is 200).

TABLE 4
Summary of the RCV2 dataset.

Original Laguage L (docs)
vocab. size of translated doc.

EN SP IT GR FR
EN 12,342 10,890 11,360 10,392 11,724 11,724
SP 18,758 17,820 9,588 12,089 17,656 17,820
IT 29,953 14,028 9,300 11,136 28,455 16,906
GR 26,648 15,062 9,862 11,920 18,071 24,284
FR 24,039 11,460 8,709 15,005 14,592 15,382

6.3 Real Experiment: Multilingual Word Embedding

• Data Description. We also test our algorithms on a large-
scale parallel corpus of multilingual co-occurrence data. In

12

TABLE 5
The captured correlations and 95time’s of the algorithms on the RCV2

dataset. K = 5; I = 5.

Algorithm measure
original language

EN SP GR FR IT

LasCCA
corr. cap. 99.68 99.63 99.41 99.60 99.40

95time (sec.) 6.92 15.77 23.70 21.48 12.61

DisCCA-MBI
corr. cap. 99.13 98.35 97.67 98.65 96.12

95time (sec.) 6.64 13.94 19.66 18.39 14.09

DisCCA-GP
corr. cap. 99.46 99.27 99.41 99.42 99.19

95time (sec.) 2.62 5.55 8.41 7.61 7.34

MVLSA (50)
corr. cap. 78.65 77.37 77.02 77.02 76.47
time (sec.) 3.64 6.52 10.22 9.04 6.76

MVLSA (250)
corr. cap. 79.88 78.48 78.60 78.89 78.52
time (sec.) 42.36 69.96 107.83 93.92 73.35

TABLE 6
The captured correlations and 95time’s of the algorithms on the RCV2

dataset. K = 10; I = 5.

Algorithm measure
original language

EN SP GR FR IT

LasCCA
corr. cap. 198.88 198.53 198.42 198.44 198.45
95time 14.24 32.37 48.77 39.39 25.31

DisCCA-MBI
corr. cap. 197.65 191.86 187.64 193.98 194.82
95time 10.05 25.51 – 33.28 21.25

DisCCA-GP
corr. cap. 198.60 197.77 197.85 197.73 197.79
95time 3.78 12.76 18.87 16.17 10.49

MVLSA (50)
corr. cap. 171.74 167.45 164.99 165.65 164.14

time 3.45 6.96 10.55 9.24 6.93

MVLSA (250)
cor. cap. 176.45 172.43 172.64 173.13 172.22

time 41.97 70.08 108.61 96.25 72.98

particular, we use the data that were originally introduced in
[43] and can be downloaded from http://wordvectors.org/
eacl14-data.tar. We have I = 4 views, which are constructed
from English, Spanish, German and French, respectively.
In a nutshell, the raw data contain a matrix per language
that records the Point-wise Mutual Information (PMI) of
the word co-occurrence for that language. We view the
rows of the matrix as our data points and the columns
as features. We use English words to form our first view,
X1, which contains L = 180, 834 words and each word
is defined by M1 = 130, 000 features. Note that we set
M1 = . . . = M4 = 130, 000, and the features correspond to
the columns in each view that have the Mi highest energies.
There are 1.21% non-zero entries out of the 2.3508 × 1010

entries of X1. Using dictionaries, we pick out the corre-
sponding words in French, German and Spanish to form
X2, X3 and X4, respectively. For those English terms which
do not have a translation in Xi for i > 1, we simply let the
corresponding row of Xi be zero. Consequently, we haveXi

for i = 1, . . . , 4 all being 180, 834×130, 000 sparse matrices.
• Evaluation. We evaluate the quality of the output em-
beddings of the English words by different algorithms.
Specifically, we employ the evaluation tool provided at
wordvectors.org [44], which automatically evaluates the
output low-dimensional representations of the English
words on several word embedding tasks by comparing
the algorithm-learned embeddings with the judgment of
humans. The outputs are scores between zero and one, and
a score equal to one means a perfect alignment between
the learned result and human judgment. In all the real
experiments, we evaluate the results on the first 11 tasks
of wordvectors.org.

TABLE 7
English word embedding evaluation. K = 50.

TASK DisCCA-MBI DisCCA-GP LasCCA MVLSA SVD
EN-WS-353-REL 0.5511 0.5568 0.5777 0.5056 0.5096
EN-WS-353-SIM 0.7021 0.6996 0.6848 0.6731 0.6381
EN-WS-353-ALL 0.6132 0.6159 0.6227 0.5796 0.5679
EN-MTurk-287 0.6468 0.6479 0.6504 0.6564 0.6484

EN-YP-130 0.4409 0.4371 0.4158 0.4314 0.3673
EN-RW-STANFORD 0.426 0.4269 0.431 0.4 0.3978

EN-MEN-TR-3k 0.6762 0.6766 0.6739 0.6357 0.6626
EN-SIMLEX-999 0.3818 0.3815 0.382 0.4198 0.3091
EN-MTurk-771 0.6028 0.6012 0.5996 0.5797 0.5396

EN-MC-30 0.6394 0.6385 0.6496 0.5713 0.5655
EN-RG-65 0.53 0.5287 0.5472 0.5015 0.5127
Average 0.5680 0.5646 0.5688 0.5453 0.5206
Median 0.6028 0.6012 0.5996 0.5713 0.5396

• Results. Table 7 shows the scores given by DisCCA-MBI,
DisCCA-GP, LasCCA and MVLSA when K = 50. We run the
proposed algorithms for 10 iterations and observe the re-
sults. For MVLSA, we follow the procedure in [7] to truncate
the rank of the views to 640 as pre-processing. We use the
results given by MLSA to initialize our algorithms. We also
present the result of applying SVD to X1, i.e., English, as
another baseline. One can see that the proposed algorithms
outperform MLSA on 9 out of 11 tasks. DisCCA and LasCCA
perform similarly over all the tasks. Another observation
is that using multiple languages and GCCA do help give
better word embeddings in this case. Compared to SVD
that only uses one language, DisCCA, LasCCA and MVLSA
all give higher scores. Table 8 shows similar results when
K = 100. One can see that the proposed algorithms give
the best scores over 7 tasks, while MVLSA and SVD gives the
best scores for one and three tasks, respectively.

In Table 9, we increase K to 300. The first observation is
that all the algorithms work better under such K , which is
reasonable since more dimensions are used. One can see that
DisCCA-MBI gives the best evaluation scores on 8 tasks.
SVD also gives good scores and performs the best on 2
tasks. LasCCA and DisCCA-GP work reasonably well but
slightly worse relative to DisCCA-MBI and SVD. This might
be because on such a large-scale problem, DisCCA-MBI’s
greedy update strategy helps. MVLSA is not very promising
in such case. Our understanding is that both truncating the
rank of the views and enforcing a common G of the views
(cf. Eq. (23)) are the reasons for observing such performance
degradation. The results in this subsection are encouraging,
since they clearly show that using the considered GCCA
formulation and the proposed algorithms, the performance
of large-scale multiview data analytics has been improved.

7 CONCLUSION

In this paper, we investigated the problem of comput-
ing canonical components of large-scale sparse multiview
data. A judicious equivalent reformulation of the SUMCOR
GCCA problem was proposed. Under this reformulation,
three algorithms based on different update strategies were
proposed: LasCCA sequentially computes and updates the
canonical components of the views; DisCCA-MBI computes
them in a greedy fashion; and DisCCA-GP updates the
canonical components in parallel. The algorithms are highly
scalable when dealing with SUMCOR GCCA, and offer

13

TABLE 8
English word embedding evaluation. K = 100.

TASK DisCCA-MBI DisCCA-GP LasCCA MVLSA SVD
EN-WS-353-REL 0.5915 0.5722 0.5762 0.5462 0.5672
EN-WS-353-SIM 0.7275 0.7102 0.7026 0.6936 0.6777
EN-WS-353-ALL 0.6465 0.6343 0.6353 0.6051 0.6188
EN-MTurk-287 0.6311 0.6413 0.6365 0.6763 0.6068

EN-YP-130 0.5201 0.5041 0.4726 0.448 0.4363
EN-RW-STANFORD 0.434 0.4446 0.4464 0.4361 0.4408

EN-MEN-TR-3k 0.7183 0.7153 0.7126 0.678 0.7252
EN-SIMLEX-999 0.3822 0.4016 0.4057 0.419 0.3438
EN-MTurk-771 0.6245 0.6254 0.6187 0.5919 0.5893

EN-MC-30 0.6901 0.7035 0.697 0.6198 0.7435
EN-RG-65 0.6244 0.6475 0.6505 0.592 0.6872
Average 0.5991 0.6 0.5958 0.5733 0.5851
Median 0.6245 0.6343 0.6353 0.592 0.6068

TABLE 9
English word embedding evaluation. K = 300.

TASK DisCCA-MBI DisCCA-GP LasCCA MVLSA SVD
EN-WS-353-REL 0.6548 0.5858 0.5887 0.5374 0.6415
EN-WS-353-SIM 0.7494 0.7199 0.7118 0.6901 0.7417
EN-WS-353-ALL 0.6888 0.6488 0.6509 0.611 0.6804
EN-MTurk-287 0.6131 0.5441 0.568 0.5414 0.548

EN-YP-130 0.546 0.5797 0.5402 0.4781 0.4987
EN-RW-STANFORD 0.4741 0.4642 0.4547 0.4484 0.4606

EN-MEN-TR-3k 0.7615 0.747 0.7369 0.7079 0.7668
EN-SIMLEX-999 0.4259 0.4651 0.456 0.4354 0.4123
EN-MTurk-771 0.6796 0.6534 0.63 0.6101 0.6481

EN-MC-30 0.8134 0.7889 0.7791 0.7422 0.8472
EN-RG-65 0.7605 0.7354 0.7255 0.7635 0.7214
Average 0.6516 0.6302 0.622 0.5969 0.6333
Median 0.6796 0.6488 0.63 0.6101 0.6481

different options for practitioners based on trade-offs be-
tween computational resource, time, and communication
overhead. DisCCA-MBI and DisCCA-GP are also the first
distributed algorithms for large-scale GCCA. Convergence
properties were studied. Simulations and real experiments
show that all of the proposed algorithms scale well to large-
size problems and give promising results when applied to
real datasets.

REFERENCES

[1] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, no. 3/4, pp. 321–377, 1936.

[2] S. Bickel and T. Scheffer, “Multi-view clustering.” in Proc. ICDM
2004, vol. 4, 2004, pp. 19–26.

[3] Y. Cui, X. Z. Fern, and J. G. Dy, “Non-redundant multi-view
clustering via orthogonalization,” in Proc. ICDM 2007, 2007, pp.
133–142.

[4] S. M. Kakade and D. P. Foster, “Multi-view regression via canon-
ical correlation analysis,” in Learning Theory. Springer, 2007, pp.
82–96.

[5] I. Rustandi, “Predictive fMRI analysis for multiple subjects and
multiple studies (thesis),” Ph.D. dissertation, Carnegie Mellon
University, 2010.

[6] P. Dhillon, D. P. Foster, and L. H. Ungar, “Multi-view learning of
word embeddings via CCA,” in NIPS, 2011, pp. 199–207.

[7] P. Rastogi, B. Van Durme, and R. Arora, “Multiview LSA: Repre-
sentation learning via generalized cca,” in NAACL, 2015.

[8] A. O’Sullivan, N. M. Adams, and I. Rezek, “Canonical correlation
analysis for detecting changes in network structure,” in Proc.
ICDM 2012, 2012, pp. 250–257.

[9] Z. Ding and Y. Fu, “Low-rank common subspace for multi-view
learning,” in Proc. ICDM 2014, 2014, pp. 110–119.

[10] R. Arora and K. Livescu, “Multi-view learning with supervision
for transformed bottleneck features,” in Proc. ICASSP 2014, 2014,
pp. 2499–2503.

[11] Q. Zhang, L. Zhang, B. Du, W. Zheng, W. Bian, and D. Tao,
“MMFE: Multitask multiview feature embedding,” in ICDM 2015.
IEEE, 2015, pp. 1105–1110.

[12] J. D. Carroll, “Generalization of canonical correlation analysis to
three or more sets of variables,” in Proceedings of the 76th annual
convention of the American Psychological Association, vol. 3, 1968, pp.
227–228.

[13] A. Tenenhaus and M. Tenenhaus, “Regularized generalized canon-
ical correlation analysis,” Psychometrika, vol. 76, no. 2, pp. 257–284,
2011.

[14] A. Tenenhaus, C. Philippe, V. Guillemot, K.-A. Le Cao, J. Grill, and
V. Frouin, “Variable selection for generalized canonical correlation
analysis,” Biostatistics, p. kxu001, 2014.

[15] J. Rupnik, P. Skraba, J. Shawe-Taylor, and S. Guettes, “A compar-
ison of relaxations of multiset cannonical correlation analysis and
applications,” arXiv preprint arXiv:1302.0974, 2013.

[16] I. Rustandi, M. A. Just, and T. Mitchell, “Integrating multiple-
study multiple-subject fmri datasets using canonical correlation
analysis,” in Proc. MICCAI 2009 Workshop, 2009.

[17] M. T. Chu and J. L. Watterson, “On a multivariate eigenvalue
problem, part i: Algebraic theory and a power method,” SIAM
Journal on scientific computing, vol. 14, no. 5, pp. 1089–1106, 1993.

[18] J. R. Kettenring, “Canonical analysis of several sets of variables,”
Biometrika, vol. 58, no. 3, pp. 433–451, 1971.

[19] P. Horst, “Relations among m sets of measures,” Psychometrika,
vol. 26, no. 2, pp. 129–149, 1961.

[20] J. Vı́a, I. Santamarı́a, and J. Pérez, “A learning algorithm for adap-
tive canonical correlation analysis of several data sets,” Neural
Networks, vol. 20, no. 1, pp. 139–152, 2007.

[21] L.-H. Zhang, L.-Z. Liao, and L.-M. Sun, “Towards the global
solution of the maximal correlation problem,” Journal of Global
Optimization, vol. 49, no. 1, pp. 91–107, 2011.

[22] X. Fu, K. Huang, M. Hong, N. D. Sidiropoulos, and A. M.-C. So,
“Scalable and flexible max-var generalized canonical correlation
analysis via alternating optimization,” IEEE Trans. Signal Process.,
to appear, 2017.

[23] Y. Lu and D. P. Foster, “Large scale canonical correlation analysis
with iterative least squares,” in NIPS, 2014, pp. 91–99.

[24] Z. Ma, Y. Lu, and D. Foster, “Finding linear structure in large
datasets with scalable canonical correlation analysis,” in ICML
2015, 2015.

[25] R. Ge, C. Jin, S. M. Kakade, P. Netrapalli, and A. Sid-
ford, “Efficient algorithms for large-scale generalized eigenvector
computation and canonical correlation analysis,” arXiv preprint
arXiv:1604.03930, 2016.

[26] Z. Allen-Zhu and Y. Li, “Doubly accelerated methods for
faster cca and generalized eigendecomposition,” arXiv preprint
arXiv:1607.06017, 2016.

[27] W. Wang, J. Wang, and N. Srebro, “Globally convergent stochastic
optimization for canonical correlation analysis,” arXiv preprint
arXiv:1604.01870, 2016.

[28] X. Fu, K. Huang, E. Papalexakis, H. Song, P. Talukdar, N. D.
Sidiropoulos, C. Faloutsos, and T. Mitchell, “Efficient and dis-
tributed algorithms for large-scale generalized correlation anal-
ysis,” in Proc. ICDM 2016. IEEE, 2016.

[29] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis: An overview with application to learning
methods,” Neural computation, vol. 16, no. 12, pp. 2639–2664, 2004.

[30] P. Schönemann, “A generalized solution of the orthogonal Pro-
crustes problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[31] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[32] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” in Proc. COMPSTAT’2010. Springer, 2010, pp. 177–186.
[33] Y. Nesterov, Introductory lectures on convex optimization. Springer

Science & Business Media, 2004, vol. 87.
[34] J. R. Shewchuk, “An introduction to the conjugate gradient

method without the agonizing pain,” 1994.
[35] G. H. Golub and C. F. V. Loan., Matrix Computations. The Johns

Hopkins University Press, 1996.
[36] E. Van der Burg, Nonlinear canonical correlation and some related

techniques. DSWO press, 1988, vol. 11.
[37] G. H. Golub and H. Zha, The canonical correlations of matrix pairs

and their numerical computation. Springer, 1995.
[38] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence

analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp.
1126–1153, 2013.

[39] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified
algorithmic framework for block-structured optimization involv-
ing big data: With applications in machine learning and signal

14

processing,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77,
2016.

[40] B. Chen, S. He, Z. Li, and S. Zhang, “Maximum block improve-
ment and polynomial optimization,” SIAM Journal on Optimization,
vol. 22, no. 1, pp. 87–107, 2012.

[41] J. Tranter, N. D. Sidiropoulos, X. Fu, and A. Swami, “Fast unit-
modulus least squares with applications in beamforming,” IEEE
Transactions on Signal Processing, vol. 65, no. 11, pp. 2875–2887,
2017.

[42] M.-R. Amini, N. Usunier, and C. Goutte, “Learning from multiple
partially observed views - an application to multilingual text
categorization,” in Advances in Neural Information Processing
Systems 22 (NIPS 2009), 2009, pp. 28–36. [Online]. Available:
http://books.nips.cc/papers/files/nips22/NIPS2009 0688.pdf

[43] M. Faruqui and C. Dyer, “Improving vector space word rep-
resentations using multilingual correlation.” Association for
Computational Linguistics, 2014.

[44] ——, “Community evaluation and exchange of word vectors at
wordvectors.org,” in Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations.
Baltimore, USA: Association for Computational Linguistics, June
2014.

Xiao Fu (S’12-M’15) is an Assistant Professor in
the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corval-
lis, OR, United States. He received his Ph.D.
degree in Electronic Engineering from The Chi-
nese University of Hong Kong (CUHK), Hong
Kong, 2014. He was a Postdoctoral Associate in
the Department of Electrical and Computer En-
gineering, University of Minnesota, Minneapo-
lis, MN, United States, from 2014-2017. His re-
search interests include the broad area of signal

processing and machine learning. He received a Best Student Paper
Award at ICASSP 2014, and co-authored a Best Student Paper Award
at IEEE CAMSAP 2015.

Kejun Huang (S’13-M’17) is an Assistant Pro-
fessor in the Department of Computer and In-
formation Science and Engineering, University
of Florida, Gainesville, FL. He received Ph.D.
degree in Electrical Engineering from University
of Minnesota, Minneapolis, MN in 2016. He was
a Postdoctoral Associate in the Department of
Electrical and Computer Engineering, University
of Minnesota, Minneapolis, MN from 2016 to
2018. His research interests include machine
learning, signal processing, optimization, and

statistics.

Evangelos Papalexakis is an Assistant Profes-
sor in the Computer Science Department at the
University of California, Riverside. He earned his
Diploma and M.Sc. in Electronic and Computer
Engineering at the Technical University of Crete,
Chania, Greece, and his Ph.D. in Computer Sci-
ence at Carnegie Mellon University, in 2010,
2011, and 2016 respectively. He has consider-
able experience in tensor decompositions, data
mining, computing, and signal processing. He is
currently interested in discovering how knowl-

edge and information is expressed and stored in the brain, through
analyzing brain scan data coupled with external information. He is
also interested in anomaly detection on very large graphs, especially
when temporal or multi-view information is present. He has spent two
summers as an intern at Microsoft Research Silicon Valley, working at
the Search Labs and the Interaction & Intent group.

Hyun Ah Song is a Ph.D. student in the Machine
Learning Department at Carnegie Mellon Uni-
versity, USA. She received B.S. in Environmental
Science and Engineering at Ewha Womans Uni-
versity, South Korea in 2011, and M.S. in Elec-
trical Engineering at Korea Advanced Institute of
Science and Technology (KAIST) in 2013.

Partha Talukdar is an Assistant Professor in
the Department of Computational and Data Sci-
ences (CDS) at IISc, Bangalore. Previously, he
was a Postdoctoral Fellow in the Machine Learn-
ing Department at Carnegie Mellon University,
working with Tom Mitchell on the NELL project.
Partha received his PhD (2010) in CIS from the
University of Pennsylvania. Partha is a recipient
of IBM Faculty Award, Googles Focused Re-
search Award, and Accenture Open Innovation
Award. He is a co-author of a book on Graph-

based Semi-Supervised Learning published by Morgan Claypool Pub-
lishers

Nicholas D. Sidiropoulos (F’09) is a Profes-
sor and the Chair of the Department of Elec-
trical and Computer Engineering, University of
Virginia, Charlottesville, VA, USA. His research
spans topics in signal processing theory and
algorithms, optimization, communications, and
factor analysis - with a long-term interest in
tensor decomposition and its applications. His
current focus is primarily on signal and tensor
analytics for learning from big data. He received
the NSF/CAREER award in 1998, and the IEEE

Signal Processing (SP) Society Best Paper Award in 2001, 2007, and
2011. He served as IEEE SP Society Distinguished Lecturer (2008-
2009), and as Chair of the IEEE Signal Processing for Communications
and Networking Technical Committee (2007-2008). He received the
2010 IEEE SP Society Meritorious Service Award, and the 2013 Dis-
tinguished Alumni Award from the Dept. of ECE, University of Maryland.
He is a Fellow of IEEE (2009) and a Fellow of EURASIP (2014).

Christos Faloutos is a Professor at Carnegie
Mellon University. He has received the Presi-
dential Young Investigator Award by the National
Science Foundation (1989), the Research Con-
tributions Award in ICDM 2006, the SIGKDD In-
novations Award (2010), 21 “best paper” awards
(including 3 “test of time” awards), and four
teaching awards. Five of his advisees have won
KDD or SCS dissertation awards. He is an ACM
Fellow, he has served as a member of the ex-
ecutive committee of SIGKDD; he has published

over 300 refereed articles, 17 book chapters and two monographs. He
holds nine patents and he has given over 40 tutorials and over 20
invited distinguished lectures. He has a long-term interest in tensor
decompositions and their practical applications in data mining, having
published many well-appreciated papers in the area. His broad research
interests include large-scale data mining with emphasis on graphs and
time sequences; anomaly detection, tensors, and fractals.

Tom M. Mitchell founded the Machine Learn-
ing Department at Carnegie Mellon University,
where he is the E. Fredkin University Professor.
His research uses machine learning to develop
computers that are learning to read the web, and
uses brain imaging to study how the human brain
understands what it reads. Mitchell is a member
of the U.S. National Academy of Engineering,
a Fellow of the American Association for the
Advancement of Science (AAAS), and a Fellow
and Past President of the Association for the

Advancement of Artificial Intelligence (AAAI). He believes the field of
machine learning will be the fastest growing branch of computer science
during the 21st century.

15

Supplementary Materials of “Efficient and Distributed
Generalized Canonical Correlation Analysis for Big Mul-
tiview Data” by X. Fu, K. Huang, E. E. Papalexakis, H.
Song, P. Partha, N. D. Sidiropoulos, C. Faloutsos, Tom
Mitchell

APPENDIX A
CONJUGATE GRADIENT (CG)
A CG algorithm for solving the problem minq ‖y −Xq‖22
is presented in Algorithm 5. Algorithm 5 is a simple version
of CG. Nevertheless, one can see the key operations that
are used are matrix-vector multiplications such as Xq and
Xy. When X is sparse, this multiplication has a complexity
of O(nnz(X)) flops, which is very easy to carry out in
practice. In the literature, many modified versions have
been proposed to strengthen the performance and accelerate
convergence; see [34] for details.

Algorithm 5: Conjugate Gradient (CG)
input : X ; y.

1 q = 0;
2 r0 ←XTy −XTXq;
3 p0 ← r0;
4 k ← 0;
5 repeat
6 αk ← rT

k rk

pT
k
XTXpk

;
7 qk+1 ← qk + αkpk;
8 rk ← rk − αkX

TXpk;

9 βk ←
rT
k+1rk+1

rT
k
rk

;
10 pk+1 ← rk+1 + βkpk+1;
11 k ← k + 1;
12 until convergence;

output: pk

APPENDIX B
PRACTICAL CONSIDERATIONS

In this section, we consider some issues that one may
encounter in practice.

B.1 Centering

In some cases, the available data is not centered – i.e., the
data samples does not have zero mean. For example, text
data and image data mostly have nonnegative elements.
Under such cases, it is not meaningful to compute the
correlation of the nonnegative views since correlation is by
definition only applicable to centered samples. When the
data size is small, a trivial way to circumvent this is to take
the sample average of the views and subtract them from the
views; i.e., let

dTi = (1/L)Xi1, ∀i,

and then apply GCCA to Xi − 1dTi . This route is no longer
feasible when the data set is large: If Xi is sparse, the
centering process will result in a very large and dense
matrix X̃i = Xi − 1dTi , and thus make even storing the
centered views impossible. In addition, since large-scale
optimization algorithms such as LasCCA and DisCCA rely

on data sparsity to reduce complexity, such a naive centering
process will prevent applying these algorithms.

To handle very large uncentered data, our idea is to keep
the form of X̃i = Xi − 1dTi without actually instantiating
X̃i. Then, the subproblem w.r.t. Gi becomes

max
Gi

Tr

GT
i X̃i(X̃

T
i X̃i)

−1X̃T
i

∑
j 6=i

X̃j(X̃
T
j X̃j)

−1X̃T
j Gj

s.t. GT

i Gi = IK , Gi ∈ R(X̃i) (24)

To solve the above, the key, again, lies in efficiently comput-
ing terms like (X̃T

j X̃j)
−1X̃T

j Gj , which is associated with
solving

min
R̃j

‖X̃jR̃j −Gj‖2F .

In fact, using CG to solve the above with X̃j = Xj − 1dTj
only needs very moderate modifications. Specifically, the
major component that is employed in CG is X̃T X̃ right
multiplying with a vector, i.e., X̃T X̃y (see Appendix A).
This can be written as XT

j Xjy−djdTj y and the only change
in computation is the extra term djd

T
j y whose computa-

tional complexity is only O(L) flops if dTj y is computed
first. Therefore, the per-iteration complexity of CG is in fact
kept in the same order as before, which isO(KL) flops since
we have K LS problems to be solved in parallel for each j.

B.2 Diagonal Loading

In practice, Xi might be ill-conditioned or even rank-
deficient. Under such cases, the constraint QiX

T
i XiQi = I

is problematic – if Xi is rank deficient, such a constraint
can never be feasible. In the literature, this has been circum-
vented by using the following diagonal loaded formulation:

min
{Qi}

I∑
i=1

I∑
j 6=i

Tr
(
QT
i X

T
i XjQj

)
s.t. QT

i

(
XT
i Xi + τ2I

)
Qi = I, ∀i,

(25)

where τ ≥ 0 is sometimes called the ‘regularization param-
eter’ in canonical correlation analysis. Our computational
framework can also accommodate Problem (25). Specifically,
let

Gi =

[
Xi

τI

]
Qi = X̂iQi.

Then, the subproblem w.r.t. Gi in LasCCA and DisCCA is

max
Gi

Tr

GT
i X̂i(X̂

T
i X̂i)

−1XT
i

∑
j 6=i

Xj(X̂
T
j X̂j)

−1X̂T
j Gj

s.t. GT

i Gi = IK , Gi ∈ R(X̂i) (26)

Note that the solution of Gi still lives inR(X̂i) and thus all
the claims about convergence of LasCCA and DisCCA still
holds.

In terms of computation, although X̂i has much larger
row-dimension compared to Xi, it in fact does not in-
crease the complexity. The computation complexity of
(X̂T

j X̂j)
−1X̂T

j Gj is again dominated by the operation
X̂T
i X̂iy in CG, which can be written as XT

i Xiy + τ2y.

16

APPENDIX C
PROOF OF LEMMA 3
Since {G∗i }Ii=1 is a KKT point of Problem (13), every G∗i for
i = 1, . . . , I satisfies the following system of equations:

Xi(X
T
i Xi)

−1XT
i

∑
j 6=i

Xj(X
T
j Xj)

−1XT
j G
∗
j

+ G∗iΛ
∗ = 0, (27a)

(G∗i)
TG∗i = I, G∗i = R(Xi). (27b)

Similarly, the KKT conditions of Problem (2) is as follows:

XT
i

∑
j 6=i

XjQ
∗
j + (XT

i Xi)Q
∗
iΩ
∗ = 0, (28a)

(Q∗i)
T (XT

i Xi)Q
∗
i = I. (28b)

By (27b), we see that there is a Θi such that

G∗i = XiΘi,

where Θi ∈ RMi×K . Consequently, we have Θi =
(XT

j Xj)
−1XT

j G
∗
j . Substituting this into (27), we obtain

Xi(X
T
i Xi)

−1XT
i

∑
j 6=i

XjΘj + XiΘiΛ
∗ = 0, (29a)

ΘT
i (XT

i Xi)Θi = I. (29b)

Multiplying (29a) with XT
i from the left, we further obtain

XT
i

∑
j 6=i

XjΘj + XT
i XiΘiΛ

∗ = 0, (30a)

ΘT
i (XT

i Xi)Θi = I. (30b)

Comparing (30) with (28), one can see that a KKT point
of Problem (13) is attained implies that a KKT point of
Problem (2) is obtained as well.

APPENDIX D
PROOF OF PROPOSITION 1
To show the theorem, let us first consider the following
lemma:

Lemma 6 Denote the subproblem w.r.t. Gi of LasCCA at the
rth iteration as F (Gi;G

(r+1)
i− ,G

(r)
i+) = f(Gi;G

(r+1)
i− ,G

(r)
i+)+

σ
2

∥∥∥Gi −G
(r)
i

∥∥∥2
F

, where

f
(
Gi;G

(r+1)
i− ,G

(r)
i+

)
= −Tr

GT
i Xi(X

T
i Xi)

−1XT
i

∑
j<i

Xj(X
T
j Xj)

−1XT
j G

(r+1)
j

− Tr

GT
i Xi(X

T
i Xi)

−1XT
i

∑
j>i

Xj(X
T
j Xj)

−1XT
j G

(r)
j

is the unaugmented part of the objective function. Assume that CG
solves the iterative least squares in LasCCA. Then, by the update
rule in (6), the following holds:

f
(
G

(r)
i ;G

(r+1)
i− ,G

(r)
i+

)
− f

(
G

(r+1)
i ;G

(r+1)
i− ,G

(r)
i+

)
≥σ

2

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F

(31)

Proof: Recall that in Corollary 1 we have shown that
the update in (6) satisfies the following:

G
(r+1)
i = arg min

GT
i Gi=I

F (Gi;G
(r+1)
i− ,G

(r)
i+). (32)

Therefore, it is readily seen that

F (G
(r+1)
i ;G

(r+1)
i− ,G

(r)
i+) ≤ F (G

(r)
i ;G

(r+1)
i− ,G

(r)
i+).

Consequently, we have

f
(
G

(r+1)
i ;G

(r+1)
i− ,G

(r)
i+

)
+
σ

2

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F

≤ f
(
G

(r)
i ;G

(r+1)
i− ,G

(r)
i+

)
+
σ

2

∥∥∥G(r)
i −G

(r)
i

∥∥∥2
F
,

which completes the proof.
Let us first show the a) part. By Lemma 6, we see that

f
(
G

(0)
i ;G

(1)
i− ,G

(0)
i+

)
− f

(
G

(T)
i ;G

(T)
i− ,G

(T−1)
i+

)
≥σ

2

T−1∑
r=0

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F
. (33)

Since the left-hand side is bounded, the right-hand side has

to satisfy
∥∥∥G(r+1)

i −G
(r)
i

∥∥∥2
F
→ 0 when T →∞. This means

that G
(r+1)
i → G

(r)
i . Now, let us assume that there is a

convergent subsequence indexed by {r`}`=1,2,... such that
lim`→∞G

(r`)
i = G∗i . By the update rule of LasCCA as in

(32), one can see that G
(r`+1)
i satisfies the following KKT

conditions

Xi(X
T
i Xi)

−1XT
i

∑
j<i

Xj(X
T
j Xj)

−1XT
j G

(r`+1)
j

+ Xi(X
T
i Xi)

−1XT
i

∑
j>i

Xj(X
T
j Xj)

−1XT
j G

(r`)
j

+ G
(r`+1)
i Λ

(r`+1)
i = −σ(G

(r`+1)
i −G

(r`)
i), (34)

for some Λ
(r`+1)
i . Taking ` → ∞ and using the fact that

G
(r`+1)
i → G

(r`)
i , we have

Xi(X
T
i Xi)

−1XT
i

∑
j 6=i

Xj(X
T
j Xj)

−1XT
j G

∗
j + G∗iΛ

(r`+1)
i = 0

for a certain Λ
(r`+1)
i , which implies that the convergent

point is a KKT point.

Now we show the b) part. This is relatively straight
forward. Since {G(r)

i }r resides in a compact set, then, there
must be a convergent subsequence. Now, suppose that the
whole sequence of {G(r)

i }r does not converge to K, then,
there is a convergent subsequence converging to a point that
is outside K. Since we have shown that every limit point of
{G(r)

i }r is a KKT point in part a), this is a contradiction.

In the following, we show the c) part. To show the
sublinear rate, note that

f
(
G(0)

)
− f

(
G(T)

)
≥σ

2

T−1∑
r=0

I∑
i=1

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F
,

which can be obtained following (33). Now, assume
that T ′ is the number of iterations that Z(r) =

17∑I
i=1

∥∥∥G(r+1)
i −G

(r)
i

∥∥∥2
F
≤ 1/c holds for the first time,

where c > max{σ2, 1}. Note that when σ is large, c should
match the quantity of the second-order term of σ since the
value of ‖G(r+1)

i − G
(r)
i ‖2F is naturally small under such

circumstances – i.e., Z(r) = O(1/σ2) always holds by the
KKT conditions in (34). Hence, to measure convergence
of {G(r)

i }, Z(r) should be smaller than 1/σ2 to make the
measurement physically meaningful. On the other hand,
when σ is small, 1/c < 1 suffices to measure convergence.
One can see that

f
(
G(0)

)
− f

(
G(T ′)

)
T ′ + 1

≥ 2σ
∑T ′

r=0 Z
(r)

(T ′ + 1)
≥ 2σ

c
.

The above leads to the conclusion that for Z(r) to reach 1/c,
the number of iterations that is needed is at most

T ′ ≤
c
(
f
(
G(0)

)
− v?

)
2σ

− 1,

where v? denotes the global optimal value of f ({Gi}). The
above means that

∑I
i=1 ‖G

(r+1)
i −G(r)

i ‖2F shrinks toO(1/r)
after r iterations.

APPENDIX E
PROOF OF PROPOSITION 2
The a) and b) parts can be shown by directly following
properties of the generic MBI algorithm [40]. To show the
c) part, we first re-define Z(r) for measuring convergence.
Let us define i(r) be the index of the block that gives the
largest improvement at the rth iteration of DisCCA. Then,
define

Z̃(r) =
1

σ2
‖Xi(r)(X

T
i(r)Xi(r))

−1XT
i(r)

×
∑
j 6=i(r)

Xj(X
T
j Xj)

−1XT
j G

(r)
j + G

(r+1)

i(r)
Λ

(r+1)

i(r)
‖2F

=
∥∥∥G(r+1)

i(r+1) −G
(r)

i(r+1)

∥∥∥2
F
.

Then, when 0 < σ < +∞, we claim that

Z̃(r) → 0⇒ a KKT point of Problem (2) is attained.

Indeed, Z̃(r) → 0 means that G
(r+1)

i(r)
− G

(r)

i(r)
→ 0.

Consequently, we have

Xi(r)(X
T
i(r)Xi(r))

−1XT
i(r) (35)

×
∑
j 6=i(r)

Xj(X
T
j Xj)

−1XT
j G

(r)
j + G

(r)

i(r)
Λ

(r+1)

i(r)
→ 0,

as we have shown before. We also have

∆i(r) = f
(
G

(r)

i(r)
;G

(r)

−i(r)

)
− f

(
G

(r+1)

i(r)
;G

(r)

−i(r)

)
→ 0,

by the continuity of f(·), where G−i(r) denotes
{G1, . . . ,Gi(r)−1,Gi(r)+1, . . . ,GI}. By the update rule of
DisCCA, one can see that

∆i(r) ≥ max
i=1,...I,i6=i(r)

∆(i), (36)

where

∆(i) = f
(
G

(r)
i ;G

(r)
−i

)
− f

(
G

(r+1)
i ;G

(r)
−i

)
,

and G
(r+1)
i denotes the tentative update of the ith block for

i 6= i(r) (which is not adopted eventually since the block i(r)

gives the largest improvement). Eq. (36) means that ∆(i) →
0. By similar arguments as in Lemma 6, this also means that
G

(r+1)
i → G

(r)
i and

Xi(X
T
i Xi)

−1XT
i (37)

×
∑
j 6=i

Xj(X
T
j Xj)

−1XT
j G

(r)
j + G

(r)
i Λ

(r+1)
i → 0.

Eqs (35) and (37) mean that Z̃(r) → 0 implies that {G(r)
i }i

approaches a KKT point of Problem (2).
Following the same arguments as in the proof of Theo-

rem 1, we have

f
(
{G(0)

i }
)
− f

(
{G(T)

i }
)

≥σ
2

T−1∑
r=0

∥∥∥G(r+1)

i(r+1) −G
(r)

i(r+1)

∥∥∥2
F
.

Now, assume that T ′ is the number of iterations that Z(r) ≤
1/c holds for the first time, where c > max{σ2, 1}. One can
see that

f
(
{G(0)

i }
)
− f

(
{G(T ′)

i }
)

T ′ + 1
≥ 2σ

∑T ′

r=0 Z
(r)

(T ′ + 1)
≥ 2σ

c
.

The above means that ‖G(r+1)

i(r+1) − G
(r)

i(r+1)‖2F shrinks
to O(1/r) after r iterations. This also implies that∑I
i=1 ‖G

(r+1)
i −G

(r)
i ‖2F = O(1/r) since the other Gi’s for

i 6= i(r+1) do not change.

APPENDIX F
CONVERGENCE OF LASCCA AND DISCCA-MBI FOR
THE I = 2 CASE

We now show that when I = 2, LasCCA and DisCCA-MBI
converge to a global optimal solution linearly. When I = 2,
SUMCOR becomes the following two-view CCA problem:

max
Q1,Q2

Tr
(
QT

1

(
XT

1 X2

)
Q2

)
,

s.t. QT
i

(
XT
i Xi

)
Qi = IK , i = 1, 2.

(38)

It is known that (38) can be solved via an eigen-
decomposition [29]. To see this, let us consider the sim-
ple case qi = Qi ∈ RMi (i.e., K = 1) and let ai =
(XT

i Xi)
−1/2qi. Then the objective in (38) can be written

as

max
aT

i ai=1
aT1 (XT

1 X1)−1/2XT
1 X2(XT

2 X2)−1/2a2

≤ max
aT

1 a1=1
‖aT1 (XT

1 X1)−1/2XT
1 X2(XT

2 X2)−1/2‖2, (39)

where the inequality is obtained by the Cauchy-Schwartz
inequality and ‖ai‖2 = 1. Problem (39) is the Rayleigh
quotient that can be solved by eigen-decomposition of
(XT

1 X1)−1/2XT
1 X2(XT

2 X2)−1XT
2 X1(XT

1 X1)−1/2. It can
be shown that to obtain K canonical correlation vectors
(i.e., K > 1), the solution is to simply take the K principal
eigenvectors of the same matrix.

Although the solution of CCA is conceptually simple,
it has serious scalability issues. The challenging part is to

18

calculate and store the “whitening matrices” (XT
i Xi)

−1/2 ∈
RMi×Mi for all i. Consider a case where Mi = 100, 000 – in
many applications the number of features can easily reach
this value. Then, O(M3

i) flops (in this case O(1015)) are
needed for simply inverting the matrix XT

i Xi. In addition,
the inverted matrix requires O(M3

i) (around 75 GB in this
case) memory to store since (XT

i Xi)
−1 will not be sparse

even when Xi is sparse.
Applying LasCCA and DisCCA-MBI to the classic CCA

does not have scalability issues if the views are sparse, but
have they traded optimality for scalability? The answer is
negative. To see this, let us denote S1 = X1(XT

1 X1)−1XT
1

and S2 = X2(XT
2 X2)−1XT

2 . Following the argument as in
(39), it can be seen that the optimal solution of Problem (5)
is equivalent to find the first K principal eigenvectors of the
matrix

H = S1S
2
2S1.

When I = 2, LasCCA and DisCCA-MBI alternate between
G1 and G2 since after updating G1, in the next iteration G1

will not bring any improvement - and the same applies to
G2 (in other words, the two algorithms are the same in the
I = 2 case). By the algorithm, we see that

U
(1)
2 Σ

(1)
2 (V

(1)
2)T = svd(S2S1G

(0)
1) (40a)

G
(1)
2 = U

(1)
2 (V

(1)
2)T (40b)

U
(1)
1 Σ

(1)
1 (V

(1)
1)T = svd(S1S2G

(1)
2) (40c)

G
(1)
1 = U

(1)
1 (V

(1)
1)T (40d)

According to (40b), G
(1)
2 is only a change of basis of

S2S1G
(0)
1 , and thus we have G

(1)
2 = S2S1G

(0)
1 Θ

(1)
1 , for

some full-rank square matrix Θ
(1)
1 ∈ RK×K . Thus, the

update from G
(0)
1 to G

(1)
1 can be written as

U
(1)
1 Σ

(1)
1 (V

(1)
1)T = svd(S1S

2
2S1G

(0)
1 Θ

(1)
1) (41a)

G
(1)
1 = U

(1)
1 (V

(1)
1)T , (41b)

or simply G
(1)
1 = S1S

2
2S1G

(0)
1 Θ(1), where Θ(1) =

Θ
(1)
1 Θ

(1)
2 By induction, one can see that

G
(r)
1 = (S1S

2
2S1)rG

(0)
1

r∏
k=1

Θ(k), (42a)

where Θ(k) are square invertible matrices. The iterations in
(42) are the same as the orthogonal iterations algorithm (OI)
for computing the K-leading eigenvectors of S1S

2
2S1. OI is

known to approach the range space of these K eigenvec-
tors linearly [35, Theorem 8.2.2] under the conditions that
λK > λK+1, where λk denotes the kth leading eigenvector
of H , and that the initialization does not lie in the orthogo-
nal complement of the desired range space.

